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Abstract. A pioneering body of work in the area of mobile opportunis-
tic networks has shown that characterising inter-contact times between
pairs of nodes is crucial. In particular, when inter-contact times follow
a power-law distribution, the expected delay of a large family of for-
warding protocols may be infinite. The most common approach adopted
in the literature to study inter-contact times consists in looking at the
distribution of the inter-contact times aggregated over all nodes pairs,
assuming it correctly represents the distributions of individual pairs. In
this paper we challenge this assumption. We present an analytical model
that describes the dependence between the individual pairs and the ag-
gregate distributions. By using the model we show that in heterogeneous
networks - when not all pairs contact patterns are the same - most of the
time the aggregate distribution is not representative of the individual
pairs distributions, and that looking at the aggregate can lead to com-
pletely wrong conclusions on the key properties of the network. For ex-
ample, we show that aggregate power-law inter-contact times (suggesting
infinite expected delays) can frequently emerge in networks where indi-
vidual pairs inter-contact times are exponentially distributed (meaning
that the expected delay is finite). From a complementary standpoint, our
results show that heterogeneity of individual pairs contact patterns plays
a crucial role in determining the aggregate inter-contact times statistics,
and that focusing on the latter only can be misleading.
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1 Introduction

Foundational results in the area of mobile opportunistic networks have clearly
shown that characterising inter-contact times between nodes is crucial [Aug07,Kar07].
In this paper we thoroughly investigate the dependence between the distributions
of individual node pairs inter-contact times and the distribution of the aggregate

inter-contact times. Specifically, an individual pair distribution is the distribu-
tion of the time elapsed between two consecutive contacts between that pair of
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nodes. The aggregate distribution is the distribution of inter-contact times of
all pairs considered together, i.e. is the distributions of all inter-contact times
measured in the network between any two nodes.

A clear understanding of the dependence between the individual pairs and
the aggregate distributions is very important, although not achieved in the lit-
erature yet. It has been clearly shown that, depending on the distribution of
pairs inter-contact times, families of forwarding protocols may produce infinite
expected delays [Aug07]. However, most of the literature has focused on the ag-

gregate distribution (see Section 2 for a review), assuming it is representative
of the individual pairs distributions. This is mainly due to the fact that in real
traces, it is much easier to measure and characterise the aggregate distribution
than the individual pairs distributions, as gathering enough samples for each
and every pair is often very difficult. Aggregate inter-contact times have been
frequently found to be distributed according to a power-law with or without ex-
ponential cut-off. This has been perceived as a severe challenge for forwarding in
opportunistic networks, as an important class of protocols yield infinite expected
delay if individual pairs distributions are power-law [Aug07].

In this paper we carefully review the hypothesis that the aggregate distribu-
tion is representative of individual pairs distributions, by deriving an analytical
model that describes the dependence between the two. We consider a general het-
erogeneous networking environment, in which the individual pairs distributions
are all of the same type (e.g., exponential, Pareto, . . . ), but whose parameters
are unknown a-priori. We assume that the rates of the pairs inter-contact times
(the reciprocal of the averages) are drawn from a given distribution, which,
therefore, determines the specific parameters of each pair inter-contact times.
In other words, as the distribution of the rates controls the parameters of the
inter-contact times distributions, it allows us to control the type of heterogeneity
in the network.

The model described in the paper shows that both the distribution of the
rates and the distributions of individual pairs inter-contact times impact on the
aggregate distribution. In particular, we use the model to find, among others,
the conditions under which the aggregate distribution features the main char-
acteristics often found in traces, i.e. a power-law with or without exponential
cut-off. We can summarise the key findings presented in the paper as follows.

– Starting from exponentially distributed individual pairs inter-contact times,
the aggregate is distributed exactly according to a Pareto law iff the rates
of the pairs inter-contact rates are drawn from a Gamma distribution.

– As an exponential distribution is a special case of a Gamma distribution,
Pareto aggregate inter-contact times can result from a network where both
the individual inter-contact times and their rates are exponentially dis-
tributed.

