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Abstract. Sensing mechanisms that estimate the occupancy of wire-
less spectrum are crucial to the success of approaches based on Dynamic
Spectrum Access. In this paper, we present key insights into this problem
by empirically investigating the design of sensing mechanisms applied to
check the availability of excess capacity in CDMA voice networks. We
focus on power-based sensing mechanisms since they are arguably the
easiest and the most cost-effective. Our insights are developed using a
unique dataset consisting of sensed power measurements in the band of
a CDMA network operator as well as “ground-truth” information about
primary users based on operator data. We find that although power
at a single sensor is too noisy to help us accurately estimate unused
capacity, there are well-defined signatures of call arrival and termina-
tion events. Using these signatures, we show that we can derive lower

bound estimates of unused capacity that are both useful (non-zero) and
conservative (never exceed the true value). We also use a combination
of measurement data and analysis to deduce that multiple sensors are
likely to be quite effective in eliminating the inaccuracies of single-sensor
estimates.

Keywords: Cognitive radio, spectrum sensing, dynamic spectrum ac-
cess.

1 Introduction

Dynamic Spectrum Access (DSA) is often viewed as a remedy against the spec-
trum scarcity caused by existing static spectrum allocation schemes. In DSA-
based approaches primary users, who are often the licensed users of spectrum,
have strictly higher priority than secondary users, who must vacate spectrum if
and when it is needed by primary users.

A fundamental problem in DSA is: how can secondary users know whether
or not primary users are using spectrum? This problem has been studied most

⋆ The author was at Sprint when this work was done.



frequently in the case of secondary usage of spectrum licensed to TV broadcast-
ers [10]. For TV bands as well as other usage scenarios, secondary users need to
reach a binary decision, namely, whether a primary user is present or not. In this
paper, we address spectrum licensed to another set of primary users – cellular
telephony operators. Our focus on cellular bands is justified given the signifi-
cant recent interest in implementing DSA in these bands [2–5, 8]. Such interest
is fueled by the large number of devices and networks using cellular bands. In
addition, as VoIP services and wireless data networks proliferate, cellular voice
bands may see reduced loads. Secondary usage of such spectrum is an attractive
way by which providers can extract value. We study CDMA cellular bands since
they are one of the most widely-used cellular technologies (along with GSM) and
we had access to the ground truth of such a network.

Since CDMA voice users share spectrum, the goal is not to detect whether
a user is present or not but to identify the amount of unused spectrum capacity.
Of course, even if there is unused spectrum capacity, secondary usage can have
an impact on primary users. Hence, it is acceptable, perhaps even desirable,
that some amount of spectrum is left un-utilized by secondary users. Thus, if
secondary users want to use capacity X, we would like to check the availability
of capacity Y > X +∆ beyond what is already used by primary users. Though
understanding it is outside the scope of this paper, we do believe that – at the
least – low-bandwidth applications (e.g., urban sensing) may be well placed to
exploit unused capacity in CDMA voice networks.

In this paper, we investigate how secondary users can estimate unused spec-
trum capacity by utilizing sensing mechanisms. In particular, we focus on what
are arguably the simplest sensing mechanisms – those that are based on single
sensors considering power alone. Not only are these mechanisms simple but they
are also cheap (thus enabling large-scale secondary user deployment). We phrase
our investigation in terms of the following problem:
What information about primary user occupancy do spectrum mea-

surements of power yield? Can this information be used to estimate

the unused capacity that secondary users can exploit?

To conduct our investigation, we leverage a large and unique dataset con-
taining both spectrum measurements of transmitted power as well as the cor-
responding “ground truth”, i.e., the exact information about all the calls in
progress at every point in time obtained from the call records collected at the
network switches. In other words, we capture both the actual behavior of the pri-
mary users (calls in progress, which can only be measured inside the network)
as well as the estimated behavior of the primary users, as would be measured by
secondary sensing users. To our knowledge, this is the first study to execute and
evaluate such synchronized measurements of sensing and ground-truth. Through-
out this paper, we use the natural approach of estimating unused capacity by
first estimating primary usage and subtracting it from the total capacity.

