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Abstract. We study distributed content replication networks formed
voluntarily by selfish autonomous users, seeking access to information
objects that originate from distant servers. Each user caters to mini-
mization of its individual access cost by replicating locally (up to con-
strained storage capacity) a subset of objects, and accessing the rest from
the nearest possible location. We show existence of stable networks by
proving existence of pure strategy Nash equilibria for a game-theoretic
formulation of this situation. Social (overall) cost of stable networks is
measured by the average or by the maximum access cost experienced by
any user. We study socially most and least expensive stable networks by
means of tight bounds on the ratios of the Price of Anarchy and Stabil-
ity respectively. Although in the worst case the ratios may coincide, we
identify cases where they differ significantly. We comment on simulations
exhibiting occurence of cost-efficient stable networks on average.

1 Introduction

Distributed network storage constitutes a frequently exploited modern resource
for the improvement of services offered to internet users. A network node can
replicate locally content (files or services) that is accessed frequently by local
users, so as to lessen bandwidth consumption incurred by frequent remote access.
Non-locally replicated objects can be retrieved from the nearest location where
they can be found replicated (neighbors/origin servers). Web caching, content

distribution networks and, more recently, applications over P2P networks serve
this scheme. Query protocols [1], succint summaries [2], and distributed hash
tables [3] can implement search of object replicas at remote nodes.

Such systems are frequently modeled as Distributed Replication Groups [4]:
a distant server distributes content represented as a set of information objects
to a network of nodes sharing proximity, each having constrained local storage
capacity. Each node has an interest to a subset of information objects in the form

⋆ Author supported by the 03ED694 research project (PENED), co-financed by E.U.-
European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%).

⋆⋆ Center for Algorithmic Game Theory, funded by the Carlsberg Foundation, Denmark



of a non-negative demand weight per object. Access cost incurred per non-locally
replicated object is defined as the distance from which the object is retrieved
times the demand weight. The related Object (or Data) Placement problem
requires placement of object replicas in nodes, subject to capacity constraints,
so that total access cost summed over all objects and nodes is minimized [4, 5].

We consider networks formed voluntarily by autonomous users for shared
exploitation of distributed resources (storage capacity), such as file-sharing net-
works. We develop a game-theoretic analysis of distributed replication networks,
in the light of which, users choose autonomously a replication strategy (a subset
of objects to replicate locally), catering to minimization of their individual access
cost. Through our study of the Distributed Selfish Replication game we address
systematically the questions: “Does the performance of the network ever stabi-

lize?” and “What is the overall performance of a stable network, in absence of a

central optimizing authority?” Game theory predicts that users will eventually
end up (converge) in a Nash equilibrium [6], i.e. a set of (randomized in general)
replication strategies, under which no user can decrease his/her individual (in
general, expectation of) access cost by unilaterally changing his/her strategy [7].

In view of equilibria as a notion of network stabilization, we are interested in
deterministic strategies (pure equilibria), because randomized strategies do not
naturally fit behavior of a rational user [7, 8], as he/she may observe inefficiency
during network’s lifetime and change the replication strategy. Two natural ways
of measuring the social (overall) network cost include the average cost experi-
enced by network users (SUM of individual costs), and the maximum cost over all
users (MAX). The coordination ratio of such systems, widely known as the Price

of Anarchy (PoA) was introduced in the seminal work of [9] as the worst-case
ratio of the social cost of the most expensive equilibrium over the optimum cen-
trally enforcable social cost. The PoA measures worst-case performance loss due
to the absense of a centralized coordinating authority. More recently in [10] it
was proposed that the worst-case ratio of the social cost of the least expensive
equilibrium to the optimum social cost is also of interest, since some kind of
coordination may be provided to the users, so that they reach the most efficient
stable state. This ratio, initially termed the optimistic PoA [10], was established
in [11] as the Price of Stability, (PoS) i.e. the performance loss due to the re-
quirement for stability.

