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Abstract. The context of underwater sensor networks (UWSNs) presents
special challenges for data transmission. For that context, we examine
the merit of using a simple, stochastic transmission strategy based on the
ALOHA protocol. The strategy uses a stochastic scheduling approach in
which time is slotted, and each network node broadcasts according to
some probability during each time slot. We present a closed-form solu-
tion to an objective function that guides the assignment of the broadcast
probabilities with respect to overall network reliability. We propose an
easily distributed heuristic based on local network density and evaluate
our approach using numerical simulations. The evaluation results show
that even without using explicit control signalling, our simple stochastic
scheduling method performs well for data transmission in UWSNs.

Keywords: underwater senor networks, slotted ALOHA, network reli-
ability, MAC protocols

1 Introduction

The monitoring and exploration of the ocean is of great importance to the sus-
tainable and environmentally sound development of the Earth. Activities such as
oceanographic data collection, offshore exploration, and ocean ecosystem moni-
toring are facilitated by the deployment of Unmanned or Autonomous Underwa-
ter Vehicles (UUVs, AUVs), equipped with underwater sensors, e.g., see Kennedy
et al. [5]. There is a growing demand for UUVs/AUVs that cooperate to perform
monitoring tasks; e.g., a fleet of small, inexpensive underwater AUVs for moni-
toring underwater waste sites was suggested by Nawaz et al. [15]. To cooperate
effectively, the nodes must be able to exchange data and control messages with
one other.

Underwater communication, however, is itself a challenging area of active
research (e.g., [12], [6]). Radio waves propagate underwater only at very low fre-
quencies (e.g., 30-300 HZ) and require high transmission power which generally
cannot be afforded on board by UUVs/AUVs. Underwater, optical waves are af-
fected by scattering effects and cannot be used to transmit over long distances.
So far, acoustic communication has been the physical layer of choice for underwa-
ter communication. Underwater acoustic communication, however, is subject to
large propagation latency, low bandwidth, high bit error rate (BER), and com-
plex multipath fading. To make the situation worse, there can be large variations
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in temperature, salinity, and pressure over short distances in the underwater en-
vironment, all of which can significantly impact acoustic propagation.

In existing RF communication systems, Medium Access Control (MAC) pro-
tocols are used to resolve contention issues in medium access. As a basic re-
quirement, a MAC protocol should be able to find a transmission scheduling
scheme that eliminates or minimizes conflicting transmissions. To achieve this,
an implicit control mechanism (e.g., Time Division Multiple Access (TDMA)
), or explicit control messages (e.g., Request-To-Send (RTS) and Clear-To-Send
(CTS) messages in Carrier Sense Multiple Access (CSMA) based protocols),
are adopted. Simulation studies have shown that the RTS/CTS based con-
trol, which alleviates hidden/exposed terminal problems and improves network
throughput [4], actually degrades throughput when the propagation delay be-
comes large [21].

Interestingly, it has recently been shown that MAC protocols based on the
relatively simple ALOHA protocol [1] perform well in an underwater, multi-hop
environment in which there are significant propagation delays. Recently, Syed
et al. [19] modified the slotted ALOHA protocol for underwater, acoustic com-
munication so that ALOHA could achieve a throughput comparable to what it
achieves in RF networks. In related work, Petrioli et al. [11] evaluated various
MAC protocols for underwater sensor networks and found that in multi-hop, un-
derwater acoustic networks, ALOHA variants out-performed protocols in which
there were larger overhead costs. Additionally, simulations reported by Zhou et
al. [21] demonstrated that random ALOHA schemes can provide stable perfor-
mance in UWSNs.

There is no ‘one-size fits all’ MAC layer appropriate for all underwater appli-
cations. To date, no MAC protocol has been commonly accepted as an industrial
standard for UWSNs. For example Partan et al. [10] state that medium access is
an unresolved problem in underwater acoustic networks. Thus, it is likely that, in
specific application areas, lightweight, ALOHA-based MAC protocols will have
a place in underwater networking.