We start by exploring if sensed power can be easily converted to the amount
of primary usage. We find that this way of estimating primary usage is not
practical. Therefore, we focus on investigating other, indirect ways of estimating



unused capacity. In particular, we explore the possibility of identifying primary
usage events (call arrivals or terminations). Using statistics of call durations that
are published or well-known [7, 19], we can then convert the estimated intensity
of event arrivals into estimates of primary usage. It turns out that sensed power,
when averaged over time, contains distinct, well-defined power signatures corre-
sponding to call arrival events and, to a lesser extent, call termination events.
However, the noise in sensed power at any single time instant is large enough
that we cannot exploit these signatures to accurately identify individual call
events. We conclude that accurate estimation of primary usage (and hence un-
used capacity) using a single sensor is likely to be unachievable.

Power sensed by a single sensor can nevertheless be of value to secondary
users since it can provide estimates of unused capacity that are conservative
(underestimates) yet useful (not equal to zero). We show that a single sensor
can provide such useful underestimates because of the following reason: even
though our event identification algorithms are hampered by noise, they can be
suitably configured so that they never overestimate unused capacity but still
yield useful estimates of unused capacity. For example, in the moderately-loaded
cells that we monitored in our experiments, we can correctly estimate that at
least 5% of total capacity is almost always available for secondary use without
ever overestimating unused capacity. Thus, we can use power measurements from
a single sensor to at least support a low-bandwidth secondary application.

Finally, we show how accurate estimates of unused capacity can be obtained
by using multiple sensors. Using our measurement-based characterization, we
estimate the number of sensors required to achieve better accuracy.

2 Measurement Methodology

To evaluate if sensed power yields information about the underlying primary us-
age, we conducted a large number of sensing measurements spread over time and
multiple locations. In addition, we simultaneously collected detailed information
about primary usage. Thus, we were able to collect a large amount of unique
data consisting of both measurements and ground truth. Our measurements
were collected in the band used by a CDMA-based cellular operator, which is an
important target for dynamic spectrum access as described in the introduction.
In total, our experiments yielded approximately 90GB of ground truth data on
primary usage and 14GB of data with spectrum power measurements. In this
section, we describe our measurement methodology in detail and also the salient
aspects of the collected datasets.

2.1 Ground Truth on Primary Usage

To compute the ground-truth, we use call records collected at the switches of a
CDMA-based cellular operator. These records capture the start time, duration,
initial and final sector as well as assigned carrier5 of the voice calls made in the

5 Each cell sector may be assigned one or more carriers – a 1.25MHz portion of the
spectrum. Each carrier is capable of supporting tens of calls.
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Fig. 1. DatasetD1: (a) Sensed power over time for carriers C1 and C2. (b) Normalized
load for strongest cell sector S1. (c) Normalized load for 2nd strongest cell sector S2.

network. The call duration reflects the RF emission time of the call and captures
precisely what we want – the duration of primary usage. All timestamps were
measured with a resolution of a few milliseconds.

Using the call records, we calculate the ground-truth usage in each carrier of
a cell sector. We split the call records based on the sector and carrier. We create
two records for each call corresponding to its initiation and termination. Then,
we sort these records in order of their time to get a sequence of call events that
are known to have occurred in each sector/carrier. Using the sorted list of events,
we also calculate the load of each sector and carrier. We do so by maintaining
a running count of the number of ongoing calls. This count is increased by +1
when a call begins and decreased by −1 when a call terminates.

Since the switches only record the initial and final sector of each call, we are
unable to account for the spectrum usage in other sectors that the user may
have visited in between. This implies that our list of events is accurate but not
necessarily complete (it may not count call initiation and termination events
caused by handover). Similarly, for calculating load, we assign the whole call
to the initial sector/carrier. We also try other approximations of load by, for
example, assigning the first half of the call to the initial sector/carrier and the
last half to the final sector/carrier. Since these approximations do not alter our
results significantly, we do not provide them. Furthermore, we believe that full
mobility information is unlikely to change our results either.