In this paper we prove existence of pure strategy Nash equilibria for the
Distributed Selfish Replication game, (section 3) over a slightly more general
network model than the one originally proposed in [4], by analyzing a converging
best response dynamics algorithm. We prove a tight upper bound for the PoA
and matching lower bounds for the PoS (section 4), for both the SUM and MAX

social costs: our PoA upper bound is valid for more general network models
than the one considered. However, the simple model that we study exhibits
tight worst-case lower bounds for the PoS. We identify cases where the PoS
can be significantly smaller than PoA, and comment on simulations that exhibit
occurence of cost-efficient equilibria on average (section 5). Our results generalize



and complement the work of [12], and answer a related open question posed in [8]
with respect to considering constrained storage capacity in replication games.

Related Work. The study of voluntarily formed data replication networks by
autonomous users with individual incentives was initiated in [8], where each
replicated object could be payed for a fixed amount (as opposed to capacity
constraints). It was shown that both PoA and PoS can be unbounded in general
with the exception of special topologies. The authors considered only 0/1 de-
mand weights in their analysis. They posed consideration of capacitated nodes
along with demand weights as an open question. Let us note here that the notion
of capacity should not be perceived under the narrow view of hard disk storage
(which is quite affordable nowadays), but rather as a more general notion of
budget, to be spent for maintenance and reliability purposes (particularly when
replication concerns services). Existence of equilibria for the simple capacitated
model of [4] was shown in [12], and for demand weights that constitute a distri-
bution over the set of objects requested by each node. This work however does
not concern social efficiency, but rather maximization of the gain of individuals
when participating in the network as opposed to staying isolated. Our work is
strongly related to the recent studies on network formation games initiated by
the seminal work of [13], in an effort of understanding the efficiencies and deffi-
ciencies induced to a network created by autonomous users, that are motivated
by colliding incentives. A wealth of recent results on such network creation mod-
els [11, 10, 14] have grown this direction of research into an exciting field [15]
(chapter 19), that has provided useful insights with respect to the manipulation
of the users’ incentives towards creation of socially efficient networks.

2 Preliminaries

We consider a network involving k servers and a set N , |N | = n of client-nodes
(simply referred to as nodes), each node having at its disposal integral local
storage capacity of sizei. A universe U of up-to-date unit-sized information
objects originates from the k servers and each node i requests access to each
object o ∈ U by means of a demand weight wio ≥ 0. The request set of i is
Ri = {o ∈ U |wio > 0}. Node i may choose to replicate locally any at most sizei-
cardinality subset of Ri, and access every non-replicated object o from some
node (or server) j 6= i at cost dijwio, where dij is the cost (distance) of accessing
j per unit of demand.

If Pi is the subset of objects replicated by i, a placement over the network
is denoted by X = {P1, . . . , Pn}. Given a placement X , we use di(o) to denote
the distance from node i of the closest node (including origin servers: they can
be considered as nodes with fixed placements) replicating object o. Formally:
di(o) = minj 6=i:o∈Pj

dij . The individual access cost of i under a placement X , is
defined as:

ci(X) =
∑

o∈Ri\Pi

wiodi(o) (1)



Our study involves two versions of social (overall) cost: SUM and MAX, defined
as

∑
i ci(X) and maxi ci(X) respectively. We study the strategic Distributed

Selfish Replication (DSR, and DSR(0/1) when demand weights are 0 or 1)
game defined by the triple 〈N, {Pi}, {ci}〉 in which every node i is a player
with strategy space {Pi} consisting of all sizei-cardinality subsets of objects
that i may replicate, and utility expressed by the access cost ci, that i wishes
to minimize. A placement X is then a strategy profile for the DSR game. In
what follows we use the terms node and player interchangeably. Let X−i =
{P1, . . . , Pi−1, Pi+1, . . . , Pn} refer to the strategy profile of all players but i.

For the DSR game, it is easy to see that given a strategy profile X−i, player i
can determine optimally in polynomial time its best response Pi to the other play-
ers’ strategies, simply by solving a special 0/1 Knapsack problem, that amounts
to replicating sizei objects with the greatest value wiodi(o).

Network Model We consider a slightly more general network model than the
one introduced by Leff,Wolf, and Yu in [4] and studied in [12], involving k origin
servers, instead of 1. The distance of every node i from server l is dl for l =
0 . . . k − 1, while two nodes i and j are at distance dij = dk. We assume that
distances form an ultra-metric such that dk < dk−1 < · · · < d0. We refer to this
network model as LWY(k). The minimum and maximum distances appearing
in the network are also referred to with dmin = dk and dmax = d0.

