
DDoS Mitigation

in Non-Cooperative Environments

Guanhua Yan and Stephan Eidenbenz?

Information Sciences (CCS-3)
Los Alamos National Laboratory

Los Alamos, NM 87544, USA
{ghyan, eidenben}@lanl.gov

Abstract. Distributed denial of service (DDoS) attacks have plagued
the Internet for many years. We propose a system to defend against DDoS
attacks in a non-cooperative environment, where upstream intermediate
networks need to be given an economic incentive in order for them to
cooperate in the attack mitigation. Lack of such incentives is a root
cause for the rare deployment of distributed DDoS mitigation schemes.
Our system is based on game-theoretic principles that provably provide
incentives to each participating AS (Autonomous Systems) to report
its true defense costs to the victim, which computes and compensates
the most cost-efficient (yet still effective) set of defenders ASs. We also
present simulation results with real AS-level topologies to demonstrate
the economic feasibility of our approach.

1 Introduction

The distributed denial of service (DDoS) attack is a formidable problem that
has plagued the Internet for many years. The intent of such attacks is to exhaust
the resources of a remote host or network such that the service provided to le-
gitimate users is degraded or denied. As a response to the serious threat posed
by DDoS attacks, a plethora of target-resident DDoS mitigation techniques have
been proposed, including packet filtering, anti-spoofing, anomaly detection, pro-
tocol analysis, and rate limiting. Albeit commercial products providing these
solutions are available, it is still a challenging undertaking for the victim to suc-
cessfully defend against a large-scale DDoS attack all by itself. The reasons are
two-fold. First, although the victim is at the best position to detect a DDoS
attack, distinguishing traffic with good and ill intentions is not easy. A smart
attacker can complicate the defense by making the attack traffic behave similar
to legitimate traffic. Second, even if the victim has the perfect technology to
characterize malicious traffic, it may not have the computational resources to
execute it at the same speed as the arriving attack traffic. This turns the DDoS
mitigation component itself into a target of a DDoS attack.

Some earlier work has suggested pushing the perimeter of DDoS defense
to intermediate networks [16]. None of these techniques, however, are widely
deployed, due to lack of economic and social incentives for the intermediate net-
works [14]. In many cases, intermediate networks do not suffer directly from a

? Los Alamos National Laboratory Publication No. LA-UR-07-3012

2

DDoS attack, and are thus reluctant to devote a non-trivial amount of resources
to help the victim. Even during some flooding DDoS attacks in which traffic
traversing through these networks increases significantly, bandwidth overprovi-
sion prepared for flash crowds helps them absorb such types of attacks.

Motivated by this observation, we develop an economically sound frame-
work that mitigates DDoS attacks in non-cooperative environments. We assume
that intermediate networks (or ASs) are selfish, and they are willing to defend
against the DDoS attack for the victim only when they receive enough economic
compensation. Put in a game theoretic context, the distributed DDoS mitiga-
tion problem triggers the following questions: What ASs should be selected for

defending against the attack? How much should the victim pay to each participat-

ing AS for the defense? How can we design a protocol that stimulates each AS to

truthfully report its real cost on the defense other than an arbitrarily high value

without economic basis? Can the victim impose a limit on how much money it

is willing to pay for the defense in the protocol?
Our approach to addressing these questions in an economically and game-

theoretically sound manner, is as follows: Using a combination of established
tools to compute DDoS attack graphs, we make ASs on attack paths report
defense cost estimates. Based on these estimates, we compute the most cost-
efficient set of defender ASs. Using the game-theoretic paradigm of VCG-type
payment schemes ensures that each defense participant maximizes its own utility
but truthfully reporting its real cost estimate. In the parlance of game theory, our
protocols are provably truthful and also satisfy individual rationality. We evalu-
ate our protocol on a real Internet-scale AS-level topology. Experimental results
reveal that under DDoS attacks launched from botnets of typical sizes observed
so far, the inevitable economic inefficiency of our protocol is limited within only
20% of the total payment to the participating defenders if the deployment ratio
of the distributed defense scheme reaches 60%.

Related work. The concept of game theory, especially mechanism design,
has been used in routing protocol design for communication networks, such as
inter-domain routing [9] and Ad hoc-VCG for mobile ad-hoc networks [5]. On
the other hand, Mirkovic et al. presented a comprehensive survey on solutions
to defending against DDoS attacks in [14]. Huang et al. suggested that currently
providing incentives for participating parties in the DDoS defense should be given
higher priority than improving the defense technology [11]. Their arguments are
in agreement with the motivation behind this paper.