– When pairs inter-contact times are exponential, and rates are drawn from a
Pareto distribution, the asymptotic behaviour of the aggregate distribution
(for large inter-contact times) is a power-law with or without exponential



3

cut-off. In particular, the exponential cut-off appears when rates cannot be
arbitrarily close to 0.

– Under exponentially distributed individual pairs inter-contact times, the dis-
tribution of the rates plays a crucial role in generating aggregate inter-contact
times featuring a heavy tail. Specifically, whenever rates can be arbitrarily
close to 0, a power-law appears in the aggregate distribution.

Our findings clearly show that relying on the aggregate inter-contact times
distribution only for assessing key properties of opportunistic networks is not
appropriate in general, and can lead to wrong conclusions. In particular, finding
a power-law in the aggregate inter-contact times distribution is not necessarily
an indication that individual pairs distributions feature a heavy tail as well,
and that therefore forwarding protocols may not converge. On the contrary, the
heterogeneity of the network, represented in our study by the distribution of
the individual pairs inter-contact rates, plays a crucial role in determining the
nature of the aggregate distribution, which can be totally different from the
distributions of the individual pairs.

The rest of the paper is organised as follows. We review the relevant state-of-
the-art in Section 2. Then, Section 3 presents the general model describing the
dependence between the individual pairs inter-contact times, the distribution
of their rates, and the aggregate inter-contact times distribution. In Section 4
we use the model to investigate under which conditions aggregate distributions
featuring the main characteristics found in real traces can be generated. We also
present simulation results validating our analytical findings. Finally, in Section 5
we draw the main conclusions of this study.

2 Related work

The first work, to the best of our knowledge, that highlighted the importance of
inter-contact times for studying opportunistic networks is [Aug07]. In this work
authors show by analysis that a popular family of routing protocols may produce
infinite expected delays if individual pairs inter-contact times distributions are
heavy tailed. The same work also analyses a set of traces, showing that the
aggregate inter-contact times actually follow a power-law distribution. Assuming
that the same property holds true for individual pairs as well, authors conclude
that those forwarding protocols may not converge in real opportunistic networks.

This very pessimistic result has been somewhat softened by the work in [Kar07],
where authors re-analyse the same traces and suggest that the aggregate inter-
contact times distribution might indeed present an exponential cut-off in the
tail. Assuming, again, that the same property holds true also for individual
pairs, they conclude that forwarding protocols might actually not yield infinite
delay. In this work authors discuss the fact that the aggregate and the individual
pairs distributions may be different. They propose an initial model for studying
the dependence between the two, which we exploit as a starting point in our pa-
per. However, they do not study this aspect further, after checking that, in their
traces, a subset of individual pairs inter-contact times are distributed according
to a power-law with exponential cut-off.
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These two papers informed most of the subsequent literature, which most
of the time assumed that the distributions of individual pairs and the aggre-
gate distribution can be used interchangeably. Only a few papers paid atten-
tion to individual pairs distributions. Among them, [Con07] analysed another
set of popular traces, finding that a significant fraction of pairs inter-contact
times may follow exponential, Pareto or log-normal distributions. Authors also
provided a model similar in spirit to that presented in our work, in which they
analyse conditions under which pairs exponential distributions result in a power-
law aggregate. As we highlight in the following, the model in [Con07] does not
incorporate a fundamental aspect, thus obtaining imprecise results. The work
in [Gao09] also analyses popular traces, finding that over 85% of the pairs dis-
tributions fit an exponential law, according to a χ2 test. The dependence with
the aggregate distribution is not studied, though.

Besides this body of work, most of the literature on opportunistic networks
gives for granted that aggregate inter-contact times feature a power-law with ex-
ponential cut-off, and do not pay attention to the possible difference of the indi-
vidual pairs distributions. For example, the vast majority of the mobility models
proposed for opportunistic networks share this assumption, and aim at reproduc-
ing individual pairs and/or aggregate power-law distributions (e.g., [Lee09,Bor09,Bol10,Rhe08]).
Similarly, other papers try to highlight which characteristics of reference mobility
models generate a power-law in individual pairs inter-contact times [Cai07,Cai08].