3 Existence of Pure Strategy Nash Equilibria

We introduce a simple polynomial-time algorithm, that finds a feasible place-
ment constituting a pure strategy Nash equilibrium for the DSR game on a
LWY(k) networks. The algorithm constitutes a converging iterative best re-

sponse dynamics that iterates for l = 0 . . . k over the different distance values
(in non-increasing order) appearing in LWY(k): for each distance value dl, all
distances at most equal to dl are redefined to exactly dl and a best response
placement is computed for each node i = 1 . . . n in turn. It is important to note
that during computation of best response of a node i a tie for the values of two
objects wiodi(o) and wio′di(o

′) is resolved on the basis of index (for otherwise
we cannot guarantee convergence to equilibrium). The order by which nodes
compute their best response is fixed in all iterations. We refer to this algorithm
(algorithm 1) as DSR-EQ. We show that DSR-EQ finds an equilibrium place-
ment. In our analysis we use the iteration index l as superscript to the various
quantities involved.

Proposition 1. Consider the time right after computation of placements P l−1
i

and P l
i for a fixed node i in iterations l − 1 and l of algorithm DSR-EQ. Then

for every pair of objects o, o′ with o ∈ P l−1
i \P l

i and o′ ∈ P l
i \P l−1

i it is dl
i(o) = dl

and dl
i(o

′) > dl.

The proof is by induction on indices 〈i, l〉 through the following claims:

Claim. (Basic Step) Proposition 1 holds for l = 1 (second iteration) and i = 1.



Algorithm 1: DSR-EQ

for all i, j set d−1

ij ← dij ;

for l=0. . . k do

for all i, j set dl
ij ← dl−1

ij ;

for all i, j: dij ≤ dl set dl
ij ← dl;

for i=1. . . n do

Compute best response P l
i of i with respect to [dl

ij ]
end

end

Proof. Right after computation of P 0
1 and P 1

1 the following hold with respect to
objects o and o′:

d0
1(o

′)w1o′ ≤ d0
1(o)w1o, and d1

1(o
′)w1o′ ≥ d1

1(o)w1o (2)

Equality in both cases cannot hold, because of the index rule for breaking ties.
From the first inequality it must be that w1o′ ≤ w1o because d0

1(o
′) = d0

1(o) = d0.
Furthermore, in iteration l = 1, by redefinition of distances less than d0 in the
original input to d1, it must be either that d1

1(o
′) = d1

1(o) = d0 (both objects
are found only at server distance d0), or that d1

1(o
′) = d1

1(o) = d1 (both objects
are replicated somewhere at distance d1), or that d1

1(o
′) 6= d1

1(o). The first two
imply w1o′ ≥ w1o which contradicts w1o′ ≤ w1o, even in the case of equality
(because of the tie-breaking index rule). For the third case, if d1

1(o
′) = d1 and

d1
1(o) = d0, we obtain that d1

1(o
′)w1o′ < d1

1(o)w1o, a contradiction to the second
relation of (2). Thus it must be that d1

1(o
′) = d0 > d1 and d1

1(o) = d1. ⊓⊔

Claim. (Inductive Step) Proposition 1 holds for every iteration l.

Proof. Assume that the statement is true for all nodes {i+1, . . . , n, 1, . . . , i−1}
computing their best response right after computation of P l−1

i and right before
computation of P l

i . For o ∈ P l−1
i \ P l

i and o′ ∈ P l
i \ P l−1

i we can write:

dl−1
i (o′)wio′ ≤ dl−1

i (o)wio, and dl
i(o

′)wio′ ≥ dl
i(o)wio (3)

Equality in both cases cannot occur as before. Assume that dl
i(o) > dl. Then

dl
i(o) ≥ dl−1 and, if o was replicated at some node in iteration it l − 1 (i.e.

dl−1
i (o) = dl−1), it must have remained so, by hypothesis. But then it should

have been dl
i(o) = dl. Thus o was found only at some server in iteration l − 1.

Then dl
i(o) = dl−1

i (o). For o′ however, we have that dl
i(o

′) ≤ dl−1
i (o′), because of

the assumed behavior of the other nodes computing best response after P l−1
i and

before P l
i : either o′ reduces its distance from i due to redefinition of distances

to dl (in case some node has it replicated) or not. Then it is:

dl
i(o

′)wio′ ≤ dl−1
i (o′)wio′ ≤ dl−1

i (o)wio = dl
i(o)

which is a contradiction to (3). Thus it must be dl
i(o) = dl.