The remainder of this paper is organized as follows. Section 2 discusses how
the victim constructs the defense graph. Section 3 presents how to select defender
ASs. Sections 4 and 5 introduce the payment schemes. Section 6 evaluates the
economic inefficiency and Section 7 concludes this paper.

2 Defense Graph Generation

We consider an attack model in which many compromised hosts are used to
launch a large-scale DDoS attack against a server providing a network-accessible
service, such as online banking, online game, or database query. As the network
and computation resources (e.g., bandwidth, CPUs, storage, software licenses)

3

supporting these services are usually limited, an attacker can convene a large
army of zombie machines (e.g., using a botnet) to deplete these resources and
thus significantly degrade the QoS (Quality of Services) experienced by legiti-
mate clients. We do not assume that the victim can always easily distinguish
malicious traffic from benign traffic. A smart attacker can make the malicious
traffic behave similar to that from a legitimate user. We assume that to achieve
this, the attacker has to use real source IP addresses in his attack traffic1.

Our work requires that the defense graph is constructed at the victim site.
To do this, we leverage existing tools and methods as follows. First, when the
target server becomes overloaded, incoming source IP addresses are randomly
sampled. For each sampled packet, we use the network-aware clustering tech-
nique described in [12] to derive its origin AS. It has been shown that this
method is able to cluster 99% of the web clients. For each clustered IP prefix, we
can look up its corresponding AS number from a map, which can be constructed
offline or obtained from a third party such as Team Cymru [1]. Second, the victim
decides Vor, the set of origin ASs from which traffic should be inspected based
on the traffic rate from each AS and how much the current traffic rate from
an AS exceeds the average traffic rate observed in the past. Third, the victim
infers AS-level paths from ASs in Vor to the victim network using tools such as
RouteScope [13]. Combining all the AS-level paths inferred from ASs in Vor to
the victim network, the victim can build the defense graph G(V,E), in which
nodes are denoted by A1, A2, ..., and A|V |.

The aforementioned approach to constructing defense graphs differs from ex-
isting solutions to attack graph generation [16] that use the probabilistic packet
marking (PPM) scheme. PPM, which requires intermediate routers to mark
traversing packets probabilistically, has a few drawbacks here. First, it is not
immune to edge faking, standard IP stack attack, and near-birthday collision
attack [19]. Second, intermediate routers can erase marks inscribed by upstream
ones to increase its chance being selected as a defender. Third, deriving a com-
plete attack graph at the victim site requires all ASs to perform PPM, which is
difficult from a deployment point of view.

After constructing the defense graph, the victim does the following: (1) con-
tact the defense proxy (explained later) of each AS in the defense graph, querying
the defense price if that defense proxy deploys the defense scheme requested by
the victim; (2) select the most cost efficient set of ASs; (3) calculate the pay-
ment made to the owner of each AS that is selected for distributed defense; (4)
send the payment to the owner of each AS selected for distributed defense.

Once an AS that is selected for distributed defense receives the payment, it
forwards all traffic destined to the target server to the defense proxy. A defense
proxy performs requested defense action by the victim such as packet filtering
and anti-spoofing. To alleviate the high workload on the server, the victim can
even delegate part of its service to the defense proxies. In the following sections,
we explain the details of Steps (1) through (4).

1 Actually source address spoofing is rarely used these days in DDoS attacks [18].

4

3 Defender Selection

Phase I: Requesting Defense Costs

After constructing the defense graph, the victim sends a request to each AS in it,
asking distributed defense against the DDoS attack. We assume that an AS can
forward its traffic to its defense proxy, if it has one, at two places: links connected
to end hosts in its local administrative domain, and outbound links to other ASs
(if the victim does not belong to the AS) or links directly connected to the victim
(if the victim belongs to the AS). We use Lloc(k) and Lout(k) to denote these
two sets of links in AS Ak respectively. We also assume that DDoS attack traffic
originates only from end hosts. For ease of presentation, we let v denote the
address of the target server. If AS Ak forwards traffic with destination v to its
defense proxy on links in Lout(k), it does not need to do it on links in Lloc(k),
because any locally generated traffic with destination v, if not dropped inside
AS Ak, must traverse some link in Lout(k) before reaching the victim network.

Each AS Ak in set Vor under request calculates two costs: one is associated
with forwarding traffic with destination v from links in Lloc(k) to its defense
proxy and then performing requested action on the traffic there, and the other
associated with forwarding traffic with destination v from links in Lout(k) to
its defense proxy and then performing requested action on the traffic there.
Let Cloc(k) and Cout(k) denote these two costs respectively. If AS Ak is in set
V − Vor, it only computes Cout(k) and its Cloc(k) is automatically 0. In cases
that AS Ak does not have a defense proxy, both its Cout(k) and Cloc(k) are +∞.
We further define C(k) as a 2-tuple vector: 〈Cloc(k), Cout(k)〉, and call it the
genuine cost vector of AS Ak. C(k) is private information owned by AS Ak, and
in the parlance of game theory, it is called the type of AS Ak.