2.2 Power Sensing

We collected our power measurements using a W1314A Multi-band Wireless
Measurement Receiver from Agilent [1]. We used the Model 110 so that we can
sense the uplink and downlink CDMA bands (in the 1900MHz frequency range)
used by the network whose call records we had access to. This receiver captured
in real-time power measurements from all 12 1.25MHz carriers belonging to a
single provider. The power measurements were reported twice or thrice a second
on average. Unless stated otherwise, we convert this raw data into per-second
averages (computed using 2 or 3 readings). Our wireless measurement receiver
is a sophisticated piece of equipment and can be viewed as being capable of the
most accurate power based sensing that a secondary user can perform.

We collected multiple datasets at four different urban locations (L1 to L4).
For each of the locations the power measurements were collected over multiple



days and spanned all possible 1.25MHz carriers of the CDMA band. We use C1,
C2, . . . to refer to the various carriers. L1 was within line-of-sight and about
0.5 miles from the nearest base station. L2 was at a similar distance but not
with line-of-sight of the closest base station. In both L1 and L2 the antenna was
placed close to a window at the second floor. L3 and L4 were about twice the
distance (1 mile) to the closest base station, on the ground floor and heavily
shadowed from the closest base station.

Our analysis showed the following trends: datasets collected at the same
location (at different times) showed similar results. Furthermore, the datasets
collected at locations L1 and L2 illustrated better results than those collected at
locations L3 and L4. This was due to the heavy shadowing at the latter locations.
On account of this and space limitations, we provide results only for L1 and L2
in this paper. In particular, we use two datasets, which we label D1 and D2. D1
was collected over a period of 3 days at location L1 and D2 was collected over a
period of 4 days at location L2. In this paper, we present results for two carriers
C1 and C2, which were the most active carriers in the two locations.

For each experiment, we also recorded the identities of the cell sectors with
the strongest pilots. For each dataset, we refer to the cell sectors as S1, S2, . . .
in decreasing order of pilot strength. We observe that, for both of our datasets,
this order reflected the distance of the sectors from the measurement locations.
Usually a cell sector has activity in more than one carrier. We denote this by
referring to the activity of sector 1 in carrier 1 with S1.1, in carrier 2 with S1.2,
etc. Note that, for each of these cell sectors, we computed ground-truth (events
and load) using the call records as described in Sect. 2.1.

3 Estimation via Power Thresholds

In this section, we present how well power is correlated with primary usage.
We obtain these results by investigating the following question: Can a simple
scheme based on mapping sensed power information to load information work?
We start with some preliminary observations and data analysis for synchronizing
the power measurements and ground truth.

3.1 Power-Load Correlation

In Fig. 1, we plot the power sensed and network ground truth for dataset D1
(downlink). We plot results for the two strongest sectors S1 and S2 and two
carriers C1 and C2 used by both sectors. For data confidentiality reasons, we
normalize the load values by a randomly chosen number so that the absolute load
is obfuscated while preserving the trends. Notice that the day/night variations
of the load are clearly visible. This is not surprising since it corresponds to levels
of human activity and has also been observed in prior work [9, 19]. The plots
showing the sensed power also illustrate a distinct diurnal pattern with higher
power levels during the day and lower levels at night.
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correlation of sensed power
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Fig. 3. Dataset D1: Distribution of power levels when
the load varies. (a) Daytime (b) Nighttime. We divide
the observed load levels into three levels.

Cross-correlation is a simple and well-known metric that we can use to mea-
sure the extent to which power “tracks” load. We plot the cross-correlation
between sensed power and load for several lags in Fig. 2. The maximum is
not reached at lag 0 since the clocks used for collecting call records and power
measurements are only synchronized to within a few seconds of each other. In
addition, for each sector/carrier, we see peaks separated by roughly one day.
These local maxima are caused by the underlying diurnal pattern of the load.
Overall, it is clear that the sensed power is indeed well correlated with load.

It turns out that the cross-correlation curves for all sector/carriers reach a
maximum at the same lag of 13 seconds as shown in Fig. 2. We observed maxima
at a similar lag with dataset D2 as well. For the rest of this paper, we, thus, use
the above lag to synchronize the power measurements and call records.

3.2 Naive Threshold-based Scheme

We start investigating if there is a unique mapping of power level to sector load
with Fig. 3(a). We plot the distribution of the sensed power levels for various
coarse-grained levels of load during peak hours of the day (12PM to 6PM). As
expected, with increasing load, the power levels tend to increase. But, observe
that for different values of load, the same power levels are often seen. Moreover,
when the load is low, the power levels are more spread out. This indicates that
it is challenging to distinguish small changes in load using static power alone.

