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Abstract. Stream control has recently attracted attentions in the research of MIMO
wireless networks as a potential way to improve network capacity. However, in-
appropriate use of stream control may significantly degrade network capacity as
well. In this paper, we provide the first formal study on stream control schedul-
ing in MIMO wireless mesh networks. We derive the theoretical upper bound on
network capacity gain of stream control scheduling. We also provide an efficient
scheduling algorithm and show that its achieved network capacity gain is close
to its theoretical upper bound. Moreover, we point out the poor performance of a
previous stream control scheduling algorithm SCMA under the general settings
of wireless mesh networks. This formal characterization provides a deeper under-
standing of steam control scheduling in MIMO wireless mesh networks.

Key words: MIMO, stream control, network capacity, scheduling

1 Introduction

Multiple-input multiple-output (MIMO) technology is regarded as one of the most sig-
nificant breakthroughs in recent wireless communication[1]. By exploiting multi-paths
in indoor or outdoor environment, MIMO is able to provide very high data rate by
simultaneously transmitting multiple independent data streams on the same wireless
channel. This kind of simultaneous transmissions, referred to as spatial multiplexing, is
very desirable to wireless mesh networks (WMNs) where network capacity is the main
concern.
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Fig. 1. MIMO Wireless nodes with three antennas.

Generally speaking, MIMO can be represented as a multiple transmitters and multi-
ple receivers system. As illustrated in Fig. 1, there are three antennas for each wireless
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node. At the transmitting wireless node, a primary bit stream is splitted into three indi-
vidual bit streams, which are then encoded and transmitted by the three antennas. The
signals are mixed naturally in the wireless channel. At the receiver end, these three bit
streams are separated and decoded, and then combined into the original primary bit
stream. An analogy of the stream separation is similar to solving three unknowns in a
group of three linear equations.

In general, each MIMO node has K≥1 antennas. Link capacity grows linearly with
K since there are K independent streams. This link capacity gain is referred to as spa-
tial multiplexing gain.1 Roughly speaking, for the receiver to successfully separate and
decode incoming streams, the following conditions must be satisfied: (a) the number of
successfully decoded streams is not greater than K and (b) the strength of additional
streams (treated as noise by the receiver) is far weaker than that of the successfully
decoded streams. Otherwise, it is not possible to decode any stream[3].

When a wireless link simultaneously transmits 0 or K streams on a channel, we call
it Non-Stream Control (NSC) scheduling. Alternatively, one can use Stream Control
(SC) scheduling to improve the capacity of MIMO systems. Under SC scheduling, a
wireless link can simultaneously transmit k streams along a channel, where 0 ≤ k ≤ K.
SC scheduling provides more flexibility than does NSC scheduling since it can choose
an appropriate number of streams so as to maximize network capacity. Recent studies
[4][5][6] show that SC can be applied to multiple interfering links to improve network
capacity.
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Fig. 2. An Illustration of Network Capacity for NSC and SC scheduling

An example to illustrate the improvement in network capacity by SC is shown in
Fig. 2. There are four MIMO nodes with two flows of streams, one from node A to
node B along link 1, and the other from node C to node D along link 2. The two links

1 Another important feature of MIMO is that it has diversity gain that provides an increase in
SNR at the receiver by partially or fully redundant K streams. However, it was shown in [3]
that we often achieve higher throughput by exploiting spatial multiplexing instead of diversity.
For the rest of this paper, we only focus on the scheduling based on spatial multiplexing.



Characterizing the Capacity Gain of Stream Control Scheduling in MIMO WMNs 3

are placed close to each other and thus get mutual interference. Assume there are four
antennas on each node (K = 4). Under NSC scheduling, each wireless node transmits 4
streams at an aggregate rate of 100 Kbps. The maximum network capacity is 100 Kbps
when the two links transmit in an alternate manner (Fig. 2(b)).

