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Abstract. Due to the increasing size of IP routing table and the growing 
rate of their lookups, many algorithms are introduced to achieve the 
required speed in table search and update or optimizing the required 
memory size. Many of these algorithms are suitable for IPv4 but cannot 
be used for IPv6. Nevertheless new efforts are going on to fit the 
available algorithms and techniques to the IPv6 128 bits addresses and 
prefixes. The challenging issues in the design of these prefix search 
structures are minimizing the worst case memory access, processing 
and pre-processing time for search and update procedures, e.g. Binary 
Tries have a worst case performance of O(32) memory accesses for 
IPv4 and O(128) for IPv6. Other compressed Tries have better worst 
case lookup performance however their update performance is 
degraded. One of the proposed schemes to make the lookup algorithm 
independent of IP address length is to use a binary search tree and keep 
the prefix endpoints within its nodes. Some new methods are introduced 
based on this idea such as "Prefixes in B-Tree", PIBT. But, they need 
up to 2n nodes for n prefixes. This paper proposes "Coded Prefixes in 
B-Tree", the CPBT. In which, prefixes are coded to make them scalar 
and therefore suitable as ordinary B-tree keys, without the need for 
additional node complexity which PIBT requires. We will finally 
compare the CPBT method with the recent PIBT method and show that 
although both of them have the same search complexity; this scheme 
has much better storage requirements and about half of the memory 
accesses during the update procedures. 
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1 Introduction 

Because of the exponential growth of routing table size in IP routers, an addressing 
method named classless addressing was proposed in 1993. This addressing scheme 
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didn't use the previous fixed length classes of IP address space and regardless of 
number of the bits; it used address prefixes with variable lengths up to 32 bits. This 
addressing mechanism caused new design considerations for routing table search and 
update procedures. Route decision and forwarding of IP packets to their next hop 
routers based on the LPM1 is called CIDR or the "Classless Inter Domain Routing".  

Up to now, several algorithms are proposed for finding the LMP2 of a database 
with an input address. The most popular known methods are PATRICIA [1], binary 
and compressed Tries [2,3], Gupta [4], CAM based algorithms [5], range based 
algorithms [6] and some other derivatives of these algorithms. The main problem of 
Trie based algorithms is their worst case search and lookup performance O(W), with 
W considered as IP address length which is 32 for IPv4 and 128 for IPv6. Of course, 
for hardware based online lookup systems, the worst case lookup time and memory 
access would be the important factor during a burst of packet arrivals. CAM based 
algorithms are also facing the issues of their huge power consumption and small 
number of entries in the CAM modules. Range based algorithms construct their 
structure based on the range related to each prefix. For example if we consider W=5 
and we have two prefixes 1* and 100*, their ranges would be {16, 31} and {16, 19}. 
Range based algorithms store prefix endpoints in their data structure [6], e.g. for 100* 
endpoints are 16 and 19 and in a range based algorithm, the information of both 
endpoints should be stored in the database. [6] proposed a range based algorithm 
which can use a binary tree for storing endpoints. In the worst case for n prefixes 
there exists 2n endpoints [6] and all of the 2n endpoints need to be stored in the tree. 
Because of unbalanced structure of binary search tree, the height of the tree will not 
be controllable in the worst case and this would result to bad search and update 
memory access performance. In [7] Yazdani and Min proposed a scheme and tried to 
improve the average lookup and update times however the worst case times didn't 
improve. To balance the tree and improve the worst case search operation, in [8], we 
proposed a new coding algorithm for the interpretation and storing the prefixes as 
numbers in the B-tree and using the scalar comparison during the search for the 
prefixes. Later, Lu and Sahni [9] have also used PIBT in a B-tree structure, using 
another method of separating prefixes into endpoints and store these endpoints using 
some vectors to facilitate the search and update procedures. Because of guaranteed 
maximum height of the B-tree structure, for both [8] and [9] the worst case memory 
access of search and update procedures will be limited to the height of the tree in 
comparison to the worst cases memory access in unbalanced trees. [10] has also used 
the B-tree but only to store disjoint IPv6 prefixes.  

Using our idea in [8], with modifications to its search and update operations, here 
we introduce the CPBT; "Coded Prefixes in B-Tree", which simplifies the search and 
update operations and reduces the memory requirement by a factor of 4 in comparison 
to PIBT.  

