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Abstract. Malicious and misconfigured nodes can inject incorrect state
into a distributed system, which can then be propagated system-wide as
a result of normal network operation. Such false state can degrade the
performance of a distributed system or render it unusable. For example,
in the case of network routing algorithms, false state corresponding to a
node incorrectly declaring a cost of 0 to all destinations (maliciously or
due to misconfiguration) can quickly spread through the network. This
causes other nodes to (incorrectly) route via the misconfigured node, re-
sulting in suboptimal routing and network congestion. We propose three
algorithms for efficient recovery in such scenarios and prove the correct-
ness of each of these algorithms. Through simulation, we evaluate our
algorithms – in terms of message and time overhead – when applied to
removing false state in distance vector routing. Our analysis shows that
over topologies where link costs remain fixed and for the same topolo-
gies where link costs change, a recovery algorithm based on system-wide
checkpoints and a rollback mechanism yields superior performance when
using the poison reverse optimization.
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1 Introduction

Malicious and misconfigured nodes can degrade the performance of a distributed
system by injecting incorrect state information. Such false state can then further
propagate through the system either directly in its original form or indirectly,
e.g., by diffusing computations initially using this false state. In this paper, we
consider the problem of removing such false state from a distributed system.

In order to make the false-state-removal problem concrete, we investigate
distance vector routing as an instance of this problem. Distance vector forms
the basis for many routing algorithms widely used in the Internet (e.g., BGP, a
path-vector algorithm) and in multi-hop wireless networks (e.g., AODV, diffusion
routing). However, distance vector is vulnerable to compromised nodes that can
potentially flood a network with false routing information, resulting in erroneous
least cost paths, packet loss, and congestion. Such scenarios have occurred in



practice. For example, recently a routing error forced Google to redirect its traffic
through Asia, causing congestion that left many Google services unreachable
[1]. Distance vector currently has no mechanism to recover from such scenarios.
Instead, human operators are left to manually reconfigure routers. It is in this
context that we propose and evaluate automated solutions for recovery.

In this paper, we design, implement, and evaluate three different approaches
for correctly recovering from the injection of false routing state (e.g., a compro-
mised node incorrectly claiming a distance of 0 to all destinations). Such false
state, in turn, may propagate to other routers through the normal execution of
distance vector routing, making this a network-wide problem. Recovery is correct
if the routing tables in all nodes have converged to a global state in which all
nodes have removed each compromised node as a destination, and no node has
a least cost path to any destination that routes through a compromised node.

Specifically, we develop three new distributed recovery algorithms: 2nd best,
purge, and cpr. 2nd best performs localized state invalidation, followed by
network-wide recovery. Nodes directly adjacent to a compromised node locally
select alternate paths that avoid the compromised node; the traditional dis-
tributed distance vector algorithm is then executed to remove remaining false
state using these new distance vectors. The purge algorithm performs global false
state invalidation by using diffusing computations to invalidate distance vector
entries (network-wide) that routed through a compromised node. As in 2nd best,
traditional distance vector routing is then used to recompute distance vectors.
cpr uses local snapshots and a rollback mechanism to implement recovery.

We prove the correctness of each algorithm and use simulations to evaluate
the efficiency of each algorithm in terms of message overhead and convergence
time. Our simulations show that cpr using poison reverse outperforms 2nd best
and purge (with and without poison reverse) – at the cost of checkpoint mem-
ory – over topologies with fixed and changing link costs. This is because cpr
efficiently removes all false state by rolling back to a checkpoint immediately
preceding the injection of false routing state. In scenarios where link costs can
change, purge using poison reverse yields performance close to cpr with poison
reverse. purge makes use of computations subsequent to the injection of false
routing state that do not depend on false routing state, while cpr must process
all valid link cost changes that occurred since false routing state was injected.
Finally, our simulations show that poison reverse significantly improves perfor-
mance for all three algorithms, especially for topologies with changing link costs.