Power levels are better able to separate the coarse-grained measures of load
at night (12AM to 6AM) as shown in Fig. 3(b). Note that, since the load at night
is never high, we only show two levels. These levels are relatively well separated:
for example, the power level is below −70 dBm for 60% of the time when the load
is low as opposed to 5% of the time we have medium load. Such power-based
thresholds separating coarse-grained load levels such as low, medium and high
are likely to depend on location. For example, in separate short experiments, we
found that the average power levels close (about 100m) to a base station were
around −50 dBm. Though we did not find much variation at a given location
within a few days, it is unclear how long thresholds at a location remain valid.

To summarize, load estimation based on power thresholds (that are gleaned
on a per-location basis) can provide coarse-grained information about load es-
pecially at night. Though fine-grained information is difficult to extract, such
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Fig. 4. Dataset D1: 10-second t-average plots for (downlink) power for C1 (top) and
C2 (bottom) during (a) Call initiation events, and, (b) Call termination events.
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Fig. 5. Dataset D2: 10-second t-average plots for (downlink) power for C1 (top) and
C2 (bottom) during (a) Call initiation events, and, (b) Call termination events.

coarse-grained information might be sufficient to decide whether or not to start
secondary usage. The above threshold-based scheme is a black-box estimation of
load in the sense that no information is required from the cellular operator.

4 Event Signatures

During our analysis, we found that sensed power contains information about the
“first derivative”, i.e., change of primary usage load. These changes are typically
due to call initiation and termination in a CDMA voice network.

The sensed power in our datasets shows often jumps and drops when events
occur. To understand if such event signatures exist and characterize them, we
examine all initiation and termination events spread across multiple days in our
datasets. Since the average power across these days may not be stationary we
rely on what we refer to as t-average plots: we extract the power for a short time
periods before and after events and average the sensed power across all initiation
and termination events. This allows us to look at time-averaged characteristics of
power when events occur even in the absence of stationarity – a key advantage.

In Fig. 4, we show t-average plots capturing the average behavior for 10
seconds before and after call initiation and termination events of dataset D1.



In this figure, we are considering only the downlink bands. We notice two key
patterns for the events involving the strongest cell sector S1:

– On average, call initiation events are characterized by a spike that is about
0.3 − 0.4 dBm followed by a general increase of power afterwards that is
around 0.05 − 0.1 dBm. This trend is clearly seen during the daytime and
nighttime as well (not shown). We believe that this spike is easily explained
by the CDMA downlink power control loop [18]. This loop ensures that,
when a call starts, the base station transmits with high power. The power
level is then reduced to a minimal level while maintaining call quality using
the rapid closed-loop power control of CDMA. The increase of 0.05−0.1 dBm
reflects the increased power due to a new call, of course.

– On average, call termination events are characterized by a dip of at least
0.05− 0.1 dBm (a bit higher during nighttime) immediately after the event.
This reflects our intuition that the call termination corresponds to lesser
power being emitted by the base station.

Thus, there exist well-defined power signatures for initiation and termination
events in CDMA networks. Figure 4 also shows that there are no visible signa-
tures corresponding to the events of the second strongest cell sector S2.

Recall from Sect. 2.2 that we collected a second dataset D2 from experiments
conducted at another location. To verify that the event signatures persist across
locations, we plot t-average plots for D2 in Fig. 5. The call initiation signature
corresponding to events of the strongest sector S1 continues to be clearly seen
for both carriers. As before, there is no signature corresponding to events of the
second strongest sector S2. Surprisingly, the call termination signature for D2
is less clear. The location at which dataset D2 was collected had no line-of-sight
to S1 or S2 which is the likely reason behind the weak termination signature.