With respect to this body of work, in this paper we provide a thorough
analysis of the dependence and the key differences between individual pairs and
aggregate inter-contact time distributions, clearly showing that in general the
latter cannot be used as a substitute for the former. With respect to the models
presented in [Kar07] and [Con07] we provide much more general and accurate
analysis and results. To the best of our knowledge, no previous work has dealt
with this specific problem at the level of detail presented here.

3 Analytical model of aggregate inter-contact times

In this section we present an analytical model that describes the dependence
between the inter-contact times of individual pairs and the resulting distribution
of aggregate inter-contact times. This is the key result that we then exploit in
the following analysis.

3.1 Preliminaries
As a first step, it is important to recall a result found in [Kar07], which shows the
relationship between the distribution of individual pairs inter-contact times and
the aggregate distribution, in a network where the parameters of the individual
pairs distributions are known. Let us assume to monitor individual pairs inter-
contact times for a large time interval T . Let us denote with P the number of
pairs for which at least one inter-contact time is measured over T . Moreover,
denote with Fp(x) the CCDF of inter-contact times for pair p, p ∈ {1, . . . , P},
with np(T ) and N(T ) the number of inter-contact times of pair p and the total
number of inter-contact times over T , respectively. Finally, denote with θp the
rate of inter-contact times for pair p (i.e. the reciprocal of the average inter-
contact time) and with θ =

∑

p θp the total rate of inter-contact times. Then,
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the CCDF of the aggregate inter-contact times F (x) can be expressed as in the
following lemma.

Lemma 1. In a network where P pairs of nodes exist for which inter-contact

times can be observed, the CCDF of the aggregate inter-contact times is:

F (x) = lim
T→∞

P
∑

p=1

np(T )

N(T )
Fp(x) =

P
∑

p=1

θp

θ
Fp(x) . (1)

Proof. See [Kar07]. ⊓⊔

Lemma 1 is rather intuitive. The distribution of aggregate inter-contact times
is a mixture of the individual pairs distributions. Each individual pair “weights”
in the mixture proportionally to the number of inter-contact times that can be
observed in any given interval (or, in other words, proportionally to the rate of
inter-contact times).

3.2 General results

In this section we extend the result of Lemma 1 to the case in which the param-
eters of the individual pairs inter-contact times are not known a priori. Specif-
ically, we consider the general case in which the rates of individual pairs inter-
contact times are independent and identically distributed (iid) according to a
continous random variable Λ with density f(λ), λ ≥ 0 (for the generic pair p, λp

denotes its rate). We also assume that all individual pairs inter-contact times
follow the same type of distribution. For the generic pair p, the distribution pa-
rameters are set such that the resulting rate is equal to λp. Note that we are
able to model heterogeneous networks, as inter-contact times distributions of
different pairs are in general different, as their rates are different. With respect
to the notation used in Section 3.1, we hereafter denote with Fλ(x) the CCDF of
the inter-contact times between a pair of nodes whose rate is equal to λ1. Under
these assumptions, the CCDF of the aggregate inter-contact times becomes as
in Theorem 1.

Theorem 1. In a network where the rates of individual pairs inter-contact times

are distributed with density f(λ), the CCDF of the aggregated inter-contact times

is as follows:

F (x) =
1

E[Λ]

∫

∞

0

λf(λ)Fλ(x)dλ . (2)

Proof. The complete proof is available in [Pas11], while here we provide an
intuitive sketch. Formally, we prove the theorem by conditioning F (x) on a
particular set of individual pairs inter-contact rates, and applying the law of total
probability. Note however that we can also obtain Equation 2 by considering a
modified network in which we assume that all rates are possibly available, each
with probability f(λ)dλ. F (x) is thus the aggregate over all such individual inter-
contact times distributions. As the number of distributions becomes infinite and