Motivated by the role we believe ALOHA based MAC protocols will play in
UWSNs, we have examined the merit of a simple, stochastic transmission strat-
egy based on the ALOHA protocol: Time is slotted, and at the beginning of
each time slot, each node in the network is assigned a probability for transmis-
sion. Such a simple link scheduling method is easy to implement and requires
virtually no control overhead. Therefore, we propose that stochastic variants of
slotted ALOHA such as the protocol we present here could be used for network-
ing mobile underwater devices. In this context, the network topology may change
dynamically, and any energy wasted in colliding transmissions is inconsequential
relative to the power requirements of the actuators on the AUVs. Additionally,
one key communication requirement is to deliver relatively continuous, but low
bandwidth data among proximal nodes for navigation and coordination pur-
poses.

Main Contributions: We lay the groundwork for exploring whether stochastic
scheduling for lightweight, ALOHA based MAC variants might provide suitable
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solutions for underwater network communication challenges. Specifically, for the
stochastic variant of slotted ALOHA we proposed above:

- we consider how the transmission probability of a node should be adjusted
based on its local (at a given time) communication topology in order to obtain
good overall network performance;

- we present a closed form solution to an objective function for assigning the
transmission probabilities that is aimed at improving network performance in
terms of reliability;

- we show that a heuristic based on the optimizing values of our objective
function is easily distributed and shows good performance in simulations.

2 Related Work

2.1 Underwater MAC protocols

A number of MAC protocols have been proposed to handle the special condi-
tions encountered in underwater multi-hop sensor networks, e.g., [8], [17], [9],
[13]. Despite the disadvantages of the inherent propagation delays, a number
of modern MAC protocols proposed for underwater communication nevertheless
rely on the exchange of handshaking contol messages for medium access. For
example, Slotted FAMA, as presented by Molins and Stojanovic [8], is based
on carrier sensing. Each network node constantly listens to the channel, but
stays idle unless it has permission to transmit, which is granted via an RTS /
CTS handshaking mechanism. Collisions are handled through a random back off
scheme. Simulations demonstrate that this protocol has promise for underwa-
ter mobile networks, although the authors consider an application in which the
data packets exchanged are much larger than the control packets used for the
handshaking. In this situation, the disadvantage of significant propagation de-
lays when employing handshaking for collision avoidance is somewhat masked.
The suitability of this approach for an application in which many small data
packets are exchanged on a frequent basis is not clear.

The T-Lohi MAC introduced by Syed et al. [17] also employs a synchronized
transmission frame with a handshaking scheme for collision avoidance. Unlike
Slotted FAMA, however, the protocol allows network nodes to sleep for energy
saving purposes. When a node using the T-Lohi protocol is ready to send data,
it attempts to reserve the channel by sending a control message (a tone) during
a reservation period. If the node does not hear one or more tones from other
nodes during this reservation period then it is clear to send; otherwise it backs
off and waits. Energy savings through sleeping are achieved by using custom
acoustic hardware that triggers the node to wake up when the tone is detected.

Considerable research has demonstrated the promise of underwater MAC
layers that incorporate CDMA; e.g. the work of Pompili et al. [13], the work of
Page and Stojanovic [3], and the work of Tan and Seah [20] . The approach is
particularly suited for some challenging application areas, such as shallow water
operation where multi-path interference is a major factor. In other applications
however, e.g. where congestion issues dominate, the operational simplicity of
ALOHA schemes can be attractive.
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In contrast to CDMA based approaches, Slotted FAMA and T-Lohi, the
UWAN-MAC protocol presented by Park and Rodoplu [9] does not employ a
handshaking mechanism using control messages to reserve channel access. When
using UWAN-Mac, each node transmits infrequently but regularly, with a ran-
domly selected offset. The schedule of a node’s neighour is learned via syn-
chronization packets sent during an initialization period. The approach achieves
energy savings by finding locally synchronized schedules such that network nodes
can sleep during idle periods. Although there is no explicit method for avoiding
collisions, the collisions are shown to be rare. The approach relies, however, on
a static network in which the transmission delays between any pair of nodes re-
main roughly constant. The UWAN-MAC approach has some similarity in spirit
to the stochastic scheduling we consider in this paper, and it should be possible
to modify UWAN-MAC to benefit from our analysis, e.g., by adapting the duty
cycle of each node based on local network density.

2.2 Stochastic Scheduling
The class of problems related to assigning a slot to each node in a wireless net-
work for the purposes of collision avoidance is referred to as broadcast schedul-
ing. Such problems were considered as early as the mid-eighties by Chlamtac and
Kutten [2], for example. Later in that decade, Ramaswami and Parhi [14] showed
that the problem of finding a minimum length schedule that allows each node
to hear from each neighbour is NP-complete and presented effective heuristics.