Recovery from false routing state has similarities to the problem of recov-
ering from malicious transactions [12] in distributed databases. Our problem is
also similar to rollback in optimistic parallel simulation [11]. We are unaware of
existing solutions to the problem of recovering from false routing state. However,
a related problem is that of discovering misbehaving nodes. In Section 2, we dis-
cuss existing solutions to this problem. In fact, the output of these algorithms
serve as input to the recovery algorithms proposed in this paper.

This paper has five sections. In Section 2 we define the problem and state
our assumptions. We present our three recovery algorithms in Section 3. Section



4 describes our simulation study. We detail related work in Section 5 and finally
we conclude and comment on directions for future work in Section 6.

2 Problem Formulation

We consider distance vector routing [4] over arbitrary network topologies. 1 We
model a network as an undirected graph, G = (V,E), with a link weight function
w : E → N. Each node, v, maintains the following state as part of distance vector:
a vector of all adjacent nodes (adj(v)), a vector of least cost distances to all nodes
in G (−−→minv), and a distance matrix that contains distances to every node in the
network via each adjacent node (dmatrixv).

For simplicity, we present our recovery algorithms in the case of a single
compromised node. We describe the necessary extensions to handle multiple
compromised nodes in our technical report [9].

We assume that the identity of the compromised node is provided by a dif-
ferent algorithm, and thus do not consider this problem in this paper. Examples
of such algorithms include [6, 7, 13, 16, 18]. Specifically, we assume that at time
t, this algorithm is used to notify all neighbors of the compromised node. Let t′

be the time the node was compromised.
For each of our algorithms, the goal is for all nodes to recover correctly:

all nodes should remove the compromised node as a destination and find new
least costs that do not use the compromised node. If the network becomes dis-
connected as a result of removing the compromised node, all nodes need only
compute new least costs to the nodes in their connected component. For sim-
plicity, let v denote the compromised node, let −→old refer to −−→minv before the first
v was compromised, and let −→bad denote −−→minv after v has been compromised.
Intuitively, −→old and −→bad are snapshots of the compromised node’s least cost vec-
tor taken at two different timesteps: −→old marks the snapshot taken before v was
compromised and −→bad represents a snapshot taken after v was compromised.

3 Recovery Algorithms

In this section we propose three new recovery algorithms: 2nd best, purge, and
cpr. With one exception, the input and output of each algorithm is the same. 2

Input: Undirected graph, G = (V,E), with weight function w : E → N.
∀v ∈ V , −−→minv and dmatrixv are computed (using distance vector). Also, each
v ∈ adj(v) is notified that v was compromised.

Output: Undirected graph, G′ = (V ′, E′), where V ′ = V − {v}, E′ = E −
{(v̄, vi) | vi ∈ adj(v̄)}, and link weight function w : E → N. −−→minv and dmatrixv

are computed via the algorithms discussed below ∀v ∈ V ′.
1 Recovery is simple with link state routing: each node uses its complete topology map

to compute new least cost paths that avoid all compromised nodes. Thus we do not
consider link state routing in this paper.

2 cpr requires each v ∈ adj(v) be notified of the time, t′, in which v was compromised.
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(a) Before v is compromised.
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(b) After v is compromised.
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(c) After recovery.

Fig. 1. Three snapshots of a graph, G, where v is the compromised node: (a) G before
v is compromised, (b) G after

−→
bad has finished propagating but before recovery has

started, and (c) G after recovery. The dashed lines in (b) mark false paths used by
−→
bad.

Portions of dmatrixi and dmatrixj are displayed to the right of each sub-figure. The
least cost values are underlined.

First we describe a preprocessing procedure common to all three recovery
algorithms. Then we describe each recovery algorithm. Due to space constraints,
the proof of correctness and pseudo code for each algorithm can be found in our
technical report [9].