Now assume that dl
i(o

′) = dl. Since dl
i(o) = dl also, we have that wio′ ≥ wio.

Furthermore, in iteration l − 1 it must have been dl−1
i (o′) ≥ dl−1 and dl−1

i (o) =
dl−1. Then we obtain dl−1

i (o′)wio′ ≥ dl
i(o

′)wio′ = dlwio′ > dlwio = dl
i(o)wio =

dl−1
i (o)wio, which is a contradiction to (3). Thus it must be dl

i(o
′) > dl. ⊓⊔

Using proposition 1 it is possible to show that:

Lemma 1. In the end of iteration l of algorithm 1, {P l
i |i = 1 . . . n} is a pure

strategy Nash equilibrim with respect to the current distance matrix [dl
ij ].

Proof. By proposition 1 we deduce that, in each iteration, a node’s best response
is not invalidated by other nodes’ best responses, as follows. In the l-th iteration,
for every node j 6= i and an object o ∈ P l−1

j \ P l
j the object remains at distance

dl from i (which was its distance when i was computing P l
i ). For an object

o′ ∈ P l
j \ P l−1

j , o′ was at distance > dl and, therefore, not replicated in i either.
Replication in j only decreases the value of o′ for i (because its distance is
reduced). ⊓⊔

Theorem 1. Pure strategy Nash equilibria exist for the DSR game on LWY(k)
networks.

Proof. By lemma 1 the placement produced in the last iteration of algorithm 1
is a pure strategy Nash equilibrium with respect to a distance matrix identical
to the input one. ⊓⊔

4 Worst-Case Equilibria

We study efficiency of pure equilibria for the DSR game, by studying the worst-
case ratios of the PoA and PoS. We assume that all players (nodes) have a
marginal interest for joining the network, expressed by |Ri| ≥ sizei. If this does
not hold, then equilibria may be unboundedly inefficient, because of unused
storage space in certain nodes. In summary we show that the PoA can be at
most dmax

dmin
for both the SUM and the MAX social cost functions, and the PoS can

be at least as much in the worst-case. We compare a worst-case socially most
expensive equilibrium placement X towards the socially optimum placement X∗,
and use di(·) and d∗i (·) for distances of objects in each placement. The analysis
is performed for the individual cost of a single fixed node i, and therefore yields
results with respect to the SUM and the MAX social cost functions.

Lemma 2. If X and X⋆ are equilibrium and optimum placements respectively,

for each node i we have:

ci(X) =
∑

o∈Ri\(Pi∪P ⋆
i
)

wiodi(o) +
∑

o∈P ⋆
i
\Pi

wiodi(o) (4)

ci(X
⋆) =

∑

o∈Ri\(P ⋆
i
∪Pi)

wiod
⋆
i (o) +

∑

o∈Pi\P ⋆
i

wiod
⋆
i (o) (5)



Proof. Taking expression (1) for ci at X and X⋆ and noticing that:

Ri \ Pi = (Ri \ (Pi ∪ P ⋆
i )) ∪ (P ⋆

i \ Pi) and (Ri \ (Pi ∪ P ⋆
i )) ∩ (P ⋆

i \ Pi) = ∅

Ri \ P ⋆
i = (Ri \ (P ⋆

i ∪ Pi)) ∪ (Pi \ P ⋆
i ) and (Ri \ (P ⋆

i ∪ Pi)) ∩ (Pi \ P ⋆
i ) = ∅

yields the result. ⊓⊔

Lemma 3. If X and X⋆ are equilibrium and optimum placements respectively,

for every player i we have that |Pi \P ⋆
i | = |P ⋆

i \Pi| and for every pair of objects

o ∈ Pi \ P ⋆
i , o′ ∈ P ⋆

i \ Pi it is wiodi(o) ≥ wio′di(o
′).