In previous work [7], Marinakis and Whitesides presented a slotted stochas-
tic transmission strategy which they compared to broadcast scheduling in the
context of an alarm network. They addressed the question of how a network of
nodes might signal the occurrence of an event capable of disabling the sensors.
The approach called for the nodes to exchange messages regularly during normal
operation, but to signal the occurrence of an alarm event by ceasing to transmit.

In the work we present in this paper, we consider in detail the merit of such
stochastic scheduling approaches for underwater sensor network applications.

3 Network Model

We model the multi-hop communication links available between the network
nodes at any instant in time as a directed graph G = (V,E) in which each
vertex v ∈ V represents a network node and each edge eij ∈ E denotes a
potential communication link from node i to node j, i.e., node i can transmit
data to node j if and only if eij ∈ E in a selected channel.

We make the following assumptions on data communication:

– A node that is transmitting may not receive at the same time. If a node is tuned
to receive on a channel m, then a packet can be received if and only if exactly one
of its neighbors is transmitting on that channel. This constraint provides a simple
way to model collision issues such as the hidden terminal problem.

– Time is slotted, and at the beginning of each time slot, a node selects a channelm at
random (e.g., uniformly). It then transmits on channel m with a given probability
which is determined according to various performance goals. If the node does not
transmit, then it tunes its acoustic transceiver to receive on channel m.
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– All nodes maintain synchronized clocks and may select to time their communica-
tions to occur during a particular slot. Note that this assumption is common, and
there are a number of techniques that could be used to accomplish this task; see
Syed and Heidemann [18] for an example of a time synchronization method appro-
priate for acoustic networks, and see Sivrikaya and Yener [16] for a more general
survey of time synchronization techniques in wireless sensor networks.

We will refer to this approach as Stochastic Scheduling.

4 Stochastic Scheduling on A Single Channel

In this section, we analyze the single channel case. Rather than handling the
collision issue by an assignment of deterministic schedules, instead we propose
to assign to each node in the network a time slot transmission probability. Thus
we want to specify a set of appropriate values P = {pi}, ∀i ∈ V . Since the goal of
our analysis will be to obtain good heuristics that can be used to design simple
and distributed scheduling, we ignore (at first) the propagation delay to ease the
analysis; later, in our simulation study, we evaluate the impact of propagation
delay.

4.1 Basic Constraints and General Guidelines

As a preliminary, we consider the impact of P on the probability of one node
communicating with another. To this end, we define a throughput graph corre-
sponding to a given network.

Definition 1 The throughput graph of a given network G = (V,E) is a
weighted, directed graph, denoted by G′ = (V,E,R), where R denotes the set
of weights rij on the corresponding edges eij. The weight rij of an edge eij cor-
responds to the probability that node j receives a message from a neighbouring
node i during a given time slot.

We call G′ the throughput graph because the weight assigned to the directed
edge eij is proportional to the amount of data across that link in a long run.
Based on the second assumption in the network model in Section 3, it is easy to
obtain:

rij = pi(1− pj)
∏

k∈N(j),k 6=i

(1− pk), eij ∈ E (1)

where N(x) denotes the neighbours of x in G.

Equation (1) captures the basic constraint on the value assignment in P .
The impact of this constraint is illustrated in Figure 1. In particular, if a node’s
time slot transmission probability is increased, the long-term throughput from
this node to its neighboring nodes will be increased, which may lead to lower
transmission opportunities at the neighbours.
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Fig. 1. Example graph showing the influence of pi. If pi is adjusted upwards, then
the throughput across links (i, j1) and (i, j2) will be increased, while that of the links
(j1, i), (j2, i), (k1, j2), (k2, j2) and (k3, j2) will be decreased.

4.2 An Objective Function for the Assignment of P Values

We define a natural objective function, Qr and show how to use it to assign P
values.

Definition 2 We define the overall reliability Qr of network G = (V,E) as
a function evaluated over the corresponding throughput graph G′ = (V,E,R):

Qr =
∏

rij∈R

rij . (2)

We call Qr the overall network reliability, because in the long run Qr rep-
resents the chance that a data packet could be successfully routed along an
arbitrary path q in |q| time slots, where |q| is the length of the path.