Here, we do not impose specific formula on how each AS should compute
its genuine cost vector. Actually, such estimated costs rely on many factors
such as performance degradation due to requested defense and the service level
agreements (SLAs) between the AS and its customers. Instead, our protocol
only assumes the existence of such costs and it works independently of how ASs
estimate these costs. Moreover, we also assume that such cost estimation can
be done quickly (e.g., performed automatically without human intervention) by
each AS. We will explore how to achieve this in our future work.

Meanwhile, each AS Ak is requested to report its genuine cost vector to
the victim. As an AS may lie about its true costs, we use Rloc(k) and Rout(k)
to denote the two reported costs respectively. Similarly, we define, R(k), the
reported cost vector of AS Ak, as 2-tuple vector: 〈Rloc(k), Rout(k)〉.

Phase II: Computing Defense Set

After the victim receives all the reported cost vectors from the ASs in the defense
graph, it decides which ASs should be selected for defending against the DDoS
attack. Recall that an AS Ak can perform the requested action on traffic going
through links in either Lloc(k) or Lout(k). Hence, the victim should also deter-
mine traffic on which links an AS, if selected for defense, should check according
to the requested action. Define a defense set D as a set of 2-tuple 〈Ai, pi〉, where
Ai ∈ V and pi ∈ {0, 1}. If pi = 0, AS Ai performs the requested action on

5

Lloc(k); if pi = 1, AS Ai performs the requested action on Lout(k). We further
define Γ (D), a set of network links, as follows:

Γ (D) = {l | (∀〈Ai, 0〉 ∈ D : l ∈ Lloc(i)) ∨ (∀〈Ai, 1〉 ∈ D : l ∈ Lout(i))} (1)

In other words, set Γ (D) consists of all the links on which traffic is inspected
under defense set D. We use P (q) to denote the set of links on the path of packet
q. We define the completeness of defense set D as follows:

Definition 1. Defense set D is complete relative to AS set S if for any packet

q that originates from an AS in S and goes to the target server, there exists a

link l in P (q) such that l ∈ Γ (D).

From the economic point of view, it is reasonable to assume that the victim
wants to find the most cost-efficient defense set that is also complete. Given a
defense set D, we define its cost H(D) as follows:

H(D) =
∑

{Ai,pi}∈D

Rloc(k) · (1 − pi) + Rout(k) · pi. (2)

We further give the following definition:

Definition 2. A defense set D that is complete relative to AS set S is efficient

relative to the reported costs if for any other defense D′ that is also complete

relative to AS set S, it holds H(D′) ≥ H(D).

We now present an algorithm that computes a defense set that is complete
relative to a subset of Vor and efficient relative to the reported costs. Dmin is
initialized to be empty. The algorithm consists of two steps:

Step 1: generate mutated defense graph Gm. We first create a new
graph Gm(Vm, Em), which is called the mutated defense graph, based on defense
graph G(V,E) and reported costs from each AS in V . For each AS node Ak in Vor,
we create three nodes in Gm, which are denoted by Ai

k, Ao
k, and Al

k respectively;
we also add directed edges (Ai

k, Ao
k) with weight Rout(k) and (Al

k, Ai
k) with

weight Rloc(k) to Gm. For each AS node Aj in V − Vor, we add only two nodes
into Gm, which are Ai

j and Ao
j ; we add directed edge (Ai

k, Ao
k) with weight

Rout(k) to Gm. For each directed edge (Ai, Aj) in the original defense graph,
we add a directed edge (Ao

i , A
i
j) with weight ∞ to Gm. We also put the victim

node v into graph Gm; for each AS node Ai in V that is directly connected to
v, we add edge (Ao

i , v) with weight ∞ into Gm. Finally, we add to Gm a virtual
source node A−1 and a directed edge with weight ∞ to every node Al

i with upper
index l in Gm whose corresponding AS node Ai is in set Vor. In Gm, we call a
node with upper index i an i-type node, a node with upper index o an o-type

node, and a node with upper index l an l-type node. Similarly, we call an edge
from an i-type node to an o-type node an i-o-type edge, an edge from an l-type
node to an i-type node an l-i-type edge, and an edge from an o-type node to an
i-type node an o-l-type edge. In Fig. 1, we illustrate the mutated defense graph
generated from an defense graph and the reported costs from each AS.