In what follows, the review of PIBT [9] is presented in section 2. In Section 3, we 
present the main idea of the proposed scheme as it is discussed in [8]. In section 4, the 
CPBT algorithm is described which modifies the main idea of [8]. Here it is described 
that without storing the actual encoded prefixes, the idea of the encoded prefixes 
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might be used to compare prefixes during the search and update procedures. 
Additionally, enhanced version of the search and update procedures for this scheme is 
presented which reduces the update complexity of the algorithm. Finally in section 5, 
the memory requirements and update complexity of the CPBT are compared with 
those of the PIBT.  

2 PIBT Review 

Consider each node of a simple B-tree with "t" keys. The PIBT structure is made by 
the endpoints and some additional vectors called "Interval Vector" and "Equal 
Vector". Therefore for each node with t keys in the tree, three sets of parameters exist: 
t key values, (t+1) interval vectors, and (t+1) equal vectors i.e. t*W + (t+1)*W*2 
bits. It also separates each prefix into two end points and uses a key for each of them. 
Therefore for n prefixes it may use up to 2n keys or 6 set of parameters. 

An interval int(x) from the address space is allocated for each node. For the "Root"  
node, this interval, int(root) would be [0, 2w-1]. Assume that X is a B-tree node with t 
keys and the information stored in the X has the following format: 

t, child0, (key1, child1), (key2, child2), …(keyt, childt) 
Consider that childi is a pointer to X's i'th sub-tree and assume that 

key1<key2<…<keyt. Also assume that key0=start(int(x)) and keyt+1=finish(int(x)). 
Then, using the previous definitions, for the childi subtree we have: 

inti(X)=int(childi)=[keyi,keyi+1] 0≤i≤t. 
In PIBT algorithm, each prefix specifies two end points called "key"s, then the set 

of all endpoints or keys are ordered and stored in the B-tree. Node X of a PIBT 
includes "t+1" W-bit vectors called X.intervali. The bit j of this vector, X.intervali[j] is 
'1' if and only if a prefix with length "j" exists which its range contains inti(x). This 
rule for intervals is called "prefix allocation rule". In addition to X.intervali another 
vector named X.equali exists in the structure. The bit "X.equali[j] " is '1' if and only if 
a prefix with length "j" exists which has a start or end point equal to keyi(X). 
The search procedure is as follows: PIBT-search algorithm first makes a W-bit vector 
named Match-Vector with all bits set to '0'. If the router table has any prefix with 
length "j", with start or end point equal to the destination address using the Equal 
Vectors, then the Match-Vector[j] bit will be set to '1'. Otherwise the corresponding 
Interval Vectors of the current searching node are checked and if a match with length 
j is found, then the bit Match-Vector[j] will be set to '1', else this bit is not changed. 
After completion of the search in a node, the procedure goes through one of the child 
nodes. Insert and delete algorithms are similar to B-tree insert and delete procedures 
with the additional tasks of updating 2 sets of additional vectors: equal vectors and 
interval vectors, plus some modifications in the B-tree Split-child and node merge 
procedures. The node access complexity of this algorithm is O(logm(n)) for the search, 
insert and delete, respectively [9]. 



3 Proposed Encoding of Prefixes, the Main Idea 

In [8], we proposed a method of storing prefixes in a routing table in which prefixes 
look like numbers but not ranges. Consider a prefix p with k bits and W bit addresses. 
Each bit of prefix p, would be coded into a 2 bit value as follows: for each bit '1', 2 
bits '10', for each bit '0' two bits '01' and for each blank place, 2 bits '00' are 
substituted. The number of blank places is 'W-k'. For example if W=5: 

0*    01 00 00 00 00 
010*    01 10 01 00 00 
001*   01 01 10 00 00 
0010*  01 01 10 01 00 
0001*  01 01 01 10 00 
00001*  01 01 01 01 10 
 

With the above definition, the prefixes can be compared like numbers and we'll have: 
0* < 00001* < 0001* < 001* < 0010* < 010*  

3.1 Using Proposed Encoding of Prefixes to Search for the Prefixes 

As an example consider the B-tree of prefixes shown in figure 1 and assume the 
objective is to find prefix "00100*". Start from the root. Since "01*>00100*", 
traverse the tree from "01*" to C0. The key "00100*" will be found in C0. "A" shows 
the direction of the search. With the above procedure we can find any given prefix 
with a simple search, but the challenge would be finding Longest Matching Prefix 
(LMP) of an input destination address.  