4.3 Maximizing Overall Network Reliability

We will now show how to assign the values in P = {pi}, ∀i ∈ V , to maximize
the overall network reliability Qr. Since Qr is a function of P , we rewrite it as:
Qr(P ) =

∏

i,j∈R rij . By taking the log of both sides we get:

Q′
r(P ) =

∑

i,j∈R

log rji,

where Q′
r(P ) = logQr(P ).

Now we would like to find the values of P that maximize Q′
r. We proceed by

considering the partial derivatives of Q′
r with respect to the value of pi ∈ P :

∇Q′
r =

(∂Q′
r

∂p1
,
∂Q′

r

∂p2
, . . .

∂Q′
r

∂pn

)

where n = |V |. A single partial then becomes:

∂Q′
r

∂pi
=

∑

eij∈E

1

rij

∂rij
∂pi

. (3)

The partials for pi are only non-zero, however, for rij , j ∈ N(i) and rji, j ∈
N(i) and rkj , k ∈ N(j), k 6= i, based on the basic constraint in Equation (1).
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We can now consider the partial of a single weight value with respect to pi. In
particular, for the outbound links from i to j:

∂rij
∂pi

=
∂

∂pi
pi(1− pj)

∏

k∈N(j),k 6=i

(1− pk) =
rij
pi

. (4)

For the inbound links from j to i where j ∈ N(i) we have:

∂rji
∂pi

=
∂

∂pi
(1− pi)pj

∏

k∈N(j),k 6=i

(1− pk) =
−rji
1− pi

, (5)

and similarly, for the links from k to j where k ∈ N(j), k 6= i we have:

∂rkj
∂pi

=
∂

∂pi
(1− pi)(1− pj)

∏

k∈N(j),k 6=i

(1− pk) =
−rkj
1− pi

. (6)

Let us denote the set of links for which there exists a non-zero partial with
respect to pi as Ri. This set can be described as all links that have their tail
endpoints adjacent either to the vertex i or to one of its neighbours: Ri =
{rkl}, k ∈ {N(i) ∪ i} .

We can further categorize the directed links affected by pi into those with
a positive partial derivative: Ri+ = {rkl}, k ∈ N(i), and those with a negative
partial derivative: Ri− = Ri \ Ri+. Let δi denote the degree of node i ∈ V and
let δ̄i denote the sum of the degrees of all the neighbours of i: δ̄i =

∑

j∈N(i) δj .

It is easy to see that |Ri+| = δi and |Ri−| = δ̄i.
Let us now return to Equation (3) and take the partial derivative of Q′

r with
respect to pi:

∂Q′
r

∂pi
=

∑

i,j∈R

∂rij
∂pi

1

rij
=

∑

i,j∈Ri+

∂rij
∂pi

1

rij
+

∑

i,j∈Ri−

∂rij
∂pi

1

rij

=
∑

i,j∈Ri+

rij
pi

1

rij
+

∑

i,j∈Ri−

−rij
1− pi

1

rij
=

δi
pi

−
δ̄i

1− pi
. (7)

Since the partial derivative of our objective function Q′
r with respect to a single

pi does not depend on the other elements of P , we can set each partial to zero
in order to find the value of each pi that will maximize Q′

r and of course Qr as
well: pi = δi/(δi + δ̄i) . If we now let ∆i = δ̄i/δi be the average degree of i’s
neighbours we can express the above closed form result as:

pi =
1

1 +∆i

. (8)

5 Stochastic Scheduling on Multiple Channels

In the case where we have M(M > 1) frequency channels, the value for R in G′

will take on slightly different values. We can calculate the value of rij as follows:

rij =
1

M
pi

1

M
(1− pj)

∏

k∈N(j),k 6=i

(1−
1

M
pk), eij ∈ E (9)
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where N(x) denotes the neighbours of x in G. This calculation is analogous to
Equation (1) for the single frequency variant.

Following the same analysis steps as in the single channel case, we arrive at
the following values for P that maximize overall network reliability:

pi =
2δiM + δ̄i −

√

δ̄i
2
+ 4δiM(M − 1)

2(δi + δ̄i)
. (10)

Due to space limitations we omit the derivation.