We also use t-average plots (not shown due to lack of space) to investigate
if such signatures are also present in the sensed power of uplink bands. We find
no identifiable signatures corresponding to initiation or termination events for
both S1 and S2. The absence of signatures in uplink power is not surprising
given that the average power levels are about 25−30 dBm lower than the down-
link power measurements. Such lower power levels are likely due to the stricter
power budget of end-user devices. Also, the sources of uplink power are end-user
devices, which are spatially distributed. We expect to see signatures when such
devices are nearby. To verify this hypothesis, we conducted “active” experiments
by initiating phone calls using a mobile handset located near our power sensor.
When these calls were initiated, we did observe identifiable spikes in power sim-
ilar to the downlink initiation signature. These experiments confirm that uplink
sensing is of use only if the sensor is close to all end-user devices. Since this is
physically impossible, we do not further investigate uplink sensing in this paper.

5 Event Detection

In the previous section, we found the presence of well-defined signatures cor-
responding to call initiation and termination events on the downlink CDMA



channels. In this section, we show that such average-case signatures do, how-
ever, not translate into algorithms for accurate event detection.

5.1 Discriminators of Initiation Signature

The t-average plots discussed in the previous section indicate that call initiation
can potentially be identified by detecting spikes in the sensed power. Referring
to the t-average plots of Fig. 4, we see that there are roughly three time periods:
during, before and after call initiation. The spike occurs during the call initiation
and is significantly higher than the power before and after. We also expect the
power after call initiation to be higher than before.

Based on the above discussion, we are motivated to consider three intuitive
discriminators of initiation signatures. We use P (·) to denote the power (as a
function of time) and T to represent the second when a call is initiated. We
divide a contiguous period of time around T into three periods: the first period
of call initiation consisting of a window of w seconds including and after T , a
window of w

−
seconds prior to this period, and, a window of w+ seconds after

the call initiation period. We calculate the average power in each of these three
periods and define the criteria for the 3 discriminators as follows:

1. The difference between the power in the call initiation period and the power
in the period before call initiation is larger than a threshold τ1, i.e.,

P ([T, T + w − 1])− P ([T − w
−
, T − 1]) ≥ τ1.

2. The difference between the power during the call initiation period and the
power thereafter is larger than a threshold τ2.

P ([T, T+ w − 1])− P ([T+ w, T+ w + w+ − 1]) ≥ τ2.

3. The difference between the power after and before call initiation is larger
than a threshold τ3.

P ([T + w, T + w + w+ − 1])− P ([T − w
−
, T − 1]) ≥ τ3.

An advantage of using a window of several seconds in each period might be the
potential reduction in the variance of the estimated power. At the same time,
larger periods may be polluted by other call initiation and termination events.

To better understand the impact of the various parameters including the
window sizes and thresholds, we rely on so-called cCDF (complementary CDF )
plots. Consider the first discriminator. Recall that it looks at the difference
during and before call initiation and expects this difference to exceed a threshold
when a call is initiated. A cCDF plot shows if this discriminator is justified by
plotting the distribution of the difference for all T when a call was initiated, and,
compares it with the distribution for all T when a call was not initiated. Since
we are interested in the number of cases that the difference exceeds a threshold,
we plot the cCDF (the CDF subtracted from 1) and experiment with several
choices of w and w

−
(plots not shown due to lack of space).
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Fig. 6. Dataset D1: Fraction of initiation events and non-events that satisfy the dis-
criminators defined by (a) Criterion 1. (b) Criterion 2. (c) Criterion 3.

The higher we choose τ1 to be, the fewer call initiation events satisfy the
criterion. However, as we make τ1 smaller, more seconds during which no call
was initiated satisfy the criterion. The sweet spot appears to be at around 0.4−
0.5 dBm, below which the latter increase faster than the former. We also get
marginally better results when we define the period during call initiation as
consisting of exactly 1 second. Larger windows do not improve our results. It
seems that the power during additional seconds is not as high as that of the
first second. Hence, any potential variance reduction from the additional power
measurements comes at the cost of eliminating the signature itself. The size w

−

of the period before call initiation impacts the results to a lesser extent, leading
to marginally better results with a window of size 4.

Using the cCDF plots for the other two discriminators we find that they
exhibit similar behavior, namely, smaller windows are better. 0.3− 0.5 dBm ap-
pears to be a good threshold value of τ2. However, the third criterion is not as
useful since the difference in power before and after call initiation is not as clear.