3.1 Preprocessing

All three recovery algorithms share a common preprocessing procedure. The
procedure removes v as a destination and finds the node IDs in each connected
component. This is implemented using diffusing computations [5] initiated at
each v ∈ adj(v). A diffusing computation is a distributed algorithm started at a
source node which grows by sending queries along a spanning tree, constructed
simultaneously as the queries propagate through the network. When the com-
putation reaches the leaves of the spanning tree, replies travel back along the
tree towards the source, causing the tree to shrink. The computation eventually
terminates when the source receives replies from each of its children in the tree.

In our case, each diffusing computation message contains a vector of node
IDs. When a node receives a diffusing computation message, the node adds
its ID to the vector and removes v as a destination. At the end of the diffusing
computation, each v ∈ adj(v) has a vector that includes all nodes in v’s connected
component. Finally, each v ∈ adj(v) broadcasts the vector of node IDs to all
nodes in their connected component. In the case where removing v partitions
the network, each node only computes shortest paths to nodes in the vector.

3.2 The 2nd best Algorithm

2nd best invalidates state locally and then uses distance vector to implement
network-wide recovery. Following the preprocessing described in Section 3.1, each
neighbor of the compromised node locally invalidates state by selecting the least
cost pre-existing alternate path that does not use the compromised node as
the first hop. The resulting distance vectors trigger the execution of traditional
distance vector to remove the remaining false state.



We trace the execution of 2nd best using the example in Figure 1. In Figure
1(b), i uses v to reach nodes l and d. j uses i to reach all nodes except l. Notice
that when j uses i to reach d, it transitively uses −→bad (e.g., uses path j− i−v−d
to d). After the preprocessing completes, i selects a new next-hop node to reach
l and d by finding its new smallest distance in dmatrixi to these destinations:
i selects the routes via j to l with a cost of 100 and i picks the route via k to
reach d with cost of 100. (No changes are required to route to j and k because i
uses its direct link to these two nodes). Then, using traditional distance vector
i sends −−→mini to j and k. When j receives −−→mini, j must modify its distance to d
because −−→mini indicates that i’s least cost to d is now 100. j’s new distance value
to d becomes 150, using the path j − i − k − l. j then sends a message sharing−−→
minj with its neighbors. From this point, recovery proceeds according by using
traditional distance vector.

2nd best is simple and makes no synchronization assumptions. However, 2nd

best is vulnerable to the count-to-∞ problem: because each node only has local
information, the new shortest paths may continue to use v.

3.3 The purge Algorithm

purge globally invalidates all false state using diffusing computations and then
uses distance vector to compute new distance values that avoid all invalidated
paths. Recall that diffusing computations preserve the decentralized nature of
distance vector. The diffusing computations are initiated at the neighbors of
v and spread to the network edge, invalidating false state at each node along
the way. Then ACKs travel back from the network edge to the neighbors of v,
indicating that the diffusing computation is complete. Next, purge uses distance
vector to recompute least cost paths invalidated by the diffusing computations.

In Figure 1, the diffusing computation executes as follows. First, i sets its
distance to l and d to∞ (thereby invalidating i’s path to l and d) because i uses
v to route these nodes. Then, i sends a message to j and k containing l and d as
invalidated destinations. When j receives i’s message, j checks if it routes via i to
reach l or d. Because j uses i to reach d, j sets its distance estimate to d to∞. j
does not modify its least cost to l because j does not route via i to reach l. Next,
j sends a message that includes d as an invalidated destination. l performs the
same steps as j. After this point, the diffusing computation ACKs travel back
towards i. When i receives an ACK from j and k, the diffusing computation
is complete. At this point, i needs to compute new least costs to node l and d
because i’s distance estimates to these destinations are ∞. i uses dmatrixi to
select its new route to l (which is via j) and to find i’s new route to d (which is
via k). Finally, i sends −−→mini to its neighbors, triggering the execution of distance
vector to recompute the remaining distance vectors.