6 A Distributed Algorithm for Stochastic Scheduling

The analytical results in the previous sections provide us with heuristics for
for designing a simple, distributed algorithm for Stochastic Scheduling. In this
section, we present a distributed algorithm that is aimed at maximizing over-
all network reliability. It is straightforward to assign P values in a distributed
manner in order to optimize overall network reliability. Equations (8) and (10)
depend only on the knowledge of the local communication topology and the num-
ber of frequency channels employed. We will refer to this heuristic for assigning
p values as the Average Neighbourhood Degree Heuristic (ANDH) .

For the single channel case we present the following distributed algorithm for
selecting a suitable value of the transmission probability of an individual node:

1. During initial deployment, a default value for pi can be assigned to each node given
a rough estimate of the typical network density.

2. Each node maintains a neighbour table with one entry for each of its neighbours.
Each neighbour table entry includes the unique media access control (MAC) identi-
fication of the neighbour, along with the timestamp and the number of neighbours
reported by that neighbour.

3. Each node exchanges neighbour count estimates with each of its neighbours, and
then updates its transmission probability pi accordingly.

4. At each time slot, with probability pi, on a channel selected uniformly at random, a
node broadcasts its unique media access control (MAC) identification, the number
of entries in its neighbour table, and any data payload.

5. If not transmitting, the node tunes its receiver to a channel selected uniformly at
random, and if it receives a message, it adds the appropriate details to its neighbour
table and updates its pi values according to Equation (8).

6. (Optional if the network topology changes, e.g., in a mobile environment) Entries
older than a threshold ω may be discarded. In addition, the local pi value could
be smoothed by using, for example, exponential averaging or a similar technique
suitable for a low powered platform.

7 Performance Evaluation

We perform simulation studies to evaluate our Stochastic Scheduling approach.
In the simulation, we build the network topology using disk graphs. The graphs
are obtained by selecting points uniformly at random in a region of the plane
bounded by a circle of diameter D as the locations of the network nodes. An edge
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Fig. 2. (a) Average time from queuing a packet until its delivery (T-Lohi vs. Stochastic
Scheduling using the ANDH); (b) Percentage of successful packet transmissions over
all links as a function of traffic load; and (c) the same as (b) but under the condition
of long propagation delay. Results were averaged over 100 trials of 100-node networks
using a communication ratio α = 0.25. Error bars depict one standard deviation.

is then assigned between any two vertices if the pair-wise distance between their
associated locations is less than a given fraction α of the deployment diameter
D. Since the parameter α can be used to control the number of communication
links of the network, we call it the communication ratio. We assign a delay to an
edge proportional to the distance between the pairs (but rounded to a discrete
value for ease of simulation). To save space, we only show performance results
over a single channel.

7.1 Performance under Varying Load and Propagation Delay

As a general test of network performance we simulated an application in which
each device, at random intervals, broadcasts a data packet to each of its neigh-
bours. For this test, we controlled the traffic load by assigning each node a
probability that a data packet is passed down to its MAC layer at the beginning
of each time slot. We selected T-Lohi [17] for comparison because this protocol
represents a typical example of using lightweight control packets (i.e. it uses a
RTS control packet only). Our implementation of the T-Lohi algorithm is as
described in ‘Algorithm 1’ of [17] using a single time slot as the duration of a
contention round.

As shown in Figure 2(a), T-Lohi performs better than our Stochastic Schedul-
ing under light traffic load, because T-Lohi employs control messages for media
access. Nevertheless, our Stochastic Scheduling approach performs much better
under heavy traffic load. This demonstrates that using control packets may not
bring benefits for underwater acoustic communications, because the propaga-
tion delay is determined by the pair-wise distance of two communicating nodes,
whose locations may be random. Such a randomness offsets the benefit of using
control packets.

In Figure 2(a), in order to investigate the average transmission delay, we
assumed a very large queue size to avoid buffer overflow. To further study how
many packets could be delivered within a given time constraint, we changed the
queue size to one so that a packet is considered undelivered, should it be passed
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Fig. 3. (a) Average link delay in units of time slots for networks of different node
densities. Results were averaged over 100 trials of 100-node networks for each node
density. (b) Mean flood time in dynamic networks for successful floods only and (c)
fraction of broadcast floods that reached all nodes (i.e., succeeded) with broadcast
scheduling. Note that all ANDH floods succeeded in all trials. Results are averaged
over twenty 100-node networks generated with a communication ratio α = 0.25. Error
bars depict one standard deviation for all plots.

down to the MAC layer when the queue is full. Figure 2(b) shows the average
percentage of a node’s neighbors that receive a packet sent by that node, under
different traffic loads. We can also see that the performance of our Stochastic
Scheduling with the ANDH outperforms T-Lohi when traffic load becomes heavy.