1 Note that, when Fλ(x) is defined by more than one parameter, additional conditions
besides the rate should be identified to derive all parameters. Our analysis holds true
for any definition of such additional conditions.
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is indexed by Λ (a continuous random variable), the summation in Equation 1
becomes an integral over λ. Furthermore, the weight of each distribution (θp in
Equation 1) becomes λ · p(λ) = λf(λ)dλ, while the total rate (θ in Equation 1)
becomes

∫

∞

0
λf(λ)dλ = E[Λ]. The expression in Equation 2 follows immediately.

⊓⊔

Note that generalising Lemma 1 as in Theorem 1 results in a much richer tool
for understanding the dependence between individual pairs and aggregate inter-
contact times distributions. Specifically in the model provided by Theorem 1 the
individual pairs distributions are not pre-defined, but can be tuned according to
the random variable Λ. This allows us to “steer” and control the heterogeneity of
the network. As we show in Section 4, this model allows us to study the relation-
ship between individual pairs and aggregate inter-contact times distributions, by
assuming that i) individual pairs are heterogeneous; ii) their inter-contact times
follow an arbitrary family of distributions (Fλ(x)); and iii) their rates follow an-
other arbitrary distribution (f(λ)). These degrees of flexibility are not provided
by the model in Lemma 1.

As a final remark, a similar generalisation was also attempted in [Con07].
However, the formulation in [Con07] is not exact, as it does not take into account
the fact that, in the mixture defining F (x), distributions of more frequent contact
patterns should “weight more” with respect to distributions of less frequent
contact patterns.

4 Aggregated inter-contact times emerging in different

heterogeneous networks

In this section we exploit the model provided by Theorem 1 to investigate the
dependence between the distributions of individual pairs inter-contact times and
their aggregate distribution. Specifically, we consider exponentially distributed
individual pairs inter-contact times (i.e., we assume that Fλ(x) = e−λx holds
true), and study how the aggregate CCDF F (x) varies for different distributions
of the individual pairs inter-contact rates, f(λ). Considering exponential indi-
vidual pairs inter-contact times is sensible, as analysis on traces indicates that
this hypothesis cannot be ruled out, in general [Gao09,Con07].

4.1 Preview of the main results

As a preview of the results, we will show that power-law distributions (with
or without exponential cut-off) for the aggregate inter-contact times can appear
even starting from exponentially distributed individual pairs inter-contact times.
This is a very interesting outcome, indeed. It clearly indicates that - in general
- looking at the aggregate distribution of inter-contact times is not enough for
inferring the distributions of individual pairs inter-contact times, and can indeed
be misleading. We show, for example, that observing a power-law aggregate
distribution with shape α ∈ (1, 2] is not sufficient to conclude that a large family
of forwarding protocols yield infinite expected delay [Aug07]. In such a case,
individual pairs inter-contact times may actually be exponentially distributed,
which would guarantee finite expected delay. The key reason behind this finding
is that when the network is heterogeneous, and not all individual pairs contact
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patterns are statistically equivalent, the heterogeneity of the individual pairs
distributions plays a crucial role in determining the aggregate distribution of the
inter-contact times, which may be of a completely different type with respect to
the individual pairs distributions.

The detailed results are hereafter presented as grouped in two classes. Firstly,
in Section 4.2, we investigate under which conditions the aggregate inter-contact
times follow exactly a given distribution. Specifically, we impose that F (x) in
Equation 2 is equal to such distribution, and find the corresponding distribution
of the individual pairs inter-contact rates f(λ). Then, in Section 4.3 we find
additional cases in which it is not possible to exactly map a given aggregate
distribution F (x) to a specific rate distribution f(λ), but it is possible to identify
rate distributions such that the tail of the aggregate follows a certain pattern.

As those are among the most interesting cases to study, we focus on aggregate
inter-contact times distributed according to i) a power-law, ii) a power-law with
exponential cut-off, iii) an exponential law. Proofs are available in [Pas11].