Under SC scheduling, however, each link can choose to transmit k streams where
k ∈ {0, 1, 2, 3, 4}. Specifically in MIMO, these streams have different transmission
rate [2]. For example, the ratio of transmission rate for the 4 streams is 1.0 : 0.8 : 0.7 :
0.5. Each link can choose the two best streams to transmit with an aggregate rate of

1.0+0.8
1.0+0.8+0.7+0.5 · 100 = 60 Kbps (this is called stream selection), achieving a network
capacity of 120 Kbps (Fig. 2(c)).
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Fig. 3. Illustration of Receiver Overloading Problem

Previous work [4][5][6] showed that MIMO with stream control can increase the
network capacity by 20 − 65% for a set of mutually interfering links. However, it was
noted in [3] that when stream control is not applied judiciously, one may encounter
the problem of receiver overloading that will significantly degrade the overall network
capacity. We illustrate this problem in Fig. 3. Here, each wireless node has K = 4
antennas. Link 1 interferes with link 2, 3 and 4 while the last three links do not interfere
with each other. If link 1 transmits 4 streams in one time slot and the other three links
each transmit 4 streams in the next time slot, it will result in an average of 8 streams
per time slot. If all four links use SC, then each can only transmit one stream (upper
bounded by 4 streams for link 1). In this case, only 4 streams per time slot can be
achieved, which has a poorer performance than NSC scheduling. The reason is that the
use of SC for link 1 suppresses full transmissions of the other three links.

Sundaresan et al proposed a heuristic algorithm called SCMA (Stream-Controlled
Multiple Access) for using SC scheduling in multihop wireless networks [3]. The algo-
rithm states that SC is used for multiple interfering links only when they belong to a
single maximal clique (more discussions in later sections). In other cases, NSC schedul-
ing should be used. SCMA can work well for dense link interference graph where links
likely belong to a single maximal clique. In this paper, we provide the first formal char-
acterization on the capacity gain of SC from the angle of scheduling. In particular, we
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address the fundamental question that how much network capacity gain can be expected
from SC scheduling.

In order to answer these questions , in Section 2, we derive the theoretical upper
bound on the network capacity gain of SC scheduling to NSC scheduling. In Section
3, we present a greedy scheduling algorithm when NSC or SC is used. In Section 4,
we discuss the simulation results and compare the network capacity of NSC and SC
scheduling as well as that of SCMA. Finally, Section 5 discusses the limitations of our
work and concludes the paper.

2 Upper Bound on Capacity Gain of Stream Control Scheduling

In this section, we first define the terminologies used in wireless networks, then we
propose a simplified model for MIMO WMNs and derive the theoretical upper bound
on the network capacity gain of SC scheduling.

We consider a multihop wireless network with n static nodes. Each node has mul-
tiple omnidirectional antennas that operate on one channel. We model it as a directed
graph G = (V, E) where V represents the set of wireless nodes and E represents the
set of wireless links. Each wireless node has the same transmission power and receiv-
ing sensitivity, resulting in the same maximum transmission range by a certain path loss
model (e.g. two-ray ground model). Therefore, two nodes can form a link when the
distance between them is not greater than the maximum transmission range.

We use the range-based interference model[7] that is shown to be realistic by [8].
Let L1,2 (L3,4) be the link between node 1 and 2 (node 3 and 4). Let dij denote the
distance between node i and node j. L1,2 is interfered by L3,4 when node 1 or node 2
is interfered by node 3 or node 4, precisely, min(d1,3, d1,4, d2,3, d2,4) ≤ S · d1,2. Here
we call S the interference range factor that is determined by the SNR threshold for
successful receiving and the underlying path loss model. Note that the above reception
and interference models are actually implemented in ns-2 simulator.
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Fig. 4. Examples of Link Interference Graph

To represent the interference between links, we introduce the link interference graph
GI = (V I , EI) , also known as flow contention graph [9]. we rename it here to avoid
confusion with end-to-end flows. V I represents the set of wireless links and EI the set
of interfering link pairs. That is, if link i is interfered by link j or vice versa, we add
two edges (i, j) and (j, i) into EI specifying that i and j can not transmit at the same
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time. Fig. 4 shows the link interference graphs for the networks in Fig. 2 and Fig. 3,
respectively.

To derive the upper bound on network capacity, we assume that the system operates
in a synchronous time-slotted mode. Links transmit at the beginning of each time slot in
a TDMA mode. They can transmit at the same time, provided that they do not interfere
with each other. Besides, we do not consider packet losses caused by fading. This is
a reasonable assumption since MIMO can significantly mitigate fading losses. Next,
we assume that there are K > 1 antennas on each wireless node, and thus a link can
simultaneously transmit at most K independent data streams. We introduce the stream
control gain g, a factor for all wireless links. The total capacity of multiple mutually
interfering links using SC is at most g times that using NSC. 1 < g < 2 because
g ≥ 2 will violate the physical constraint (i.e. multiple interfering links can not transmit
simultaneously at their full rate). Finally, we define network capacity gain using SC.
Assume that the traffic pattern (i.e., the ratio of average link rate) is fixed. Let CNSC and
CSC be the respective network capacity for NSC and SC scheduling. We have CSC =
GSC · CNSC , where GSC is defined as the network capacity gain of SC scheduling.