 
 01*                            0100*

000*                 00100* 

      C0 

010*

  C1 

010101*                       10* 

C2 
        
A 

 
Fig. 1.  Example B-tree for storing prefixes 

Now, assume W=6 and an input destination address of "d=010100". The objective 
is to find LMP of d in the tree. Start from the root. Obviously, "d>01*" and 
"d>0100*" and also d matches with "01*". Therefore we should save "01*" as the 
LMP up to now and go through C2.  In C2 there isn't any key matching with d. 
Therefore the LMP result for d would be "01*", however it can be seen from the 
figure that there is another key, "010*", in C1 that matches with d and its length is 
longer than "01*". So, this search algorithm for finding the LMP of an input 
destination address might miss the correct answer. This type of storing prefixes will 
be only useful when the prefixes are completely disjoint i.e. there aren't any 2 prefixes 
in the database while one is the prefix of the other. Our solution to the problem 
depends on a lemma, summarized here and proved in [8]. 



Lemma 1- Given a destination address, "d", with W bits, let's assume a prefix, "c" 
with j bits, which is located in a node of the B-tree and is currently being checked. 
Also assume another prefix, "k", with ℓ bits exists in the tree and is not found in the 
search yet. 

a) If  
 - k is a prefix of c and d, 
 - d>c, 
 - k, c are not stored in one common node 
Then k will not be in the search path and it will be missed. 
b) The prefix k which is a prefix of d but is not a prefix of c, would be in the search 

path at this node. 

3.2 A Method for Finding the LMP of a Given Destination Address 

As described earlier, storing raw prefixes in the B-tree will cause some of them to fall 
out of the search path. To solve this problem, we introduce an additional vector stored 
with each key, called "Shorter Matching Vector" or SMV. This vector is W bits long. 
Consider a key "k" in the database and its SMV, if bit "i" of SMV is set to 1, it means 
that a prefix with length i exists in the tree which is a prefix of "k". From the 
definition of the SMV and Lemma 1, it is clear that if it can be updated correctly, it 
will prevent those mentioned prefixes to fall out of the search path [8].  

4 CPBT 

Here, the CPBT algorithm is described. CPBT is a modified version of the main idea 
in [8]. It is shown that without storing the actual encoded prefixes, the idea of the 
encoded prefixes might be used to compare prefixes during the search and update 
procedures. Additionally, an enhanced version of the search and update procedures 
for this scheme is presented which reduces the update complexity of the algorithm. 
Details of modifications are described in the following sub-sections. 

4.1 Modification of the Main Idea of [8] 

Instead of storing the encoded prefixes as it has been described in section 3, the 
prefixes might be stored as W bit vectors. For example, if W=6 and a prefix p=110*,  
a W bit vector '110000' should be stored instead of p. Additionally a 6 bits SMV is 
stored with this prefix, and its third bit (the prefix length) is set to one and its 4th, 5th 
and 6th bits are set to zero. If this SMV key is read during the search algorithm, the 
rightmost 1 will identify the actual prefix and its length. In this example, if the SMV 
is "011000", it means that the prefix is 110* (the rightmost 1, is the bolded bit in 
011000). Therefore, it is not needed to keep the prefix length as a separate entity. 

Additionally, although keys are saved as W bit vectors, in comparing two keys, the 
same notion of "encoding the prefixes" to the "numbers" which was described earlier 



will be used. With the above modifications and using the pair entry of (prefix, SMV) 
and with the assumption of W=6, figure 2 shows the new tree compared to figure 1.  

01*(010000,010000)                          0100*(010000,011100) 

000*(000000,001000)      00100*(001000,000010) 

             C0 

010*(010000,001000) 

   C1 

010101* (010101,011001)   10*(100000,010000) 

C2 

 
Fig. 2.  Prefixes and their shorter matching vectors in the proposed structure in the form of 

prefix*(prefix, SMV) 

As an example, let's assume W=6 and an input destination address of "d=010100" 
is given to find the prefixes for it. Starting from the root and checking the left key of 
the root we find that 01* exists in the database. Then checking the right key of the 
root node we find that d>"right key" of the root and its SMV also shows that up to 
now the LMP of d is 010*. Since d>"right key", we should go through C2 but in C2 
we will not find another match, so the LMP of d will be 010* and the search 
procedure is completed.  