4.2 Exact aggregate inter-contact times distributions
First of all, we wish to identify rate distributions f(λ) that result in power-law
(Pareto) aggregate distributions. From Equation 2, and recalling that we assume
individual inter-contact times are exponentially distributed, we have to find f(λ)
such that

1

E[Λ]

∫

∞

0

λf(λ)e−λxdλ =

(

b

b + x

)α

, (3)

where α and b are the shape and scale parameters of the Pareto distribution. Note
that in this case we consider the definition of the Pareto distribution in which all
positive values are admitted, i.e., x > 0 holds true. The rate distribution f(λ)
satisfying Equation 3 is provided by Theorem 22.

Theorem 2. When individual pairs inter-contact times are exponentially dis-

tributed, aggregate inter-contact times are distributed according to a Pareto law

with parameters α > 1 and b > 0 iff the rates of individual inter-contact times

follow a Gamma distribution Γ (α − 1, b), i.e.

F (x) =

(

b

b + x

)α

⇐⇒ f(λ) =
bα−1

Γ (α − 1)
λα−2e−bλ . (4)

Theorem 2 is one of the most interesting results of this paper. It has been found
in [Aug07] that a large family of forwarding protocols yield infinite expected
delay when the individual pairs inter-contact time distributions are Pareto with
α ∈ (1, 2]. Based on this result, it has been common in the literature to assume
that, if the aggregate inter-contact time distribution is Pareto with α ∈ (1, 2],
those forwarding protocols yield infinite delay. Theorem 2 clearly shows that
this is not correct, as aggregate power-laws with α ∈ (1, 2] can be obtained
starting from exponential individual pairs inter-contact times. In such a case,
the expected delay of forwarding protocols is finite.

As a special case of Theorem 2, the following corollary holds true.

2 A qualitatively similar result was also found in [Con07]. However, due to the inexact
formulation of F (x) highlighted before, the exact result differs.
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Corollary 1. When individual pairs inter-contact times are exponentially dis-

tributed, aggregate inter-contact times are distributed according to a Pareto dis-

tribution with parameters α = 2 and b > 0 iff the rates of individual inter-contact

times follow an exponential distribution with rate b, i.e.

F (x) =

(

b

b + x

)2

⇐⇒ f(λ) = be−bλ . (5)

Proof. This follows immediately from Equation 4 by recalling that a Gamma
distribution Γ (1, b) is actually exponential with rate b. ⊓⊔

Corollary 1 further stresses the result of Theorem 2, stating that a power-law
distribution of aggregate inter-contact times can be obtained starting from both

exponentially distributed individual pairs inter-contact times and pairs rates.
An interesting physical intuition can be highlighted that justifies the above

results. Recall that the inter-contact times aggregate is a mixture of the individ-
ual pairs inter-contact times. From a physical standpoint, power-law aggregates
means that some inter-contact times in the mixture can take extremely large val-
ues, possibly diverging. Intuitively, such a behaviour can therefore be generated
irrespective of the distribution of individual pairs inter-contact times, by includ-
ing in the mixture individual pairs whose inter-contact rate is extremely small,
arbitrarily close to 0. This is exactly the effect of drawing rates from Gamma or
exponential distributions, which can admit values of the rates arbitrarily close
to 0. The same physical intuition is also confirmed by other results we present
in Section 4.3.

The final result we present in this section shows under which conditions
aggregate inter-contact times follow an exponential distribution, i.e., F (x) =
e−µx. This is shown in Theorem 3.

Theorem 3. When individual pairs inter-contact times are exponentially dis-

tributed, aggregate inter-contact times are distributed according to an exponential

distribution with rate µ > 0 iff the network is homogeneous, i.e. iff all individual

pairs inter-contact times are exponentially distributed with rate µ:

F (x) = e−µx ⇐⇒ f(λ) = δ(λ − µ) , (6)

where δ(·) is the Dirac delta function.