We now present the interference constraint in MIMO wireless networks. Without
the loss of generality, we normalize the capacity of a MIMO link to 1 and define the
link transmission rate as a fraction of 1. Let y(t) be the link transmission rate vector
at time t (i.e., ye(t) is the transmission rate of link e), and N(e) the set of neighbors
(i.e., interfering links) of e. If e transmits at time slot t, the sum of transmission rate in
N(e)∪ e must be less than or equal to g, otherwise, receivers can not decode the mixed
signals correctly. Formally, we define the MIMO interference constraint as,

1ye(t)>0 ·

ye(t) +

∑

e′∈N(e)

ye′(t)


 ≤ g, ∀e ∈ E and t ≥ 0. (1)

The function 1 is an indicator function, returning 1 when ye(t) > 0, and returning 0
otherwise. For NSC scheduling, g = 1 and ye(t) is 0 or 1. For SC scheduling, 1 < g < 2
and ye(t) is a real number between 0 and 1 since a MIMO link can properly choose the
number of streams and their transmission rate. Thus, NSC scheduling can be seen as a
special case of SC scheduling.

We now state and prove the fundamental theorem of SC scheduling.

Theorem 1. Assume that the traffic pattern (i.e., the ratio of average link rate) is fixed,
the network capacity of SC scheduling is at most g times that of NSC scheduling.

Proof: We prove it by two steps. First, we define the SC scheduling SC(1) when g = 1,
and prove that the capacity of SC(1) is equal to that of NSC. Second, we prove that the
capacity of SC scheduling is at most g times that of SC(1).

Step 1: We only need to prove that the capacity of NSC scheduling is greater than or
equal to that of SC(1) scheduling, since the capacity of SC(1) scheduling is at least equal
to that of NSC scheduling. As we are interested in the average link rate, it is sufficient to
prove that for any feasible link transmission rate vector ySC of SC(1) at some time slot,
there is a sequence of link transmission rate vectors of NSC {yNSC(t)|t = 1, 2, ..., T}



6 Yue Wang, Dah Ming Chiu and John C. S. Lui

for T time slots, whose average is greater than or equal to ySC . In other words, we
scale ySC by a large number of time slots T to make it an integer workload vector
u = ySC · T (real number can be approximated by rational), and prove that u can be
scheduled in T time slots using NSC. We prove this by induction for the number of
links m in the network. When m = 1 (u and ySC are scalars), we can easily schedule
u in T since ySC ≤ 1. Assume that we can schedule u for m links in T . We consider
adding the (m + 1)th active link e. The neighbors of e consume at most

∑
e′∈N(e) ue′

time slots, and we can use the remaining (T−∑
e′∈N(e) ue′ ) time slots (which is greater

than ue by Eq. (1) for g = 1) to schedule ue. So, we can schedule u for m + 1 links in
T .

Step 2: We prove it by contradiction. Assume the capacity of SC is greater than g
times that of SC(1), then we can get the capacity of SC (1) by dividing all link trans-
mission rate by g, which is greater than itself.
Remark: SC scheduling can not provide greater than g times network capacity gain
although it provides a finer scheduling scheme. Therefore, if g is of small value, SC is
not worthwhile to consider as the computational cost of SC scheduling is higher than
that of NSC scheduling. Besides, the upper bound is not always achievable due to the
potential problem of receiver overloading.

3 A Stream Control Scheduling Algorithm

In the previous section, we derived the theoretical upper bound of network capacity gain
of SC scheduling. However, this upper bound may not be achievable. In this section,
we present a centralized SC scheduling algorithm and obtain the capacity gain in a
practical way. It is important to point out that this algorithm provides a lower bound on
the achievable network capacity.

Given a wireless network G and a vector of link traffic workloads u (ue is the
workload on link e), the scheduling algorithm will calculate the number of time slots
needed to transmit all workload in u. Let TNSC and TSC be the number of time slots
expended for NSC and SC scheduling respectively. So the network capacity of NSC
and SC scheduling is:

CNSC =
∑

e∈E ue

TNSC
, (2)

CSC =
∑

e∈E ue

TSC
, (3)

and the network capacity gain of SC scheduling is,

GSC =
CSC

CNSC
=

TNSC

TSC
. (4)