Next objective is to find a solution for updating SMVs at the time a prefix is 
inserted or deleted. In the next sub sections we will introduce methods for the update 
and search procedures. The proof of the correctness of these methods was omitted due 
to space limitations. 

First of all, consider the following assumptions: 
- The length of a prefix p is shown by len(p). 
- The ith key in a node "N" can be showed by N(i). 
- The length of the IP Address is assumed to be: W 
- The SMV vector of a prefix p is shown by SMVp. 
- Consider two prefixes, p and x. if p is a prefix of x, we use the following 

notation: p→x and if p is not a prefix of x we use this notation: p╫x. 
- If p→x, the bit of SMVx which corresponds to p is shown by SMVx(len(p)). 
- A prefix of x with length of k is shown by lenk(x)  
- If the SMV of a prefix x overwrites the SMV of a prefix y, x is called the 

Master and y is called the Slave. 

4.2 Insertion  

Insertion of a new prefix is similar to B-tree insert of [8] and [11]. However updating 
the SMV is simpler than [8]. In general it may seem that updating a node key may 
result to update all its children keys, but, this is not true. 

The Insert procedure is described as follows:  
- The prefixes should be compared according to the concept of the coding 

introduced in section 3. Initially, the new adding prefix is compared with all 
the keys in the root to find its location among them. This comparison 
identifies the child and sub tree which this adding prefix would be added to.  



- On the search path of inserting a prefix p, in the first node which contains 
any prefix x with the property of p→x, the SMVx(len(p)) will be updated to 
'1' for all the keys with the above property. 

- If node splitting is required, the key "s" which is removed from the child 
node and added to the parent node will be the Slave in setting SMV vectors. 
It means that the keys of the father node and their SMV vectors are the 
Master and would update the SMV vector of s; however the SMV vector of s 
would not update them. It means that we assume that each father node's info 
will overwrite its child nodes info in search and update procedures. 

- At last, after storing p in a node, for example node S, we will set the SMV 
vectors such that: 

o For each prefix x in node S, if p→x then SMVx(len(p))=1.  
o For each prefix x in node S, if there is a length k such that the bit k 

of its SMV is already set to 1 (or SMVx(k)=1) and if lenk(x)→p then 
it will set the SMVp(k)=1. 

As an example for insertion, consider a tree in which the following prefixes are 
added with the order of: 01*, 010*, 10*, 110*, 11*, 1100*, 100*, 011*, 101*, 0110*.  
Figure 3 shows the results of the insertion process. 

 
01*(010000,010000), 010*(010000,011000), 10*(100000,010000)

a. Inserting 01*, 010*, 10* 

 
 

 
010*(010000,011000)

01*(010000,010000) 10*(100000,010000),  
11*(110000,010000), 
110*(110000,011000) 

b. Inserting 110*,11* 

 
 

010*(010000,011000), 11*(110000,010000)

01*(010000,010000) 110*(110000,011000) 
1100*(110000,011100) 

c. Inserting 1100* 

10*(100000,010000), 

 



 
010*(010000,011000), 11*(110000,010000)

01*(010000,010000) 110*(110000,011000) 
1100*(110000,011100) 

d. Inserting 100*,011* 

011*(011000,001000) 
10*(100000,010000),  
100*(100000,011000) 

 
 

010*(010000,011000), 10*(100000,010000), 11*(110000,010000)

01*(010000,010000) 110*(110000,011000), 
1100*(110000,011100) 

e. Inserting 101* 

011*(011000,001000) 100*(100000,011000),  
101*(101000,011000)

 
 10*(100000,010000)

010*(010000,011000) 11*(110000,010000) 

01*(010000,010000) 011*(011000,001000)
0110*(011000,001100)

100*(100000,011000),  
101*(101000,011000)

110*(110000,011000), 
1100*(110000,011100) 

f. Inserting 0110* 

 
Fig. 3.  An Example for insertion of prefixes and their shorter matching vectors in the form of 

prefix*(prefix, SMV) 

 
As it is shown in figure 3, although 01* is a prefix of 011* and 0110*, the SMV 

vectors of 011* and 0110* are not updated for 01*. This shows that it is not necessary 
to update all of the SMV keys related to a prefix  p in this new version of the 
algorithm. 

