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Abstract. This paper proposes a network memory-based P2P IO BUffering
Service (PIBUS), which buffers blocks for IO-intensive applications in P2P
network memory like a 2-level disk cache. PIBUS reduces the IO overhead
when local cache is missed due to speed advantage of network memory over
disks, and improves hit ratio based on accurate classification of IO behaviors.

1 Introduction

Under the limit in size of disk cache, the performance of IO-intensive applications is
determined by the hit ratio of disk cache and IO overhead when the cache is missed
[1]. However, under the limit of local cache neither of them can improve significantly.
Recently we proposed RAM-Grid [2], which proved the feasibility of using Internet
memory for performance purpose. This motivates us to the idea of using Internet
memory for IO-intensive applications. However, the assumption of unlimited network
memory by RAM-Grid doesn’t work here [3], thus indiscriminately buffering all
blocks in network memory (like what RAM-Grid does) is impractical and prohibitive.

In this paper we propose a network memory-based P2P IO BUffering Service
(PIBUS), in which each node views the free memory of other nodes in P2P overlays
as a 2-level disk cache. PIBUS is built on top of Armada DHT [4], and includes two
basic services, namely, caching service to reduce the latency of IO operation, and
policy service to improve the hit ratio of local cache. Based on the speed advantage of
network memory over local disks, PIBUS reduces the IO latency when the local cache
is missed. Furthermore, PIBUS helps to manage local cache through fine-grained
classification of IO behaviors, and then improves hit ratio effectively.

2 Block Caching Service

Due to lack of space, all detailed analysis is omitted here and can be found at [5].
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The blocks are sent to caching service when replaced out of local cache. Network
IO is usually faster than local disk IO due to the speed advantage of network memory
over local disks. And these blocks are fetched back through networks simultaneously
with local disk file reads when re-accessed. There are 4 sets of nodes in PIBUS,
namely, Provider, Consumer, Potential Provider, and Potential Consumer. 1) When a
Potential Provider finds its local memory utilization exceeds some threshold, it turns
into a Potential Consumer, and a Cancel-Publication and a Make-Subscription occur.
2) When a Potential Consumer finds its own memory utilization is less than some
certain threshold, it becomes a Potential Provider, and a Cancel-Subscription and a
Make-Publication occur. 3) When a Potential Consumer starts its IO-intensive appli-
cations and begins buffering its obsolete blocks in subscribed caching services, it
becomes a Consumer. 4) When a Potential Provider begins its caching service, it
becomes a Provider and a Cancel-Publication occurs. 5) When a Consumer ends its
IO-intensive applications it becomes a Potential Consumer. 6) When a Provider’s
caching service is no longer used, it becomes a Potential Provider and a Make-
Publication occurs. 7) When a Provider finds its utilization exceeds some threshold, it
handovers its buffered blocks to others and turns into a Potential Consumer.

3 Replacement Policy Service

Similarly to other policies, In PIBUS the Consumer records accesses that hit its local
cache and makes a coarse-grained preliminary classification as Unknown, One-off,
and, Repeating. These three patterns have their counterparts in recent proposals [1].
However, due to lack of records of each block’s access history, in practice a large
fraction of so-called Repeating blocks is not really accessed periodically.

To account for this imprecision, policy service takes an accurate record of the ac-
cesses to blocks buffered in its memory and further classifies the Repeating pattern as
Regular-Looping, Single-Clustered, and Multi-Clustered, as shown in figure 1.

Fig. 1. Examples of IO patterns.

As shown in figure 2, each Consumer maintains a File table, in which each entry
represents the IO record of a file, including the file ID, the count of One-off accesses,
the count of Repeating accesses, the current IO pattern, and the period of Repeating
accesses. For each file at the Consumer, the Provider maintains a Block table, in
which each entry records the block number, the current access pattern, Period1, Pe-
riod2 and the last access time. Period1 is used to record the period of Regular-Looping

Multi-Clustered

Single-Clustered
One-offRegular-Looping



accesses, or the intra-cluster period of Single-Clustered and Multi-Clustered accesses;
Period2 is used to record the inter-cluster period of Multi-Clustered accesses.

Fig. 2. Data structures of policy service.

When a block is accessed we first look up the block table. If the block is not in the
table the One count is increased; otherwise the Rep count is increased and the One
count is decreased. If the block has been accessed it will be further identified by the
Provider. Otherwise the block takes the current pattern of its file as its pattern. Files
are classified based on Rep, One and Threshold. If the Rep count is greater than the
One count, the file is classified as Repeating. Otherwise the file is classified as One-
off if One is greater than Threshold, or Unknown if One is less than Threshold.

Fig. 3. Further identification algorithm.

As shown in figure 3, policy service further identifies Repeating blocks. If the ac-
cess intervals of a Repeating block differ within a range, it is classified as Regular-
Looping and uses Period1 to record the period. If a block has been classified as Regu-
lar-Looping but won’t be accessed any more, it is classified as Single-Clustered and
uses Period1 to record the intra-cluster period. Otherwise it is classified as Multi-
Clustered, and uses Period1 for intra-cluster period and Period2 for inter-cluster one.



Blocks are placed in the corresponding subcache. 1) The Unknown blocks in Un-
known subcache are managed by LRU. 2) The One-off blocks are discarded because
they won’t be accessed any more. 3) All the Repeating blocks are buffered in Repeat-
ing subcache. The blocks are ranked according to the estimated next access time
(ENAT) and the last one will be replaced out. ENAT is estimated as follows: Regular-
Looping blocks use (Block->Period1 - LastAccessTime). Single-Clustered blocks use
(Block->Period1 - LastAccessTime). Multi-Clustered blocks use (Block->Period1 -
LastAccessTime) if the interval between the current time and LastAccessTime is less
than n Block->Period1; otherwise use (Block –>Period2 - LastAccessTime).

4 Evaluation

We trace an actual meteorological application by modifying the Linux kernel to record
all the IO operations, including the access time, file ID and offset in the file. We have
built a simulation environment for RAM-Grid in our previous work [2]. Based on this,
we simulate PIBUS by using Armada for resource discovery. The underlying network
is composed of 1,000 nodes with different memory capacity, CPU frequency, band-
width, etc. The influence of PIBUS on system IO performance is shown in table 1.

TABLE 1. PIBUS VS. LRU under different local cache sizes: completion time/hit ratio(%).

32 MB 64 MB 128 MB 256 MB 512 MB 1024 MB
LRU 56.5s/5 53.2s/10 51.4s/13 50.8s/15 41.2s/33 10.1s/83

PIBUS 29.2s/24 25.5s/28 22.3s/35 14.5s/68 11.6s/79 10.1s/83

5 Conclusion

PIBUS uses Armada protocol as its underlying resource discovery infrastructure and
is composed of caching service and policy service. Trace driven simulation shows that
PIBUS improves the performance of IO-intensive applications efficiently.
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