To schedule u, we design a greedy scheduling algorithm GreedySC. At each time
slot, the algorithm finds schedulable links of maximal workloads greedily so as to mini-
mize the total number of time slots used. Fig. 5 depicts the algorithm. The inputs to this
algorithm are the link interference graph GI , the workload vector u and stream control
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GreedySC(GI , u, g)

Ts := 0;
A := E;
While A 6= φ

Ts := Ts + 1;
y := 0;
Sort A in the deceasing order of u;

/* Step 1. using NSC*/
For each e ∈ A

If ye′ = 0, ∀e′ ∈ N(e)
ye := 1;
ue := ue − 1;
If ue ≤ 0
A := A− {e};

fi
fi

end for
/* Step 2. using SC*/

For each e ∈ A and ye = 0
If yN(e) ≤ 1 and (yN(e′) ≤ 1, ∀e′ ∈ N(e) and y′e > 0)

ye := g − 1;
ue := ue − (g − 1);
If ue ≤ 0
A := A− {e};

fi
fi

end for
end while

Fig. 5. Specification of GreedySC Scheduling Algorithm

gain g. Here, Ts is the number of time slots expended, A is the set of uncompleted links,
and yN(e) is the sum of transmission rate for links in N(e). Note that GreedySC can
also be applied to NSC scheduling by letting g = 1.

The algorithm is described as follows. For each time slot, we first sort the links
in decreasing order of the remaining workloads. In Step 1, we use the NSC mode to
schedule links. That is, we iteratively pick a link e from the sorted list. If no neighboring
links of e have been scheduled, we schedule e for transmission (ye := 1). Otherwise, we
do not schedule it. Then we move on to the next link on the sorted list until we finish
examining all the links. In Step 2, we use the SC mode to schedule links. Again, we
iteratively pick a link e from the sorted list that was un-schedulable in step 1. If Eq. (1)
can be satisfied for e and all its neighboring links, we schedule e for SC transmission
(ye := g − 1). Otherwise, we do not schedule it. Then we move on to the next link
on the sorted list until we finish examining all the links. At this point, we decide the
scheduling for one time slot. The above process is repeated in the next time slot until
all the traffic workload in u is completed.
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The algorithm naturally avoids the problem of receiver overloading as it sched-
ules links using NSC first and thus guarantee the network capacity of SC scheduling
is always greater than that of NSC scheduling. Note that, according to the scheduling
sequence of links in GreedySC, a SC link e′ (ye′ = g − 1) must neighbor some NSC
link e (ye = 1). Otherwise, e′ can be scheduled using NSC. And all neighboring links
of e or e′ can not be scheduled to satisfy Eq. (1). Therefore, for stream selection, the
two links can select streams of other rate to achieve ye + ye′ = g (e.g., ye = ye′ = g

2 ).
GreedySC achieves higher network capacity than SCMA. To understand this, let

us describe SCMA first. In short, multiple interfering links can be scheduled simulta-
neously using SC, only when they all belong to a single maximal clique2. SCMA can
not cause receiver overloading, because links using SC do not affect the transmission
of other maximal cliques. Besides, SCMA can be implemented distributedly [3]. For
example in Fig. 4 (a), link 1 and 2 belong to the single maximal clique {1, 2}, so they
can be scheduled simultaneously using SC. In Fig. 4 (b), there are no two interfering
links both belonging to a single maximal clique, as link 1 belong to 3 maximal cliques
{1, 2}, {1, 3} and {1, 4}. So SCMA can not use SC here. But in fact, links belong-
ing to multiple maximal cliques can also use SC for transmission, which is considered
by GreedySC. For example in Fig. 4 (b), GreedySC will schedule link 1 using NSC
(y1 = 1) and link 2 using SC (y2 = g − 1). Formally, consider any two links a and b
belonging to a single maximal clique. Suppose a is scheduled using NSC in step 1 of
GreedySC. It is easy to see that b can be scheduled using SC in step 2 of GreedySC.
In this way, GreedySC covers the case of SCMA and thus achieves higher network
capacity.

4 Performance Evaluation

This section shows the simulation results in general WMNs. We test the capacity gain
of SC scheduling for GreedySC and SCMA, and compare it with the theoretical upper
bound g.

By general WMNs, we mean static multihop wireless networks with the general set-
tings of (1) network density and (2) interference level in current practices. We measure
network density by node degree, i.e., the number of links a wireless node has, and mea-
sure interference level by the interference range factor S. The node degree in a WMN is
typically around 2 to 6, otherwise, there will be too much interference. For example, our
simulation shows that a link is interfered by about 16 other links when the average node
degree is 3. We vary the SNR threshold for successful receiving from 6 to 10dB [11]
depending on the environment and coding scheme. And the resulting interference range
factor S varies from 1.4 to 1.8 by the two-ray ground path loss model[10]. Note that
higher SNR threshold implies more interfering links. We designed a TDMA simulator
to generate WMNs and schedule link workloads.