Since it is needed to traverse the tree height for an insertion process, the memory 
access complexity will be O(logm(n)) with n the total number of prefixes and m the 
order of the B-tree. 

4.3 Deletion 

The method which was introduced in [8] for delete procedure, has a complexity issue. 
If a prefix "p" needs to be removed from the database, all other prefixes that p is also 
a prefix for them must be checked and their SMV vectors should be updated. It means 
that in their SMV vectors, the bit which is related to p should be set to zero. As this 
method is time consuming, we introduce a new method that improves the delete 
performance. 



The delete procedure for a prefix p is similar to the delete procedure of a B-tree 
[11] with additional updating of the SMV vectors. Therefore, the delete procedure and 
updating the SMV vectors are described as follows: 

- Using the B-tree delete procedure [11], it needs to find the location of the 
deleting prefix. The prefixes should be compared according to the concept of 
the coding introduced in section 3. Initially, a deleting prefix "p" is compared 
with all the keys in the root to find its location among them. This comparison 
identifies the child that the path to the location of p will go through it. 

- During the search for the prefix, some other prefixes which p is also a prefix 
of them may be found. If any of these prefixes is found in the search path, its 
SMV will be updated immediately. Otherwise, it means that either there is 
no prefix in the database which p is a prefix of it, or these prefixes are 
allocated after p in the search path. The regular delete operation of p checks 
the path for recursive delete [11] to either the predecessor or the successor of 
p. Therefore, if p is found in an internal node, it is necessary to search the 
path to the successor of p in the database. During the search to the successor, 
if other prefixes are found which p is a prefix of them, then its corresponding 
bit in their SMV vectors  will be set to zero. 

- In merge procedure [11], the key which is deleted from the father node and 
stored as a median key in a merged node, is the Master and will modify the 
SMV vectors of the other keys in the new merged node. 

- In the Borrow key procedure [11], the key which is borrowed from a child 
node x to a father node F, is the Slave and the key which is deleted from the 
father node F and stored in the sibling of x, e.g. y; is the Master. 

The above proposed function for delete operation may not update the SMV of all 
the prefixes which x is a prefix of them, but it can be proved that if there are any of 
them in the tree, then at least the one which is the closest to the root of the tree will be 
updated.   

As an example of delete procedure consider the tree of figure 3. If 10* is deleted 
from this tree, then one of the trees shown in figures 4 and 5 would be resulted 
depending on the search order of its predecessor and successor. 

 
 

 010*(010000,011000), 0110*(011000,001100), 11*(110000,010000) 
 

01*(010000,010000) 011*(011000,001000) 100*(100000,001000), 
101*(101000,001000) 

110*(110000,011000), 
1100*(110000, 011100) 

 
Fig. 4.  An Example for delete of prefixes- prefix 10* is deleted from the tree of figure 3, 

checking predecessor first. 

 



 010*(010000,011000), 100*(100000,001000) , 11*(110000,010000) 
 

01*(010000,010000) 011*(011000,001000) , 
0110*(011000,001100) 

101*(101000,011000) 110*(110000,011000), 
1100*(110000, 011100) 

 
Fig. 5.  An Example for delete of prefixes- prefix 10* is deleted from the tree of figure 3, 

checking successor first. 

 
In the first method which is used in figure 4, the predecessor of 10* replaces it. As 

it is depicted in this figure, the path to the successor prefix is checked as well. Then 
the corresponding SMV bits of 100* and 101* are converted to zero which are bolded 
in the figure. 

In the second method which is used in figure 5, the successor of 10* i.e. 100* 
replaces it and its corresponding SMV bit is set to zero (the bolded bit). As it is shown 
in this figure, it is not necessary to modify the corresponding SMV bit of 101*. 
During future operations, if there is a need to move the 101* and its SMV to its parent 
location, its SMV vector would be updated based on its parent SMV vectors. 

Similar to the B-tree delete operation, the memory access complexity of this delete 
strategy will be O(logm(n)), where n is the number of prefixes and m is the order of 
the B-tree. 