An advantage of purge is that it makes no synchronization assumptions. Also,
the diffusing computations ensure that the count-to-∞ problem does not occur
by removing false state from the entire network. However, globally invalidating
false state can be wasteful if valid alternate paths are locally available.



3.4 The cpr Algorithm

cpr3 is our third and final recovery algorithm. Unlike 2nd best and purge, cpr
requires that clocks across different nodes be loosely synchronized. We assume
a maximum clock offset between any two nodes. For ease of explanation, we
describe cpr as if clocks are perfectly synchronized. Extensions to handle loosely
synchronized clocks should be clear. Accordingly, we assume that all neighbors
of v, are notified of the time, t′, at which v was compromised.

For each node, i ∈ V , cpr adds a time dimension to −−→mini and dmatrixi,
which cpr then uses to locally archive a complete history of values. Once the
compromised node is discovered, the archive allows the system to rollback to a
system snapshot from a time before v was compromised. From this point, cpr
needs to remove v, −→old, and update stale distance values resulting from link cost
changes. We describe each algorithm step in detail below.

Step 1: Create a −−→min and dmatrix archive. We define a snapshot of a
data structure to be a copy of all current distance values along with a timestamp.
4 The timestamp marks the time at which that set of distance values start being
used. −−→min and dmatrix are the only data structures that need to be archived.

Our distributed archive algorithm is quite simple. Each node can archive at a
given frequency (e.g., every m timesteps) or after some number of distance value
changes (e.g., each time a distance value changes). Each node must choose the
same option, which is specified as an input parameter to cpr. A node archives
independently of all other nodes. A side effect of independent archiving, is that
even with perfectly synchronized clocks, the union of all snapshots may not
constitute a globally consistent snapshot. 5

Step 2: Rolling back to a valid snapshot. Rollback is implemented using
diffusing computations. Neighbors of the compromised node independently select
a snapshot to roll back to, such that the snapshot is the most recent one taken
before t′. Each such node, i, rolls back to this snapshot by restoring the −−→mini and
dmatrixi values from the snapshot. Then, i initiates a diffusing computation to
inform all other nodes to do the same.

Step 3: Steps after rollback. After Step 2, the algorithm in Section 3.1
is executed. When the diffusing computations complete, there are two issues
to address. First, nodes may be using −→old. Second, nodes may have stale state
as a result of link cost changes that occurred during [t′, t] and consequently
are not reflected in the snapshot. To resolve these issues, each i ∈ adj(v) sets
its distance to v to ∞ and then selects new least cost values that avoid the
compromised node, triggering the execution of distance vector to update the
remaining distance vectors.

In the example from Figure 1, the global state after rolling back is nearly
the same as the snapshot depicted in Figure 1(c): the only difference between
the actual system state and that depicted in Figure 1(c) is that in the former
3 The name is an abbreviation for CheckPoint and Rollback.
4 In practice, we only archive distance values that have changed. Thus each distance

value is associated with its own timestamp.
5 A globally consistent snapshot is not required for correctness [9].



(i,v) = 50 rather than ∞. Step 3 of cpr makes this change. Because no nodes
use −→old, no other changes take place.

In summary, rather than using an iterative process to remove false state (like
in 2nd best and purge), cpr does so in one diffusing computation. However, cpr
incurs storage overhead resulting from periodic snapshots of −−→min and dmatrix.
Also, after rolling back, stale state may exist if link cost changes occur during
[t′, t]. This can be expensive to update. Finally, unlike purge and 2nd best, cpr
requires loosely synchronized clocks because without a bound on the clock offset,
nodes may rollback to highly inconsistent local snapshots. Although correct, this
would severely degrade cpr performance.

4 Evaluation

In this section, we use simulations to characterize the performance of each of
our three recovery algorithms in terms of message and time overhead. Our goal
is to illustrate the relative performance of our recovery algorithms over differ-
ent topology types (e.g., Erdös-Rényi graphs, Internet-like graphs) and different
network conditions (e.g., fixed link costs, changing link costs). We evaluate re-
covery after a single compromised node has distributed false routing state. An
evaluation of our algorithms in the case of multiple compromised nodes can be
found in our technical report [9].