Interestingly, Theorem 3 shows that it is sufficient to look at the aggregate inter-
contact time distribution only when it turns out being exactly exponential, as,
starting from individual pairs exponential distributions, the only possibility is
that all pairs inter-contact times are distributed with exactly the same exponen-
tial law found in the aggregate.

4.3 Asymptotic behaviour of aggregate inter-contact times

distributions

In this section we present a further set of results characterising the asymptotic
behaviour of the aggregate inter-contact times. We still assume that individual
pairs inter-contact times are exponential, and study the aggregate when pairs
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rate are drawn from Pareto distributions. For this set of results we are not able
to obtain sufficient and necessary conditions for obtaining a given distribution of
the aggregate. However, we are still able to show interesting sufficient conditions
for obtaining aggregate distributions that asymptotically decay as a power-law
with or without exponential cut-off. These results are quite interesting, as several
papers in the literature have observed aggregate distributions whose tail decays
as a power-law with exponential cut-off. Note that studying the asymptotic
behaviour is relevant, as it is the tail of the inter-contact times distributions
that determine the convergence properties of forwarding algorithms [Aug07].

Firstly, we assume that individual pairs rates are distributed according to
a Pareto distribution whose CCDF is F (λ) =

(

k
λ

)γ
, λ > k, and derive the

asymptotic behaviour of F (x) for large x. Note that in this case rates are drawn
from a Pareto distribution that does not admit values arbitrarily close to 0.
Theorem 4 provides the expression for F (x).

Theorem 4. When individual pairs inter-contact times are exponentially dis-

tributed and rates are drawn from a Pareto distribution F (λ) =
(

k
λ

)γ
, λ > k, the

tail of the aggregate inter-contact times decays as a power-law with exponential

cut-off, i.e.:

F (λ) =

(

k

λ

)γ

, λ > k ⇒ F (x) ∼
e−kx

kx
for large x (7)

Two interesting insights can be drawn from Theorem 4. First, an aggregate distri-
bution whose tail decays as a power-law with exponential cut-off can emerge also
when individual pairs inter-contact times are exponential. Again, this challenges
common hypotheses used in the literature, that assume individual inter-contact
times are power-law with exponential cut-off because aggregate inter-contact
times are distributed according to this law. Second, this result confirms our in-
tuition about the fact that a key reason for an aggregate distributions with a
heavy tail is the existence of individual pairs with inter-contact rates arbitrarily
close to 0. In the case considered by Theorem 4 this is not possible, and indeed
the tail of the aggregate inter-contact time decays faster than a power-law.

Finally, we study the asymptotic behaviour of the aggregate distribution
when inter-contact rates are drawn from a Pareto distribution in the form F (λ) =
(

k
k+λ

)γ

, λ > 0. The following theorem holds.

Theorem 5. When individual pairs inter-contact times are exponentially dis-

tributed and rates are drawn from a Pareto distribution F (λ) =
(

k
k+λ

)γ

, λ > 0,

the tail of the aggregate inter-contact times decays as a power-law with shape

equal to 1, i.e.:

F (λ) =

(

k

k + λ

)γ

, λ > 0 ⇒ F (x) ∼
1

x
for large x (8)

Theorem 5 confirms once more that the presence of individual pairs with contact
rates arbitrarily close to 0 result in heavy tails in aggregate inter-contact times.
Again, it also confirms that the presence of even significantly heavy tails (shape
equal to 1) in the aggregate inter-contact time distribution is not necessarily an
indication that individual pairs distributions also present a power-law.
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4.4 Validation

In this section we validate the results presented before, by comparing the analyt-
ical results with simulations. In our simulation model we consider a network of
150 pairs that meet each other with exponential inter-contact times. Rates are
drawn at the beginning of each simulation run according to the specific distri-
bution f(λ) we want to test. For each pair we generate at least 100 inter-contact
times. Specifically, each simulation run reproduces an observation of the net-
work for a time interval T , defined according to the following algorithm. For
each pair, we first generate 100 inter-contact times, and then compute the total
observation time after 100 inter-contact times, Tp, as the sum of the pair inter-
contact times. T is defined as the maximum of Tp, p = 1, . . . , P . To guarantee
that all pairs are observed for the same amount of time, we generate additional
inter-contact times for each pair until Tp reaches T . In this way we generate at
least 150∗100 samples of the aggregate inter-contact time distribution, which we
consider enough to obtain a reasonably accurate empirical distribution of F (x).