The success of our criteria may vary with time which is explored in Fig. 6.
We choose the thresholds corresponding to the 0.5 and 0.2 cCDF quantiles. We
then apply the criteria with the respective thresholds on an hourly basis and
plot the fraction of initiation events and “non-events” satisfying them in Fig. 6.

As expected, the fraction of initiation events satisfying each criterion does
not vary significantly and stays around the quantile value (0.5 or 0.2) used to
choose the thresholds. However, the fraction of “non-events” passing the criteria
show a clear dip during night time for both thresholds. This implies significantly
better performance during night time on account of lesser noise in power.

5.2 Initiation Detectors

We now investigate how the various discriminators and their criteria can be
used for the best possible detection of initiation events. Due to lack of space,
we do not focus on detecting call terminations since discriminators based on call
termination events do not perform as well as those based on call initiation.

We quantify discriminator performance, by looking at the detection proba-
bility, i.e., the probability of detecting an initiation event given that a call was
really initiated. In Fig. 7(a), we plot the detection probability when each of
our three discriminators are used on dataset D1. For each detector, we vary the
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Fig. 7. Dataset D1: (a) Fraction of initiation events
identified by the detectors (b) Fraction of non events
declared as initiation events by the detectors based on
the 3 criteria with varying threshold values.
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bility of estimating at least
X% of unused capacity.

corresponding threshold from −1 to 2.5 dBm. As expected, the detection proba-
bility reduces with increasing thresholds. In Fig. 7(b), we show the probability
of detecting a call initiation event, although no call was initiated.

Comparing Fig. 7(a) and Fig. 7(b) shows a common problem using energy
detection: Choosing a threshold τ1 that achieves a high detection probability
results in many non-initiation events to be declared as initiation event and vice
versa. E.g., using criterion 1, a threshold of τ1 = 0dBm results in detecting close
to 75% of the initiation events, but also in mistakenly detecting about 50% of the
non-events as initiations. In contrast, a threshold of τ1 = 0.5 dBm detects only
10% of the non-events as initiations but fails to detect 70% of the initiations.

6 Estimating Unused Capacity

In this section, we discuss how we can use power sensed by a single sensor to
derive useful estimates of unused capacity. Specifically, we find lower bounds for
the unused capacity so that – at least – low-bandwidth applications can utilize it.
Note that these estimates are useful because they are significantly greater than
zero. We compute lower bounds using the call initiation detectors to estimate
call arrival rates. We then estimate the load in the system using Little’s law as
E[k] = λE[b] where E[b] is the mean call duration and λ the estimated arrival
rate. We do assume that we have partial information about the system being
studied, namely, the average call durations. Such information can be obtained
from previous studies [7, 19] (since mean call durations are quite stable over
time) or directly from providers. Since we use such information, we refer to it as
a gray-box approach (in-between black-box and white-box approaches).

In Fig. 8 we show how well we can achieve our goal: finding unused spectrum
to satisfy the secondaries bandwidth requirement. We show results for dataset
D1 and criterion 1. We divide our dataset into hour-long time periods and cal-
culate average values within these time periods. Remember, that it is crucial to
never overestimate the unused capacity. Using the whole dataset, the maximum
threshold would be τ ≤ 0.5 dBm resulting in X = 5% of capacity unused in more
than half of the time periods (figure not shown). If we use different thresholds for
daytime (9am to 10pm) time periods and nighttime (11pm to 8am) time periods,



we can improve performance significantly. The maximum thresholds so that we
never overestimate are τ ≤ 0.7 dBm and τ ≤ 0.5 dBm respectively. These are
indicated by the solid black lines in Fig. 8. This figure also shows that, using the
maximum daytime threshold (τ = 0.7 dBm), we correctly estimate 5% (50%) of
total capacity is unused almost always (in 14% of the daytime time periods).
For the maximum nighttime threshold (τ = 0.5 dBm) we correctly estimate that
50% (80%) of total capacity is unused in 75% (46%) of the nighttime hours.

For dataset D2, the results are similar though the maximum thresholds (so
that we never overestimate) are closer to 1 dBm. These results show that power
measurements at a single sensor can be quite useful especially for secondary
applications such as urban sensing, which have low bandwidth demands but
strict power constraints. Given the differences we observed between D1 and D2,
local calibration might be necessary to choose the appropriate power thresholds.