We build a custom simulator with a synchronous communication model:
nodes send and receive messages at fixed epochs. In each epoch, a node re-
ceives a message from all its neighbors and performs its local computation. In
the next epoch, the node sends a message (if needed). All algorithms are de-
terministic under this communication model. The synchronous communication
model, although simple, yields interesting insights into the performance of each
of the recovery algorithms. Evaluation of our algorithms using a more general
asynchronous communication model is currently under investigation. However,
we believe an asynchronous implementation will demonstrate similar trends.

We simulate the following scenario:

1. Before t′, ∀v ∈ V −−→minv and dmatrixv are correctly computed.
2. At time t′, v is compromised and advertises −→bad (a vector with a cost of 1

to every node in the network) to its neighboring nodes.
3. −→bad spreads for a specified number of hops (this varies by experiment). Vari-

able k refers to the number of hops −→bad spreads.
4. At time t, some v ∈ V notifies all i ∈ adj(v) that v was compromised. 6

The message and time overhead are measured in step (4) above. The pre-
computation (Section 3.1) is not counted towards message and time overhead.

4.1 Fixed Link Weight Experiments

In the next four experiments, we evaluate our recovery algorithms over different
topology types in the case of fixed link costs.
6 For cpr this node also indicates the time, t′, v was compromised.
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Fig. 2. Experiment 1, 2, and 4 plots. (a) Experiment 1 - message overhead for Erdös-
Rényi Graphs with fixed unit link weights, where n = 100, p = 0.05, and diameter=
6.14. (b) Experiment 2 and 4 - message overhead for Erdös-Rényi graph with random
link weights, n = 100, p = .05, and average diameter=6.14. The 2nd best, purge, and
cpr curves correspond to Experiment 2. Experiment 4 additionally includes 2nd best

+ pr (2nd best using poison reverse) and cpr + pr (cpr using poison reverse).

Experiment 1 We start with a simplified setting and consider Erdös-Rényi
graphs with parameters n and p. n is the number of graph nodes and p is the
probability that link (i, j) exists where i, j ∈ V . The link weight of each edge
in the graph is set to 50. We iterate over different values of k. For each k, we
generate an Erdös-Rényi graph, G = (V,E), with parameters n and p. Then we
select a v ∈ V uniformly at random and simulate the scenario described above,
using v as the compromised node. In total we sample 20 unique nodes for each
G. We set n = 100, p = {0.05, 0.15, 0.25, 0.25}, and let k = {1, 2, ...10}. Each
data point is an average over 600 runs (20 runs over 30 topologies). We then
plot the 90% confidence interval.

The results for this experiment are shown in Figure 2(a). We omit figures
for p = {0.15, 0.25, 0.50} because the results follow the same trends as p = 0.05
[9]. cpr outperforms purge and 2nd best because −→bad is removed using a sin-
gle diffusing computation, while the other algorithms remove −→bad state through
distance vector’s iterative process.

With 2nd best, distance values increase from their initial value until they
reach their final (correct) value. Any intermediate, non-final, distance value uses
−→
bad or −→old. Because −→bad and −→old no longer exist during recovery, these interme-
diate values must correspond to routing loops. 7 Our profiling numbers indicate
that there are few (if any) pairwise routing loops during 2nd best recovery, in-
dicating that nodes quickly count up to their final least costs.

Although no pairwise routing loops exist during purge recovery, purge incurs
overhead in its purge phase. Roughly, 50% of purge’s messages come from the
purge phase. This accounts for purge’s high message overhead.
7 We formally prove these properties in our technical report [9].
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Fig. 3. Plots for Experiment 3 and 7. (a) Experiment 3 - Rocketfuel graph number
6461 with n = 141 and diameter=8. (b) Experiment 7 - message overhead for Erdös-
Rényi with random link weights, n = 100, p = 0.05, k = 2, and λ = 4. z refers to the
number of timesteps cpr must rollback.

purge and 2nd best message overhead increases with larger k. Larger k im-
plies that false state has propagated further in the network, resulting in more
paths to repair, and therefore increased messaging. For values of k greater than
a graph’s diameter, the message overhead remains constant, as expected.