4.4 Search of LMP for a Given Address 

Now, the CPBT search procedure for finding the LMP of a given address might be 
revised as follows. Again, the search procedure is similar to the search procedure of a 
B-tree but the prefixes should be compared according to the concept of the coding 
introduced in section 3. Consider an input address d for the search. An SMV called 
SMVd  is defined to store the information about the prefixes of d.  Initially all of its 
bits are set to *. The search is started at the root node. For any stored prefix x in the 
root node if leni(x) is a prefix of d, the corresponding bit in the SMVd(i) will be set to 
"0" or "1" based on the SMVx(i) and it will not change during the search operation 
anymore. This procedure will be repeated in the next nodes of the search path to 
update the remaining * bits. After completely traversing the tree, the search algorithm 
is finished and SMVd identifies all of the available prefixes of d in the tree. At this 
time, the rightmost "1" of SMVd   represents the LMP of d.  

As an example of the search procedure of a given address, consider W=6 and 
d=100100. The search procedure of d in the tree of figure 5, first looks up the root 
and finds 100* as an existing prefix. It also finds out that 1* and 10* do not exist in 
the tree. By continuing the search, the path should go through the third child of the 
root. But, the corresponding SMV bit of 10* is set to one in the prefix 101* of the 
third child. As the corresponding SMV bit of 10* is already set to zero in the root 
node, the recent result cannot overwrite it. Therefore the LMP of d will be 100*. 



Similar to the B-tree search operation, the search time is propotional to the height 
of the tree which is less than logm((n+1)/2) with n the number of prefixes and m the 
order of the B-tree. 

4.5 The Final Theorem 

The above insert, delete and search procedures result in a final theorem: 
  
Theorem- Assume that a B-tree of prefixes is constructed with the definitions of 
insertion and deletion of a prefix that was proposed in sections 4.2 and 4.3. For an 
arbitrary destination address d, each prefix p that has the property of p→d, will be 
found in the B-tree using the search algorithm proposed in section 4.4.  
The proof of this theorem has been removed due to the space limitation. 

5 The Comparison of the Proposed Algorithm and PIBT 

As it was explained, almost all of the range based algorithms proposed up to now, 
need to store two end points for each prefix or at least they need to store more than a 
key. One of the latest proposed range based algorithms is PIBT which stores prefixes 
end points in a B-tree. PIBT needs to store two keys or endpoints for each prefix and 
also requires storing about two W bit vectors for each endpoint. In the proposed 
scheme of CPBT it is not needed to store the prefixes end points. It is just enough to 
store the prefixes themselves and use the proposed coding definition. Therefore, the 
number of keys in the tree will be half of the number of keys of PIBT. On the other 
hand we do not need to store 2 additional vectors for each key and only one SMV 
vector per key is sufficient. This reduces the required vector bits to 1/4. It means that  
it requires 32 bits for IPv4 and 128 bits for IPv6, comparing to128 and 512 bits for 
PIBT, which is a good advantage for long IPv4 and IPv6 prefixes. Of course, other 
required memories to keep the pointers are ignored. 

In PIBT, the update of additional interval vectors and the update of the keys will be 
performed separately. But in the proposed architecture, the update of a prefix and 
SMV vectors could be done simultaneously. In other words, the SMV vectors will be 
updated during the insert or delete procedure of a prefix and this means less number 
of memory accesses for each update.  

Another advantage of this algorithm compared to PIBT is that we need to insert or 
delete only one prefix in each update process, however in the case of PIBT, it may 
require to insert or delete both two end points of a prefix which means traversing the 
tree twice. 

As it is shown, the height of tree, h, will be the height of a B-tree, h≤ logm((n+1)/2) 
with n the number of the prefixes and m the order of the B-tree. Since the tree is 
balanced, the proposed algorithm in this paper has a guaranteed worst case search and 
update time for any prefix length distribution. Also, as a good property of this 
proposed algorithm, it doesn't need any pre-processing to be performed. 



6 Conclusions 

This paper introduced CPBT, a new algorithm for the prefix matching problem and 
also finding the Longest Matching Prefix or LMP. It treats prefixes as numbers but 
not ranges during the search procedures. This type of coding of prefixes has the 
advantage of removing the dependency to the prefix length during the search and 
update time and also in memory usage for the IPv4 or IPv6. Therefore, it is equally 
suitable for both IPv4 and IPv6. It is also possible to apply this scheme to the method 
in [10] for its extension to the IPv6. This scheme is compared with PIBT [9] and it is 
shown that although both of them have the same search complexity; this scheme has 
much better storage requirements and about half of the memory accesses during the 
update procedures. 
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