Proof. Since for every player i sizei < |Ri|, we obtain |Pi \ P ⋆
i | = |P ⋆

i \ Pi|. For
every pair of objects o ∈ Pi \P ⋆

i , o′ ∈ P ⋆
i \Pi it must be wiodi(o) > wio′di(o

′), for
otherwise, player i would have an incentive to unilaterally deviate in placement
X , by substituting o for o′, thus decreasing its individual access cost. ⊓⊔

Theorem 2. The price of anarchy for the DSR game is upper bounded by dmax

dmin
,

with respect to either of the SUM or the MAX social cost functions.

Proof. Starting from expression (5) and using lemma 3 we have:

ci(X
⋆) =

∑

o∈Ri\(P ⋆
i
∪Pi)

wiod
⋆
i (o) +

∑

o∈Pi\P ⋆
i

wiod
⋆
i (o)

≥
∑

o∈Ri\(P ⋆
i
∪Pi)

wiod
⋆
i (o)

di(o)

di(o)
+

∑

o′∈P ⋆
i
\Pi

wio′

di(o
′)

di(o)
d⋆

i (o)

≥
∑

o∈Ri\(P ⋆
i
∪Pi)

wiodi(o)
dmin

dmax

+
∑

o′∈P ⋆
i
\Pi

wio′di(o
′)

dmin

dmax

By expression (4) ci(X
⋆) ≥ dmin

dmax
ci(X). Summing over all i yields the result for

the SUM. For the MAX notice that for some j: maxi ci(X) = cj(X) ≤ dmax

dmin
cj(X

∗) ≤
dmax

dmin

maxi ci(X
∗). ⊓⊔

Note that we did not make use of any particular network topology. The bound
is valid on any network topology, provided an equilibrium exists. Interestingly,
matching lower bounds for the PoS can be shown on a LWY(1) network:

Proposition 2. The Price of Stability for the DSR game has a lower bound

arbitrarily close to dmax/dmin in the worst-case, with respect to SUM and MAX

social cost functions, even for 1 server and 0/1 demand weights.

Proof. Take dmin inter-node distance and dmax the distance of the single server.
For SUM: we show that for every fixed integer I the PoS is lower bounded

by I
I+1

dmax

dmin

asymptotically with n. Take sizei = 1 and set: Ri = {a} for i =



1 . . . n−I and Ri = {bj|j = 1 . . . n−1}, for i = n−I+1 . . . n. In every equilibrium
of this instance the I last nodes replicate collectively at most I objects from their
(common) request set, while the rest n − I replicate object a. The social cost
is I(I − 1)dmin + I(n − 1 − I)dmax. In the socially optimum placement we let
nodes i = 1 . . . n − I − 1 replicate n − I − 1 objects that are not replicated in
the I last nodes. But, we save a node for replicating a. The social cost becomes
I(n − 2)dmin + (n − 1 − I)dmin = [(I + 1)n − 3I − 1]dmin. Since I is fixed, the
PoS becomes I

I+1
dmax

dmin
as n grows.

For MAX: all nodes have sizei = 1 and let R1 = {a, b}, whereas for i > 1 set
Ri = {c}. Take n ≥ 3 nodes. In equilibrium node 1 pays dmax for either a or b.
In the social optimum some i > 1 replicates one of a,b that is not replicated by
node 1, and pays dmin for c, while 1 also pays dmin. ⊓⊔

5 Less Expensive Equilibria

Proposition 2 states that the least expensive and the most expensive equilibria
can be of the same cost in the worst case. In this section we investigate existence
of less expensive equilibria than the ones indicated by the worst-case PoA and
PoS. In particular, we elaborate on conditions under which the PoS can be at
most dmax

2dmin

for the DSR(0/1) game, and present some indicative experimental
results on random instances of the DSR game, showing that social efficiency of
equilibria does not degrade much as the ratio dmax/dmin grows. For the rest of
this section’s theoretical analysis we turn our attention to the DSR(0/1) game
and restrict our discussion to the SUM social cost function.

In proving proposition 2 we used “over-demanding” nodes, each requesting
O(n) times more objects, than the storage capacity they offer to the group. In
what follows we will assume modestly demanding nodes. We define such nodes

formally through the demand ratio q = maxi
|Ri|−sizei

sizei
as being q = O(1). We

will also use the assumption that the absolute difference of any pair of distinct
distance values in the network is at least dmin. This is e.g. the case when the
network is modeled as a graph with inter-node distance being one hop, while the
nearest server being at least 2 hops away.