The trends for time overhead match those for message overhead. The inter-
ested reader can refer to our technical report [9] for these figures.

Experiment 2 The experimental setup is identical to Experiment 1 with one
exception: link weights are selected uniformly at random between [1, n] (rather
than using fixed link weight of 50). Figure 2(b) shows the message overhead for
n = 100 and p = .05. We omit the figures for the other p values because they
follow the same trend as p = .05 [9].

In striking contrast to Experiment 1, purge outperforms 2nd best for all
values of k. 2nd best performs poorly because the count-to-∞ problem: when
k < 4, there are 1K pairwise routing loops (a strong indicator of the occurrence
of the count-to-∞ problem) and over 10K routing loops occur for each k ≥ 4.
No routing loops are found with purge because they are removed by purge’s
diffusing computations. cpr performs well because −→bad is removed using a sin-
gle diffusing computation, while the other algorithms remove −→bad state through
distance vector’s iterative process.

In addition, we count the number of epochs in which at least one pairwise
routing loop exists. For 2nd best (across all topologies), on average, all but the
last three timesteps have at least one routing loop. This suggests that the count-
to-∞ problem dominates the cost for 2nd best.

Experiment 3 In this experiment, we simulate our algorithms over Internet-
like topologies downloaded from the Rocketfuel website [3] and generated using
GT-ITM [2]. We show the results for one Rocketfuel graph in Figure 3(a). The
results follow the same pattern as in Experiment 2.



Experiment 4 We repeat Experiments 2 and 3 using poison reverse for 2nd

best and cpr. We do not apply poison reverse to purge because no routing loops
(resulting from the removal of v) exist during purge’s recovery. Additionally, we
do not repeat Experiment 1 using poison reverse because we observed few routing
loops in that experiment. The results are shown for one representative topology
in Figure 2(b), where 2nd best + pr and cpr + pr refer to each respective
algorithm using poison reverse.

cpr + pr has modest gains over standard cpr because few routing loops
occur with cpr. On other hand, 2nd best + pr sees a significant decrease in
message overhead when compared to the standard 2nd best algorithm because
poison reverse removes the many pairwise routing loops that occur during 2nd

best recovery. However, 2nd best + pr still performs worse than cpr + pr and
purge. When compared to cpr + pr, the same reasons described in Experiment
2 account for 2nd best + pr’s poor performance. Comparing purge and 2nd best
+ pr yields interesting insights to the two different approaches for eliminating
routing loops: purge prevents routing loops using diffusing computations and
2nd best + pr uses poison reverse. Because purge has lower message complexity
than 2nd best + pr and poison reverse only eliminates pairwise routing loops,
it suggests that purge removes routing loops larger than 2. We are currently
investigating this claim.

4.2 Link Weight Change Experiments

In the next three experiments we evaluate our algorithms over graphs with chang-
ing link costs. We introduce link cost changes between the time v is compromised
and when v is discovered (e.g. during [t′, t]). In particular, let there be λ link
cost changes per timestep, where λ is deterministic. To create a link cost change
event, we choose a link equiprobably among all links (except all (v, v) links) and
change its cost. The new link cost is selected uniformly at random from [1, n].

Experiment 5 Except for λ, our experimental setup is identical to the one in
Experiment 2. We let λ = {1, 4, 8}. In order to isolate the effects of link costs
changes, we assume that cpr checkpoints at each timestep.