Step 2: compute the min-cut of Gm. We treat the mutated defense
graph as a flow network with source A−1 and sink v; the weight of each directed
link is its capacity. It is possible that on some paths from A−1 to v all the
edges have infinite weights; this occurs when no ASs on these paths deploy

6

A 1

AA

A

A

2

3

4

5

Victim

<3, 5>

<4, 5>

<5, 7>

<8, 12>

<9, 17>

v

��

������������������������������

A4
l

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �

��

������������������������������

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � � 	�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��

������������������������������

������������������

������������������������������

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

��

������������������������������

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �

��

��
��

������������������������������

��

������������������������������

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

��

������������������������������

��

 � � � � � � � � � � � � � � � � � �

! ! ! ! ! ! !
! ! ! ! ! ! !
! ! ! ! ! ! !

" " " " " "
" " " " " "
" " " " " "

#�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�#

$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$

A−1

2
i

i

i

4

1
o

l

l

A

l

55

83

Ao

AoAA

A

A Ao

A

Ai
4

5

1

A1

2

2

3

4 5

5
9

12

17

7

5
AoA3

iA3
lA3

l−type node i−type node o−type node

v

(1) Original defense graph. (2) Mutated defense graph

Fig. 1. Original defense graph and mutated defense graph. The reported cost vector
of each AS is shown on the corresponding node.

defense proxies. We preprocess Gm as follows: use the DFS (Depth First Search)
algorithm to traverse graph Gm by starting from sink v and traversing the graph
only along edges with infinite weights in reverse direction; whenever an l-type
node u is visited, we add its corresponding AS node Ak to set U and also erase
the l-i-type edge associated with it from Gm. It is not difficult to see that after
preprocessing Gm as described, Gm must have a min-cut with a finite capacity.

The celebrated max-flow min-cut theorem [6] states that the maximal amount
of a flow is equal to the capacity of a minimal cut. To compute the min-cut of
Gm, we first derive the maximum flow fmax

m in Gm. Given the max-flow fmax
m , we

can obtain set Emc, which contains all the cutting edges in Gm that it saturates.
Then, the min-cut of Gm can be obtained by cutting all the edges in Emc.

Based on Emc, the victim can derive a defense set that is complete relative
to AS set Vor−U and efficient relative to the reported costs. As only l-i-type and
i-o-type edges have finite capacities in Gm, Emc contains only such edges. For
each l-i-type edge (Al

u, Ai
u) in Emc, we add 〈Au, 0〉 to Dmin; For each i-o-type

edge (Ai
u, Ao

u) in Emc, we add 〈Au, 1〉 to Dmin. In the example shown in Fig.
1, the capacity of the min-cut is 29 and Emc is {(Ai

1, A
o
1), (A

i
2, A

o
2)}. The final

Dmin is thus {〈A1, 1〉, 〈A2, 1〉}.
Based on the property of the min-cut, we can easily establish the following

theorem (proof omitted):

Theorem 1. The defense set found by the algorithm as described is complete

relative to set Vor − U and efficient relative to the reported costs.

4 Payments Without Reserve Price

In this section, we consider the cases in which the victim does not impose a
constraint on how much money it is willing to pay for the defense. Such a con-
straint is sometimes called reserve price [7]. A naive payment scheme is that the
victim pays every AS in the final defense set by its reported cost. However, in
a non-cooperative computation environment, there is no reason to believe that
each AS truthfully reports its true costs. To prevent cheating, we borrow the
payment scheme from the Vickrey-Clarke-Groves (VCG) mechanisms [5].

We say that we disable AS node Ak ∈ V from graph Gm by doing the
following: if edge (Al

k, Ai
k) ∈ Em, we set its capacity to be +∞, and if edge

(Ai
k, Ao

k) ∈ Em, we set its capacity to be +∞. The new graph after disabling
node Ak from Gm is denoted by Gm,−Ak

. Then, for each item 〈Ak, pk〉 in Dmin,
the payment to AS Ak’s owner ω(Ak), denoted by η(ω(Ak)), is given by

7

η(ω(Ak)) = (1 − pk) · Rloc(k) + pk · Rout(k) + Υ (Gm,−Ak
) − Υ (Gm) (3)

In other words, AS Ak, if selected for defense, is paid by the difference between
the cost of the most cost efficient defense set after Ak is disabled and the cost
of the most cost efficient defense set without its own reported cost.