We will compare the least expensive equilibrium X = {Pi} against the so-
cially optimum placement X∗ = {P ∗

i }, so as to obtain the maximum possible
difference c(X) − c(X∗). We consider objects a∗ ∈ P ∗

i \ Pi, that we call inser-

tions and study an imaginary procedure that transforms X into X∗, by per-
forming such insertions. An insertion is termed significant if it contributes to
c(X) − c(X∗).

Lemma 4. If r significant insertions occur in comparing a least expensive equi-

librium X to a socially optimum placement X∗, and at most n0 nodes benefit by

any insertion, then: c(X) − c(X∗) ≤ rn0(dmax − dmin) − rdmin.

Proof. Take a∗ ∈ P ∗
i \Pi for some node i. There is an object a ∈ Pi \P ∗

i evicted
from i due to insertion of a∗. We use di(·) to denote the current distance of an
object from i. Our target is to show that every significant insertion contributes a



social cost increase at least dmin while potentially offering at most (dmax − dmin)
cost decrease to some nodes. At first suppose that wia∗ = 0: i suffers an access
cost increase of at least dmin, because a has to be retrieved remotely at minimum
distance dmin. Every node j 6= i with wja∗ = 1 benefits at most (dmax − dmin)
though. This is a significant insertion. Now consider the case wia∗ = 1. Then
di(a) ≥ di(a

∗), because X is equilibrium. We examine the following cases:

1. di(a) = di(a
∗) = dmin: then i does not benefit or loose, and the insertion is

indifferent to every other node j 6= i with wja∗ = 1 (they also do not benefit
or loose, because a∗ is already replicated somewhere in the network). Such
an insertion is not significant.

2. di(a) > di(a
∗) = dmin: the cost of i increases by at least 2dmin (due to

eviction of a and di(a) − di(a
∗) ≥ dmin) and decreases its cost by at most

dmin (due to insertion of a∗). Such an insertion is potentially significant.
3. di(a) = di(a

∗) > dmin: i does not benefit or loose, but any node j 6= i with
wia = 1 and wia∗ = 0 looses at least di(a

∗) − dmin > dmin (as long as a
was stored in i it was retrieved by j from distance dmin). If no such node
exists, then we have a new equilibrium, potentially less expensive than X , a
contradiction. Such an insertion can be significant.

4. di(a) > di(a
∗) > dmin: eviction of a from i is caused at distance di(a) which

is at least by dmin greater than di(a
∗). Thus i looses at least dmin in this

case. This insertion can be significant.

Notice that the cost increase effect of cases (2), (3) and (4) may be compensated
by a re-insertion of the evicted object a in some node j 6= i. By the previous argu-
ments, such a re-insertion causes eviction of some object a′ from j and therefore,
induces a new cost increase of at least dmin, or a new equilibrium contradiction.
Such re-insertions are insignificant, as they may form chains of “movements”
of objects around the network’s nodes, always carrying a cost increase, but no
decrease. If n0 nodes benefit from any of the significant insertions, then assum-
ing that all of them benefit from all the significant insertions only enlarges the
difference c(X) − c(X∗), and the result follows. ⊓⊔

Lemma 5. The cost of the socially least expensive equilibrium placement X for

the DSR(0/1) game on a LWY(k) network in the worst case is at least:

c(X) ≥ n0(n0 − 1)Sdmin + n0rdmax (6)

where r is the number of significant insertions, S is the minimum storage capac-

ity, and n0 is the number of nodes that benefit from all insertions.

Proof. For every node j that benefits from an insertion a∗ it is wja∗ = 1, and for
maximum benefit (dmax−dmin), this object is payed dmax in the best equilibrium.
In the worst case all n0 nodes benefit from all r significant insertions, as argued
in lemma 4 (this assumption enlarges the difference c(X) − c(X∗)). The second
term of inequality (6) is thus justified.