Due to space constraints, we only show results for p = .05 and λ = {4, 8} in
Figure 4. 8 purge yields the lowest message overhead, but only slightly lower than
cpr. cpr’s message overhead increases with larger k because there are more link
cost change events to process. After cpr rolls back, it must process all link cost
changes that occurred in [t′, t]. In contrast, 2nd best and purge process some
of the link cost change events during [t′, t] as part of normal distance vector
execution. In our experimental setup, these messages are not counted because
they do not occur in Step 4 of our simulation scenario described in Section 4.

We also find that 2nd best performance suffers because of the count-to-∞
problem. The gap between 2nd best and the other algorithms shrinks as λ in-
creases because link cost changes have a larger effect on message overhead with
increasing λ.
8 Our experiments for different λ and p values, yield the same trends [9].
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Fig. 4. Plots for Experiment 5 and 6. Each figure shows message overhead for Erdös-
Rényi graphs with link weights selected uniformly at random, p = 0.05, average diame-
ter is 6.14, and λ = {4, 8}. Experiment 5 includes the 2nd best, purge, and cpr curves.
The curves for 2nd best + pr, purge + pr, and cpr + pr correspond to Experiment 6.

Experiment 6 In this experiment, we apply poison reverse to each algorithm
and repeat Experiment 5. Because purge’s diffusing computations only eliminate
routing loops corresponding to −→bad state, purge is vulnerable to routing loops
stemming from link cost changes. Thus, contrary to Experiment 4, poison reverse
improves purge performance. We include the three new curves in both Figure 4
plots (each new curve has label “algorithm-name” + pr). Results for different
λ and p values yield the same trends and so we omit the corresponding plots.

All three algorithms using poison reverse show remarkable performance gains.
As confirmed by our profiling numbers, the improvements are significant because
routing loops are more pervasive when link costs change. Accordingly, the poison
reverse optimization yields greater benefits as λ increases.

As in Experiment 4, we believe that for −→bad state only, purge + pr removes
routing loops larger than 2 while 2nd best + pr does not. For this reason, we
believe that purge + pr performs better than 2nd best + pr. We are currently
investigating this claim. cpr + pr has the lowest message complexity. In this
experiment, the benefits of rolling back to a global snapshot taken before v
was compromised outweigh the message overhead required to update stale state
pertaining to link cost changes that occurred during [t′, t]. As λ increases, the
performance gap decreases because cpr + pr must process all link cost changes
that occurred in [t′, t] while 2nd best + pr and purge + pr process some link
cost change events during [t′, t] as part of normal distance vector execution.

However, cpr + pr only achieves such strong results by making two optimistic
assumptions: we assume perfectly synchronized clocks and checkpointing occurs
at each timestep. In the next experiment we relax, the checkpoint assumption.

Experiment 7 Here we study the trade-off between message overhead and
storage overhead for cpr. To this end, we vary the frequency at which cpr
checkpoints and fix the interval [t′, t]. Otherwise, our experimental setup is the
same as Experiment 5.



Due to space constraints, we only display a single plot. Figure 3(b) shows the
results for an Erdös-Rényi graph with link weights selected uniformly at random
between [1, n], n = 100, p = .05, λ = 4 and k = 2. We plot message overhead
against the number of timesteps cpr must rollback, z. The trends are consistent
when using the poison reverse optimization for each algorithm. cpr’s message
overhead increases with larger z because as z increases there are more link cost
change events to process. 2nd best and purge have constant message overhead
because they operate independent of z.

We conclude that as the frequency of cpr snapshots decreases, cpr incurs
higher message overhead. Therefore, when choosing the frequency of checkpoints,
the trade-off between storage and message overhead must be carefully considered.

4.3 Summary

Our results show cpr using poison reverse yields the lowest message and time
overhead in all scenarios. cpr benefits from removing false state with a single
diffusing computation. Also, applying poison reverse significantly reduces cpr
message complexity by eliminating pairwise routing loops resulting from link
cost changes. However, cpr has storage overhead, requires loosely synchronized
clocks, and requires the time v was compromised be identified.