Figure 1 shows the aggregate inter-contact times CCDF F (x) when inter-
contact rates are drawn from a Gamma distribution Γ (2, 1) (inter-contact times
are reported on the x-axis in seconds). According to Theorem 2, this results in
aggregate inter-contact times distributed according to a Pareto law with shape
α = 3. The power-law behaviour is clearly highlighted by the less-than-linear de-
cay in the linlog scale (Figure 1(b)). It is also clear that simulation and analytical
results are in very good agreement.

(a) (b)

Fig. 1. F (x), inter-contact rates Λ ∼ Γ (2, 1) (loglog (a) and linlog (b))

Figure 2 shows F (x) when the individual pairs inter-contact rates are expo-
nentially distributed with rate 0.1s−1. Also in this case, according to Corollary 1,
the aggregate inter-contact time follows a Pareto distribution with shape α = 2.
Figure 2 shows that also in this case analytical results are very well aligned with
simulations.

Finally, Figure 3 and 4 show F (x) when the pairs rates are distributed ac-

cording to a Pareto law F (λ) =
(

k
k+x

)γ

, λ > 0 and F (λ) =
(

k
x

)γ
, λ > k,

respectively. From Theorems 5 and 4, the key difference is the fact that in the
former case rates can be arbitrarily close to 0, while in the latter case they can-
not. The effect on F (x) is to generate a heavy tail decaying as 1/x in the former

case, and a light tail decaying as e−kx

kx
in the latter. Recall that in these cases
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(a) (b)

Fig. 2. F (x), inter-contact rates Λ ∼ Exp(0.1) (loglog (a) and linlog (b))

the analysis is not able to capture the complete distribution of F (x), but only
its asymptotic behaviour for large x. Figures 3 and 4 confirm also that in this
case analytical and simulation results are aligned.

(a) (b)

Fig. 3. F (x), inter-contact rates Λ ∼ Pareto(0.001, 2), λ > 0 (loglog (a) and linlog (b))

(a) (b)

Fig. 4. F (x), inter-contact rates Λ ∼ Pareto(0.001, 2), λ > 0.001 (loglog (a) and linlog
(b))

5 Conclusions

In this paper we have investigated through an analytical model the dependence
between the distributions of i) individual pairs inter-contact times, ii) the rates
of individual pairs inter-contact times, and iii) the aggregate inter-contact times,
in mobile opportunistic networks. Understanding this dependence is important,
as most of the literature assumes that the aggregate distribution is representa-
tive of the individual pairs inter-contact times distributions, and checks network
properties that depend on the latter by considering the former.
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Our analytical results clearly show that - in general - this approach is not
correct. As one of the most popular cases considered in the literature, we have
studied under which conditions the aggregate distribution features a heavy tail,
with or without an exponential cut-off. We have shown that in heterogeneous
networks (i.e., when not all the pairs distributions are the same), heavy tailed
aggregate distributions can appear starting from exponentially distributed in-
dividual pairs inter-contact times. Therefore, the aggregate distribution is not
representative, in general, of the individual pairs distributions, and that focus-
ing on the former to check properties that depend on the latter can thus be
misleading.

Furthermore, we have highlighted the key impact of the distribution of the
rates of individual pairs inter-contact times on the aggregate distribution. When-
ever rates arbitrarily close to 0 are permitted, heavy tails appear in the aggregate,
also when individual pairs distributions are light-tailed. This shows the critical
role played by the heterogeneity of individual pairs on the aggregate inter-contact
times distribution.
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