7 Towards Spatial Diversity

An alternative approach is to improve the accuracy of event detection. Clearly,
this is hard to achieve with a single sensor because the signatures of individual
events are obfuscated by additive white noise, which makes accurate detection
very hard especially in the low SNR regime [15, 17]. The natural way to improve
event detection accuracy would be to use multiple sensors in spatially diverse
locations so that we can eliminate the white noise. There are various proposals
for cooperative spectrum sensing approaches in the literature, e.g., [13, 14, 16].

We now use our dataset to quantify the benefits of cooperative sensing. In
particular, we consider the approach of soft decision combining as described
in [13] and make a natural assumption of zero-mean additive Gaussian noise
with variance σ2. With k distributed (and independent) sensors, the white noise
in the average sensed power can be approximated as a zero-mean normal variable

N (0, σ2

k
) with variance σ2

k
by the Central Limit Theorem.

We calculate the quality of event detection under the above model: Assume
that a call is initiated at time T and the first criterion of Sect. 5 with w = w

−
= 1.

At time T , the criterion shows a power spike of about 0.4 dBm plus the difference
between the white noise at T and T − 1. Assuming that white noise at these
time instants is independent, their difference is a zero-mean normal variable with

variance 2σ2

k
. Hence, the criterion will have a false negative with probability Pfn

and false positive with probability Pfp
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where τ is the decision threshold. Given a maximum tolerable false positive
and false negative probability, we can solve the above to estimate the minimum
number of sensors (k) required. For example, for Pfn ≤ p and Pfp ≤ n we get:

√
k ≥ max

(
∣

∣

∣

∣

∣

q1−p

√
2σ

τ1

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

qn
√
2σ

τ1 − 0.4

∣

∣

∣

∣

∣

)



Here, qy is the value at which the quantile of the standard normal distribution
is y. We estimate σ using D1. Since we do not want to capture temporal mean
variations, we remove the moving average of the previous 5 seconds for each
power reading. This yields an estimate σ = 0.39 with which we can achieve
less than 10% false negatives and false positives using k = 13 sensors and τ =
0.2 dBm. In the previous section, we saw that it may be desirable to have a much
smaller fraction of false positives than false negatives. It turns out that we can
achieve at most 1% false positives and 10% false negatives with k = 26 sensors
and τ = 0.25 dBm. Deploying such numbers of sensors per cell could very well
be economical, especially if existing consumer devices can be leveraged.

8 Related Work

In recent years, a lot of measurement studies [6, 11, 12] have been carried out to
show the under-utilization of the licensed spectrum. Though these studies show
the abundance of temporally unused spectrum, they give little insight into the
dynamic behavior of the licensed users legally operating in those bands.

The authors of [9] estimate the load in the New York cellular bands (CDMA
as well as GSM) based on spectrum measurements. However, in addition to
pure power measurements, the CDMA signals are demodulated to determine the
number of active Walsh codes (i.e., the number of ongoing calls). To determine
the number of calls in the GSM bands, image processing of the spectrogram
snapshots is used. This is in contrast to our study, which is based on power
measurements and uses minimal processing. In addition, to our best knowledge,
there is no study which correlates spectrum measurements with the actual load
as recorded by the system. Sensing for TV bands has been previously studied,
for example in [10]. They found that energy detection with multiple sensors is
often better than feature detection. However, their results are for the relatively
static TV bands and not for cellular bands.

9 Conclusions

We used a unique set of simultaneous sensing and network measurements to
study the problem of sensing-based estimation of unused capacity in cellular
spectrum. When averaged over time, we found well-defined signatures of call
initiation and termination events using the power at a single sensor. However,
sensing noise makes it challenging to use these signatures to estimate unused
capacity by identifying call events. We found that useful underestimates can
nevertheless be computed especially for low-bandwidth secondary applications.
Alternatively, we can obtain accurate estimates by using multiple sensors. To
our knowledge, our work is the first detailed study of how well sensing works in
CDMA networks, which are often viewed as candidates for DSA. In the future,
we intend to design and evaluate better sensing algorithms including those based
on multiple sensors.
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