2nd best’s performance is determined by the count-to-∞ problem. In the case
of Erdös-Rényi graphs with fixed unit link weights, the count-to-∞ problem was
minimal, helping 2nd best perform better than purge. For all other topologies,
poison reverse significantly improves 2nd best performance because routing loops
are pervasive. Still, 2nd best using poison reverse is not as efficient as cpr and
purge using poison reverse.

In cases where link costs change, we found that purge using poison reverse is
only slightly worse than cpr + pr. Unlike cpr, purge makes use of computations
that follow the injection of false state, that do not depend on false routing state.
Because purge does not make the assumptions that cpr requires, purge using
poison reverse is a suitable alternative for topologies with link cost changes.

Finally, we found that an additional challenge with cpr is setting the parame-
ter which determines checkpoint frequency. Frequent checkpointing yields lower
message and time overhead at the cost of more storage overhead. Ultimately,
application-specific factors must be considered when setting this parameter.

5 Related Work

There is a rich body of research in securing routing protocols [10, 17, 20]. Unfor-
tunately, preventative measures sometimes fail, requiring automated techniques
for recovery. Previous approaches to recovery from router faults [15, 19] focus on
allowing a router to continue forwarding packets while new routes are computed.
We focus on a different problem: recomputing new paths following the detection
of a malicious node that may have injected false routing state into the network.

Our problem is similar to that of recovering from malicious but committed
database transactions. Liu et al. [12] develop algorithms to restore a database to a



valid state after a malicious transaction has been identified. purge’s algorithm to
globally invalidate false state can be interpreted as a distributed implementation
of the dependency graph approach in [12].

Database crash recovery [14] and message passing systems [6] both use snap-
shots to restore the system in the event of a failure. In both problem domains, the
snapshot algorithms are careful to ensure snapshots are globally consistent. In
our setting, consistent global snapshots are not required for cpr, since distance
vector routing only requires that all initial least costs are non-negative.

Garcia-Lunes-Aceves’s DUAL algorithm [8] uses diffusing computations to
coordinate least cost updates in order to prevent routing loops. In our case, cpr
and the prepossessing procedure (Section 3.1) use diffusing computations for
purposes other than updating least costs (e.g., rollback to a checkpoint in the
case of cpr and remove v as a destination during preprocessing). Like DUAL, the
purpose of purge’s diffusing computations is to prevent routing loops. However,
purge’s diffusing computations do not verify that new least costs preserve loop
free routing (as with DUAL) but instead globally invalidate false routing state.

Jefferson [11] proposes a solution to synchronize distributed systems called
Time Warp. Time Warp is a form of optimistic concurrency control and, as
such, occasionally requires rolling back to a checkpoint. Time Warp does so
by “unsending” each message sent after the time the checkpoint was taken.
With cpr, a node does not need to explicitly “unsend” messages after rolling
back. Instead, each node sends its −−→min taken at the time of the snapshot, which
implicitly undoes the effects of any messages sent after the snapshot timestamp.

6 Conclusions and Future Work

In this paper, we developed methods for recovery in scenarios where malicious
nodes inject false state into a distributed system. We studied an instance of
this problem in distance vector routing. We presented and evaluated three new
algorithms for recovery in such scenarios. In the case of topologies with changing
link costs, we found that poison reverse yields dramatic reductions in message
complexity for all three algorithms. Among our three algorithms, our results
showed that cpr – a checkpoint-rollback based algorithm – using poison reverse
yields the lowest message and time overhead in all scenarios. However, cpr has
storage overhead and requires loosely synchronized clocks. purge does not have
these restrictions and we showed that purge using poison reverse is only slightly
worse than cpr with poison reverse. Unlike cpr, purge has no stale state to
update because purge does not use checkpoints and rollbacks.

As future work, we are interested in finding the worst possible false state a
compromised node can inject (e.g., state that maximizes the effect of the count-
to-∞ problem). We have also started a theoretical analysis of our algorithms.
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