First, we randomly place 25 wireless nodes in an area of 1000m×1000m, with the
maximum transmission range of 250m. The average node degree is 4.2. g = 1.5 for all
wireless links. We generate 100 flows with sources and destinations randomly selected.

2 Here a maximal clique is a maximal fully connected subgraph of GI . All links of a maximal
clique interfere (neighbor) with each other. A link may belong to multiple maximal cliques.
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SC for 1000m×1000m Random Topologies
(g = 1.5)
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Fig. 7. Avg. Network Capacity Gain of SC
for 800m×800m Random Topologies (g =
1.5)

Each flow has the same traffic demand of 1000. And we map the flow traffic demand x
into link traffic workload u by u = Rx, where R is the routing matrix (Rij = 1, if
flow j is on link i; Rij = 0, otherwise). We use the shortest path routing for these flows
and run the simulation for tens of times to get the average.

Fig. 6 shows the network capacity gain of SC scheduling GSC when GreedySC
and SCMA are used. SCMA provides little capacity gain because there are few links
belonging to a single maximal clique, while GreedySC provides 30−40% improvement
on network capacity compared with NSC scheduling.

An interesting observation is that there are still a small number of links belonging
to single maximal cliques when we increase SNR threshold to make link interference
graph denser (introduce more edges in GI ). We found the reason from the simulation
traces. The average size of maximal cliques gets larger as the link interference graph
becomes denser. As a result, most links are in the overlap of multiple maximal cliques.
So we can not expect that many links belong to a single maximal clique until the link
interference graph is sufficiently dense (the extreme is one clique).

Next, we consider the effect of network density on the network capacity gain of
SC scheduling. We keep all parameters of the previous experiment but reduce the area
size to 800m×800m to increase the network density. The average node degree now
is 6.1. Fig. 7 shows the network capacity gain of SC scheduling. The performance of
GreedySC and SCMA is similar to that of 1000m×1000m. The reason is that both the
number of links and interfering link pairs increases when the network density increases.
As a consequence, the link interference graph is scaled up proportionally.

We also did simulation in grid topologies. In this experiment, we place 25 wireless
nodes in a 5 × 5 grid. There is a distance of 200m (and 160m later) between two hor-
izontally or vertically neighboring nodes. The other parameters are the same as that in
random topologies. SCMA does not work at all here because no links belong to a sin-
gle maximal clique, while GreedySC provides the network capacity gain of 1.2 to 1.3
(Fig. 8 and Fig. 9). In short, SCMA performs poorly in general WMNs.

Finally, simulation shows that the network capacity gain of GreedySC is a linearly
increasing function of g and is closer to its theoretical upper bound (g) than SCMA.
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Fig. 10. Network capacity gain of SC as a function of g (SIR threshold = 10dB)

Fig. 10 shows the result for 25-node random topologies in an area of 1000m×1000m
when SIR threshold is 10dB.

5 Conclusion and Future Work

In this paper, we characterized the network capacity of SC by formulating it as a mere
scheduling problem. We proved that the network capacity of SC scheduling is at most
g times that of NSC scheduling, where g is stream control gain. We then proposed an
efficient algorithm GreedySC so as to realize NSC and SC scheduling. Intensive simu-
lations showed that the capacity gain achieved by GreedySC is close to its theoretical
upper bound. Therefore, we can use GreedySC as a benchmark for other SC algorithms.
In particular, we pointed out the poor performance of SCMA under the general settings
of WMNs, indicating that there are plenty of rooms for enhancement.

There are some limitations in our work. First, our model assumes perfect packet
scheduling. Actually, one can easily incorporate packet losses into our theorem and
algorithm to get similar results. Second, we use a simplified physical layer model and
do not account for time-varying fading channels. It remains an open problem to jointly
consider packet scheduling and more detailed physical layer model in MIMO WMNs.
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Third, GreedySC currently is a centralized algorithm. The distributed implementation
requires special supports from physical layer. For example, transmitters need to estimate
accurately the number of streams that receivers can accommodate so as to transmit extra
streams using SC. In sum, there is a lot of future work for researchers both in the area
of network layer and physical layer before SC becomes a practical technique in MIMO
WMNs.
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