From a practical point of view, there are two problems with the above pay-
ment scheme. First, an economic entity (e.g., a big ISP) can own multiple ASs
and as the above payment scheme treats each AS as an agent in the game, mul-
tiple agents belonging to the same economic entity can collude to achieve better
economic benefits. We thus call it the collusion attack problem. It is also well
known that the VCG-type payment scheme does not prevent collusion attacks
[8]. To solve this problem, we slightly modify the above payment scheme. We
treat each independent economic entity as an agent. Let Φ denote the entire set of
economic entities or agents involved in the distributed defense, and Ψ(s), where
s ∈ Φ, to denote the set of ASs that agent s controls. We also use Υ (Gm,−S)
to denote the capacity of the min-cut after disabling all the AS nodes in set S
from graph Gm. The total payment made to agent s is given as follows:

η(s) =
∑

∀Ak∈Ψ(s):〈Ak,pk〉∈Dmin

((1−pk)·Rloc(k)+pk·Rout(k))+Υ (Gm,−Ψ(s))−Υ (Gm).

The difference Υ (Gm,−Ψ(s))−Υ (Gm) is the overpayment made to agent s (relative
to its reported cost); it is also called the premium paid to agent s.

Second, after disabling all AS nodes belonging to an agent s, the min-cut
Υ (Gm,−Ψ(s)) may become infinity. This means that the victim has to pay an
infinite amount of money to agent s, which is obviously not realistic. We call
it the monopolistic extortion problem. To circumvent it, we modify the mutated
defense graph Gm to satisfy the 1-agent resilience property : for any path from
node A−1 to victim node v, there are at least two edges that have finite weights
and the nodes they are incident to belong to different agents. To achieve this
property, we simply remove the first l-i-type edge on every path that does not
satisfy this condition and put the AS node associated with that edge into set U .

Following the example in Fig. 1, suppose there are three agents, s1, s2, and s3.
Ψ(s1), Ψ(s2), and Ψ(s3) are {A3, A4}, {A1, A5}, and {A2} respectively. To satisfy
1-agent resilience property, we remove the two edges from Al

1 to Ai
1 and from

Al
2 to Ai

2, and the new defense set Dmin thus becomes {〈A3, 0〉, 〈A4, 0〉, 〈A5, 0〉}.
The payments made to s1, s2 and s3 are 12, 17, and 0 respectively.

The utility of an agent is defined as the payment it receives from the victim
less its true cost. Let u(s) be the utility of agent s. Following the same example,
we have u(s1) = 5, u(s2) = 12, and u(s3) = 0. In the parlance of game theory, our
protocol is truthful (or strategyproof) only if truth-telling is a dominant strategy
for each participating agent; that is to say, if an agent wants to maximize its
utility, it must report truthfully its genuine cost vector for each AS that it
owns, independently of any other agent’s report. The individual rationality of
a protocol means that an agent participates in the game only when its utility
after participation is as much as that without participation. We then have the
following theorem (proof provided in Appendix A):

8

Theorem 2. If the victim does not have a reserve price and the protocol as

described is executed, behaving truthfully is a dominant strategy and individually

rational for any agent.

5 Payments with Reserve Price

In this section we consider a more realistic setting in which the victim specifies its
reserver price, the maximum amount of money it wants to pay for the distributed
defense. We use Pr to denote the reserve price of the victim. Pr is the type of the
victim, and the utility of the victim is Pr minus the total payments made by the
victim. Let Pd be the total payment made to all the agents owning ASs in Dmin.
A naive solution to deciding whether a deal should be made between the victim
and the agents owning ASs in Dmin is: If Pr ≥ Pd, the deal is made; otherwise,
the deal fails. Although intuitively reasonable, such a decision rule can lead to
cheating behavior by some agents. We use a simple example in Fig. 2 to illustrate
that. Each AS belongs to a different agent. Dmin is {〈A3, 0〉, 〈A4, 0〉, 〈A5, 0〉}. We
thus have η(ω(A3)) = 12, η(ω(A4)) = 11, and η(ω(A4)) = 7. Since Pd = 30 > 20,
the defense deal cannot be made. Now suppose that A3 reports its cost vector
as 〈11, 12〉 instead of 〈6, 12〉. Clearly, Dmin does not change. η(ω(A3)) = 12,
η(ω(A4)) = 6, and η(ω(A5)) = 2. Hence, Pd = 20 < 25, which makes the deal
take place. The utility of A3 changes from 0 to 6 after it cheats.