The results shown in Figures 2(a) and (b) were obtained by setting the prop-
agation delay much smaller than the length of a time slot. We then increased the
propagation delay considerably to further investigate its impact. In particular,
we set the max propagation delay in the network to three times the length of
a time slot. Figure 2(c) shows the results under this set of tests. Comparing
Figure 2(b) and Figure 2(c), it can be seen that Stochastic Scheduling is almost
unaffected, but the T-Lohi protocol suffers considerably. This is due to the fact
that the RTS control packets used by the T-Lohi protocol may fail to reserve
the channel due to propagation latency.

7.2 Performance under Dynamic Network Conditions
Although it can be seen that Stochastic Scheduling has some advantages over
protocols that rely on handshaking under conditions such as heavy load, we
also investigated how it compares to a TDMA based, deterministic scheduling
approach.

For this test, we used Hamming distance as a metric to measure the dynamic
change in the network topology. Assume that the adjacency matrix of graph
G1 = (V1, E1) is A1 = [aij ] and the adjacency matrix of graph G2 = (V2, E2) is
A2 = [bij ], where V1 = V2 and |V1| = |V2| = n. The Hamming distance of the
two graphs is defined as

∑n

i,j=1(aij − bij)
2.

For the deterministic scheduling, we implemented the broadcast schedule
obtained with the centralized heuristic described in [14]. Simulations suggest that
Stochastic Scheduling results in a poorer average latency than a deterministic
transmission schedule when static networks are considered, as shown in plots (a)
and (b) of Figure 3.



Stochastic Scheduling for Underwater Sensor Networks 11

To test the performance under dynamic networks, we generated networks of
100 nodes, using a communication ratio α = 0.25. For each network, the ANDH
P values in our Stochastic Scheduling and the deterministic broadcast schedules
were determined. Then the edges of the network were changed to make it evolve
to a new network, such that the Hamming distance of the two networks was larger
than a given value. A global message broadcast was then simulated originating
from a single node on this new network, but with transmission schedules based
on the old network. We considered how long it would take for a particular piece
of information from a single node to broadcast throughout the new network.
Plots (b) and (c) of Figure 3 show the results of the flood simulation in which we
tested the robustness of stochastic and deterministic approaches to changes in the
communication network. It can be seen that although there is a lot of variability
in flood times, the Stochastic Scheduling approach continues to function even if
the network topology changes. The deterministic approach, on the other hand,
depends on a specific topology and fails catastrophically once the underlying
communication graph shifts.

To summarize, the stochastic nature of our approach makes it well suited
for applications where propagation delay is long and random. For such applica-
tions, deterministic scheduling or protocols that rely on control packets to resolve
medium contention may not perform well when traffic load becomes heavy.

8 Conclusions and Future Work

We have presented and evaluated the concept of using a lightweight variant of
slotted ALOHA in conjunction with a Stochastic Scheduling approach in which
network nodes transmit according to some time slot transmission probability. We
have obtained a closed-form solution for the assignment of transmission prob-
abilities that maximize overall network reliability and have presented an easily
distributed algorithm for assigning these optimal values. Performance results
demonstrate that even without using any control signaling, our simple Stochas-
tic Scheduling works well for the context of UWSNs, where propagation delay is
not negligible.

In future work we will extend our analysis to incorporate propagation delay (
link lengths ). This will involve adding a temporal aspect to our analysis beyond
the scale of a single communication slot. Additionally, we plan to further inves-
tigate our approach though experiments using custom acoustic communication
hardware.
Acknowledgements: This research was partially supported by Natural Sciences
and Engineering Research Council of Canada (NSERC). We thank the anony-
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pp. 41–48. Montréal, Quebec, Canada (September 2007)

20. Tan, H.X., Seah, W.K.: Distributed cdma-based mac protocol for underwater sen-
sor networks. In: IEEE Conf. on Local Computer Networks. pp. 26–36. Los Alami-
tos, CA, USA (2007)

21. Zhou, Z., Peng, Z., Cui, J.: Multi-channel mac protocols for underwater acoustic
sensor networks. In: (WUWNet) (Sept 2008)