For the first term, we notice that since all n0 nodes benefit from an insertion
a∗, then in the least expensive equilibrium X every object stored in these nodes



is of interest to at least n0 nodes of the network. Otherwise, we show that there
may be an equilibrium of less cost: take for example an instance where every
one of the n0 nodes is either interested to replicas stored in the rest n0 − 1 of
them or not, and no other nodes are interested in replicas stored in these n0

nodes. If there is a node j not interested to a replica a stored in some node i,
then substitution of a for a∗ in i yields a less expensive equilibrium. We assume
that all n0 nodes benefiting from the r insertions are also interested in objects
replicated in them in equilibrium. This yields a lower bound of n0(n0 − 1)Sdmin

cost. ⊓⊔

Now we can prove the following:

Theorem 3. The Price of Stability of the DSR(0/1) game on LWY(k) net-

works with modestly demanding nodes and distance differences at least dmin is

upper bounded by dmax

2dmin
.

Proof. By lemma 4:

PoS ≤
c(X)

c(X) + rdmin − r(dmax − dmin)

This bound is a monotonically decreasing function of c(X). Therefore we use for
c(X) the lower bound given by (6) for worst-case PoS, and obtain:

PoS ≤
n0(n0 − 1)Sdmin + n0rdmax

(r + rn0 + n0(n0 − 1)S)dmin

By the analysis of lemma 5, the number of insertions occurring is upper bounded
as r ≤ (q− (n0 − 1))S. Taking the maximum value r = (q− (n0 − 1))S increases
the ratio for every value of n0:

PoS ≤
n0(n0 − 1)Sdmin + n0(q − (n0 − 1))Sdmax

[(q − (n0 − 1))S + n0(q − (n0 − 1))S + n0(n0 − 1)S]dmin
⇒

PoS ≤
n0 − 1

q + q−(n0−1)
n0

+
q − (n0 − 1)

q + q−(n0−1)
n0

·
dmax

dmin

Now notice that, since every node of the n0 accesses replicas stored in all other
n0 − 1 nodes, it must be n0 − 1 ≤ q. Thus the first term can be at most 1, while
for q = O(1), the second term is maximized to dmax

2dmin
for n0 = 1. ⊓⊔

Simulation on Random Instances We performed simulations on random in-
stances of the general DSR game, that provide evidence of existence of efficient
equilibria on average. Fig. 1 depicts the evolution of emipirically extracted values
for PoS, PoA, and an average value of coordination ratio, as dmax/dmin increases.
We used an LWY(10) network of 64 nodes, with sizei = 5, and |Ri| = 10. For
each node i the request set Ri was constructed by uniform random sampling
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Fig. 1: Evolution of PoS, PoA, and average coordination ratio (AVG) with dmax/dmin.

of 10 objects out of a universe U of 400 objects. Demand weights were taken
randomly in (0, 1] for each node. We took dmin = 1 and distributed 10 servers,
each hosting 40 objects, uniformly within the range [dmin, dmax] for each different
value of dmax.

Social optimum for SUM and MAX was obtained by solution of the Object

Placement Problem ILP formulation described in [5], using GLPK [16]. Each point
of the diagrams was extracted using the maximum (for PoA), minimum (for PoS)
and average (for AVG) social cost obtained over 1000 executions of algorithm
DSR-EQ with randomly chosen node and object orderings per execution.

Two main observations can be extracted by these experiments. First, that
the rate of growth of all coordination ratios degrades significantly as dmax/dmin

increases, thus giving the impression of a stabilization of the efficiency of the
system. Second, that the range of different stable social cost values is quite
narrow. These observations motivate a probabilistic analysis of the efficiency of
equilibria, that constitutes an aspect of future work.

6 Conclusions and Open Questions

We studied the effects of selfish behavior in a distributed replication group with
restricted storage capacity per node. We proved existence of pure strategy Nash
equilibria for the related strategic game for networks with multiple origin servers,
thus generalizing the result of [12]. Although worst-case maximum and minimum
social cost of equilibria were shown to be dmax

dmin
times the optimum social cost in

the worst case, for 0/1 demand weights and certain topologies a better upper
bound of dmax

2dmin

was shown for the Price of Stability. Simulations on random
instances have shown that even the Price of Anarchy may grow much less rapidly
than the ratio dmax/dmin.

We were not able to find a single example without any pure equilibria when
arbitrary-sized objects are involved, or disprove existence of pure equilibria for
more general topologies. We consider investigation of these situations as an as-
pect of future work, along with enrichment of the game model with other realistic
features, such as bounded node degrees.
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