A 4

A 1

A 2

<0, 9>

Victim
(reserve price = 25)

<5, 8>

A 3

A
<1, 100>

5

<6, 12>

v

<0, 9> ��

��
A3

l

��

��

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �

3AA

��

��
A4

0

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �

������������������

��

��

������������������������������

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �

��

������������������������������
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �

��

��

��

��

��

��
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �

��

 � � � � � � � � � � � �

A−1 Ai
3

ilA

AoAooA3

4 A4

i oA

l−type node i−type node o−type node

A

2
i

2
oA

A

A

1 1
oAi

9

A

1

100

25

5 5

9

6

5 8

5
l

12
v

(1) Original defense graph (2) Mutated defense graph

Fig. 2. Untruthfulness with reserve price

To solve this problem, we borrow the idea of global replacement from [7].
Define set Φmin as follows:

Φmin = {s|∃〈Ak, pk〉 ∈ Dmin : Ak ∈ Dmin}. (4)

That is to say, Φmin contains every agent that has at least one AS selected into
the defense set Dmin. Then, for every agent s in Φmin, we disable all the ASs that
it owns from graph Gm. Let the new graph be Gr

m. We then use the algorithm
described in Section 3 to recompute the defense set from Gr

m. We denote the
new defense set by Dr

min and call it the global replacement defense set. We define
P−mc

d as the total payment made to all the agents owning ASs in Dr
min. The

decision of the victim depends on Pr and P−mc
d : if Pr ≥ P−mc

d , the deal takes
place and the payment to each agent is the same as computed in Section 4;
otherwise, the deal does not take place. In the example, if all ASs report their
genuine cost vector truthfully, we have P−mc

d = 18 < Pr = 25; therefore, the
distributed defense takes place and the payments to ω(A3), ω(A4) and ω(A5)
are 12, 11 and 7 respectively. If ω(A3) falsely reports the cost vector of AS A3

as 〈11, 12〉, its utility remains unchanged at 6.

9

As the victim is only willing to pay P−mc
d , the budget is no balanced if

P−mc
d 6= Pd. In the example, the victim pays only P−mc

d = 18 for the defense,
but the total payment made to all the ASs is Pd = 30 > 18. To overcome such a
side effect, we introduce the central bank model [10], in which each AS has a bank
account at a central bank and the bank periodically credits or debit each agent
to balance its budget for the differences between P−mc

d and Pd. Such a central
bank can be managed by a trusted authority, such as IANA, which allocates
unused AS numbers in the Internet.

Theorem 3 establishes the truthfulness and individual rationality of the pro-
tocol when the victim has a reserve price (proof provided in [20]):

Theorem 3. If the victim has a reserve price and the protocol as described is

executed, behaving truthfully is a dominant strategy and individually rational for

both the victim and any participating agent.

6 Experiments

Setup. In our experiments, we use a real Internet topology derived from BGP
routing table dump files. From a BGP RIB file downloaded from the Route
Views Project [2], we extract 25,193 AS numbers. The size of each AS is roughly
estimated by adding the number of IPv4 addresses covered by all the prefixes
announced by it. We choose a server that resides in AS 18784 as the target of a
DDoS attack. We use the AS path inference service provided by the BGPVista
project [3].To obtain a map from each AS to its corresponding economic entity,
we collect the information of each AS from the FixedOrbit website [4]. If two ASs
have close names, we assume that they belong to the same economic entity. We
identify 23,075 agents, among which 99.77% have only one AS. To obtain a map
from each AS to its corresponding economic entity, we collect the information
of each AS from the FixedOrbit website [4]. If two ASs have close names, we
assume that they belong to the same economic entity.

We also vary the sizes of the botnets that are used to launch a DDoS attack
against the target server among 104, 105, and 106. These values are based on the
sizes of today’s botnets [15]. For each bot, we let its sending rate be 130kbps,
according to the survey from [17]. In the experiments, we assume that bots
are uniformly distributed in the IPv4 addresses owned by all the ASs under
consideration. Moreover, when selecting a list of ASs from which traffic should
be inspected, we do not consider normal traffic in our experiments, because this
does not keep us from explaining the basic principle of our protocol. Instead,
when the DDoS traffic generated from an AS exceeds a certain threshold θ, this
AS is added into set Vor. We set θ to be 10Mbps. We assume that the genuine
cost of an AS Ak on inspecting traffic on links in either Lloc(k) or Lout(k) is a
linear function of the traffic destined to the victim through these links:

{

Cloc(k) = aloc(k) · T v
loc(k) + bloc(k)

Cout(k) = aout(k) · T v
out(k) + bout(k)

(5)

where T v
loc(k) and T v

out(k) denote the total traffic rate destined to the victim v
through links in Lloc(k) and Lout(k) respectively, coefficients aloc(k) and aout(k)

10

are uniformly chosen between 10−6 and 5 × 10−6, and constants bloc(k) and
bout(k) are uniformly chosen between 100 and 500.

The reserve price of the victim Pr is given by cv · Tv, where cv is 10−5 and
Tv is traffic arrival rate at the victim site. We vary the probability with which
an agent deploys defense proxies among 20%, 40%, 60%, 80%, and 100%. If an
agent is chosen to deploy defense proxies, every AS it owns has a defense proxy.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 s
uc

ce
ss

fu
l d

ea
ls

Proxy deployment probability

botnet size = 10000
botnet size = 100000

botnet size = 1000000

Fig. 3. Fraction of successful deals
on distributed defense

 0.1

 1

 10

 100

 1000

 0.2 0.4 0.6 0.8 1

O
ve

rp
ay

m
en

t r
at

io

Proxy deployment probability

botnet size = 10000
botnet size = 100000

botnet size = 1000000

Fig. 4. Overpayment ratio with re-
serve price (95% conf. interval)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1

O
ve

rp
ay

m
en

t r
at

io
 b

y
th

e
vi

ct
im

Proxy deployment probability

botnet size = 10000
botnet size = 100000

botnet size = 1000000

Fig. 5. Overpayment ratio by the
victim with reserve price

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1

B
ud

ge
t b

al
an

ce

Proxy deployment probability

botnet size = 10000
botnet size = 100000

botnet size = 1000000

Fig. 6. Budget balance with re-
serve price (95% conf. interval)

Results. Due to space limitation, we present only the experimental results
with reserve prices here. We refer readers to [20] for results without reserve
prices. Fig. 3 depicts the fraction of successful deals between the victim and the
participating agents. We note that as more agents deploy defense proxies, it is
more likely that the distributed defense takes place. This is because with wider
defense proxy deployment, there are more choices for the global replacement
defense set, which helps reduce P−mc

d .

From the economic point of view, it is interesting to know how much the
victim needs to overpay the participating agents so that the latter do not cheat.
Among the successful deals between the victim and the participating agents, the
overpayment ratio is illustrated in Fig. 4. The overpayment ratio is defined as
Pd−Y

Pd

, where Pd is the total payment made to all participating defenders and Y
is the true total defense cost incurred by them. The general trend of each curve
is that as more agents deploy defense proxies, the overpayment ratio decreases.
This is because a higher portion of agents with defense proxies provides more
options if a participating agent is disabled from the mutated defense graph,
which helps reduce the premium made to that agent. Although the overpayment

11

can be very high, the victim does not need to pay as much to the participating
agents because of its reserve price. Fig. 5 presents the overpayment ratio that
is contributed only by the victim: the largest average overpayment ratio by the
victim is 0.83, much less than the highest overall overpayment ratio (about 100).

The economic model incorporating the victim’s reserve price requires a cen-
tral bank to pay the overpayment that is not contributed by the victim. To
balance its own budget, the central bank can impose a tax upon the agents [10].
Fig. 6 depicts the budget balance, defined as (Pd−P−mc

d)/Pd. The graph suggests
that when there are not many agents deploying defense proxies and the DDoS
attack is launched from a million-host botnet, the budget balance of the central
bank can be as high as 70% of the total payment. However, million-host botnets
are still rare so far [15], and for smaller botnets, if at least 60% of the agents
deploy defense proxies, the average budget balance is below 20%.

7 Conclusion

Our work in this paper is motivated by the observation that lack of social or
economic incentive is one of the root causes that no distributed defense scheme
has been widely deployed against DDoS attacks. Assuming that autonomous sys-
tems behave selfishly in defending against DDoS attacks. We propose a protocol
that provides incentives for these ASs to participate in cooperative defense. Our
protocol is provably truthful and also satisfies individual rationality.

References

1. http://asn.cymru.com/.
2. http://www.routeviews.org/.
3. http://www.bgpvista.com/.
4. http://www.fixedorbit.com/.
5. L. Anderegg and S. Eidenbenz. Ad hoc-VCG: a truthful and cost-efficient rout-

ing protocol for mobile ad hoc networks with selfish agents. In Proceedings of

MobiCom’03, September 2003.
6. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. The MIT Press and McGraw-Hill, 2001.
7. S. Eidenbenz, G. Resta, and P. Santi. COMMIT: A sender-centric truthful and

energy-efficient routing protocol for ad hoc networks with selfish nodes. In Pro-

ceedings of IPDPS’05, volume 13, April 2005.
8. J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Approximation and

collusion in multicast cost sharing. In Proceedings of EC’01, 2001.
9. J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A BGP-based mech-

anism for lowest-cost routing. In Proc. of PODC’02, 2002.
10. J. Green and J. Laffont. Incentives in public decision making. Studies in Public

Economies, 1:65–78, 1979.
11. Y. Huang, X. Geng, and A. B. Whinston. Defeating DDoS attacks by fixing the

incentive chain. ACM Trans. on Internet Technology, 2006.
12. B. Krishnamurthy and J. Wang. On network-aware clustering of web clients. In

Proceedings of SIGCOMM’00, 2000.
13. Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang. On AS-level path inference. In

Proceedings of SIGMETRICS’05, Banff, Alberta, Canada, June 2005.

12

14. J. Mirkovic and P. Reiher. A taxonomy of DDoS attack and DDoS defense mech-
anisms. ACM SIGCOMM Computer Communications Review, 34(2), April 2004.

15. Honeynet Project and Research Alliance. Know your enemy: Tracking botnets.
http://www.honeynet.org/papers/bots/, 2005.

16. S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support
for IP traceback. In Proceedings of ACM SIGCOMM’00, 2000.

17. K. K. Singh. Botnets – an introduction. http://www-
static.cc.gatech.edu/classes/AY2006/cs6262 spring/botnets.ppt.

18. Summary of the initial meeting of the dos-resistant internet working group.
http://www.thecii.org/dos-resistant/meeting-1/summary.html, January 2005.

19. M. Waldvogel. GOSSIB vs. IP traceback rumors. In Proc. of ACSAC’02.
20. G. Yan and S. Eidenbenz. Distributed DDoS mitigation in non-cooperative envi-

ronments. Technical Report LAUR-07-3012, Los Alamos National Lab, 2007.

Appendix A: Proof of Theorem 2
In Eq. (3), as Υ (Gm,−Ψ(s))−Υ (Gm) cannot be negative, the utility of each agent cannot
be negative. Hence, our protocol is individually rational.

Now we show it is the best interest of each agent to report truthfully its genuine
cost vector for each AS it owns. Let Π−s denote an arbitrary set of cost vectors reported
by all agents except agent s. We use D

(s)
min(Π−s, X) to denote the defense set found by

the algorithm when all agents except s report their cost vectors according to Π−s and
agent s reports its cost vectors as X. We also use G

(s)
m (Π−s, X) and G

(s)

m,−Ψ(s)(Π−s, X)
to denote graphs Gm and Gm,−Ψ(s) respectively when all agents except s report their
cost vectors according to Π−s and agent s reports its cost vectors according to X.
Without introducing any confusion, we drop input Π−s in these notations. Let vector
X

s
rep contains all the reported cost vectors by agent s, and vector X

s
gen contains all

the genuine cost vectors of the ASs owned by agent s. We also introduce notations
R(D, s) and C(D, s) as follows:

R(D, s) =
X

∀〈Ak,pk〉∈D:Ak∈Ψ(s)

(pk · Rloc(k) + (1 − pk) · Rout(k))

C(D, s) =
X

∀〈Ak,pk〉∈D:Ak∈Ψ(s)

(pk · Cloc(k) + (1 − pk) · Cout(k)).

Let ∆u(s) be the utility of agent s when it reports X
s
rep less that when it reports

X
s
gen. We distinguish the following three cases.

C1: If agent s reports X
s
gen, some ASs in Ψ(s) appear in D

(s)
min(Xs

gen), but if

agent s reports X
s
rep, no ASs in Ψ(s) appear in D

(s)
min(Xs

rep). Its utility changes from
a non-negative value to 0.

C2: If agent s reports X
s
gen, no ASs in Ψ(s) appear in D

(s)
min(Xs

gen), but if agent

s reports X
s
rep, some ASs in Ψ(s) appear in D

(s)
min(Xs

rep). Then,
∆u(s) = Υ (G

(s)

m,−Ψ(s)(X
s
rep))−(Υ (G(s)

m (Xs
rep))−R(D

(s)
min(Xs

rep), s)+C(D
(s)
min(Xs

rep), s)).

The second item on the right side of the equation is the capacity of a cut of G
(s)
m (Xs

gen).
As no ASs in Ψ(s) appear in Dmin and the first item is thus the capacity of a min-cut

of G
(s)
m (Xs

gen), ∆u(s) is not positive.

C3: If agent s reports X
s
gen, some ASs in Ψ(s) appear in D

(s)
min(Xs

gen), but if agent

s reports X
s
rep, some ASs in Ψ(s) also appear in D

(s)
min(Xs

rep). Then,
∆u(s) = Υ (G(s)

m (Xs
gen)) − (Υ (G(s)

m (Xs
rep)) −R(D

(s)
min(Xs

rep), s) + C(D
(s)
min(Xs

rep), s)).

The second item on the right side of the equation is the capacity of a cut of G
(s)
m (Xs

gen)

and the first item is the capacity of a min-cut of G
(s)
m (Xs

gen), so ∆u(s) is not positive.
Combining all cases from C1 to C3, we prove that our protocol is truthful. �

