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Abstract. This paper presents LiTGen, an easy to use and tune open-
loop traffic generator that statistically models IP traffic on a per user
and application basis. From a packet level capture originating in an ISP
wireless network1, and taking the example of Web traffic, we show that
the simple underlying structure of LiTGen is sufficient to reproduce the
traffic burstiness accurately. In addition, the flexibility of LiTGen enables
us to investigate the sensitivity of the traffic structure with respect to the
distributions of the random variables involved in the model, and their
possible dependencies.
Key words: traffic generator, scaling behaviors, second-order analysis,
semi-experiments

1 Introduction

Measuring, understanding and reproducing network traffic characteristics are es-
sential steps of traffic engineering. Traffic generators usually tackle the later step.
Among past proposals, focusing primarily on Web traffic, [1] and [2] proposed
hierarchical models, but did not validate them against real traffic traces. The
work presented in [3] is an effort to generate representative traffic for multiple
and independent applications. However, the model underlying the introduced
generator was not designed to specify the packet level dynamics neither to catch
the traffic scaling structure. Recently, [4] aims at reproducing the burstiness ob-
served in captured traffic but relies on a third party link and network layers
opaque emulator requiring high computing resources.

This paper presents LiTGen, a “Light Traffic Generator”. LiTGen relies
on a simple hierarchical description of traffic entities, most of them modeled
by uncorrelated random variables and renewal processes. This design does not
require to consider network or protocol characteristics (e.g. RTT, link capacities,

1 This study would not have been conducted without the support of Sprint Labs.
The authors would like to thank Sprint Labs for providing the wireless traces and
particularly A. Sridharan for his support.



TCP dynamics. . . ) and allows fast computation executed on a commonplace
computer. Focusing on Web traffic, this paper confronts LiTGen to real traces
captured on an operational wireless access network at Sprint Labs. Using a
second-order analysis, we identify the dependencies across the random variables
composing LiTGen’s underlying model and prove LiTGen’s ability to reproduce
accurately the captured traffic and its properties over a wide range of timescales.
To the best of our knowledge, we are the first ones to produce synthetic wireless
traffic for the first two orders of the internal time series.

In the rest of this paper, section 2 describes LiTGen; section 3 develops the
second-order analysis we used. We then investigate in section 4, the sensitivity
of the traffic structure with respect to the distributions of the random variables
involved in the underlying model. Finally we conclude this paper with a summary
of our findings and directions for future work.

2 Building a lightweight traffic generator

2.1 Underlying Model

Earlier works identified several possible causes of correlation in IP traffic, namely
the superimposition of traffic sources modeled by heavy tailed distributions [5,
6] and the inherent structure and interactions of protocol layers [7]. These as-
sumptions call on the conception of a traffic generator based on a user-oriented
approach and a semantically meaningful hierarchical model. This model is made
of several levels, each of them characterized by a specific traffic entity. Each
network entity defined is represented by one or several random variables either
related to a time (duration or inter-arrival time) or a size metric.
Session level. We assume each user undergoes an infinite succession of session
and inter-session periods. Taking the example of Web traffic, a user downloads
a certain number of Web pages during a session. The random variable Nsession

describes the user’s session size, counting the number of pages downloaded, while
TIS characterizes the inter-session durations.
Page level. The Web pages downloaded during a session are separated by
reading times (OFF periods). We define two random variables to characterize
this level: the page size Npage describes the number of objects involved in a page
and Toff models the corresponding reading duration.
Object level. Each page is split up into a set of requests (sent by the user) and
responses (from the server), where responses gather the page’s objects (HTML
skeletons or embedded objects such as pictures). IAobj and Nobj characterize
respectively the objects inter-arrivals in a page and the number of packets in an
object.
Packet level. Finally, each object is made of a set of packets. IApkt charac-
terizes the successive inter-arrivals times between packets in an object.

LiTGen’s model is then kept simple since not modeling the client/server
interactions. Also the model does not rely on a complex emulator that would
reproduce the link layer or TCP dynamics. Note however that network character-
istics and/or TCP dynamics can explicitly be taken into account by introducing



simple queuing or Markovian models as input of our traffic generator. This work
is currently under investigation. Finally, note that one can equivalently remove
from the hierarchy the session level by including the inter-sessions durations in
the OFF periods durations distribution. Nevertheless, it would make the char-
acterization of Toff more complex and LiTGen less easy to use in practice.

2.2 Traffic entities identification

To calibrate LiTGen’s underlying model, we benefit from data traces captured
on the Sprint PCS CDMA-1xRTT access network. The traffic has been captured
on an OC-3 collecting link and corresponds to tens of wireless access cells (more
details about the trace and its differences with wireline traffic, for both upload
and download traffic, can be found in [8]). The trace consists of a collection of IP
packets with accurate timestamps, entire TCP/IP headers, and provides a large
diversity of users’ applications traffic. Because it has been extensively studied
and is well known, we focus in this paper on the Web traffic downloaded by
the mobile users on the wireless network to validate LiTGen. The application of
LiTGen to other types of traffic, such as mail or P2P, can be found in [9].

The model calibration requires to identify the traffic entities from the cap-
tured trace. We aggregate packets to identify objects, pages and sessions, based
on the 5-tuple associated to each packet ({IPD, IPS , portD, portS , proto}). A
filter based on a source port number selection ({80, 8080, 443}) retains Web
packets only2. A user’s Web packets share the same destination IP address and
are then grouped into sets of a given ({IPS , portD}) pair. These sets correspond
to the Web flows the user requested.

We identify objects within the packets sets by analyzing the TCP flags (SYN,
ACK. . . ) of the TCP/IP headers. This method, comparable to [10], is particu-
larly useful when HTTP persistent connections are used since a set of packets
may carry several Web objects.

Because we do not have access to the packets’ payloads, the identification of
Web pages relies on heuristics to determine their boundaries. Once Web objects
have been delimited, we define active periods during which one or several objects
are being downloaded, opposed to inactive periods. The silence corresponding to
a given inactive period may be due to the user (thus it is an OFF period) or the
system (e.g. idle time due to the Web browser). We use a temporal clustering
method (also used in [1, 2, 10]) to distinguish those two kinds of silences: an
inactive period that lasts for more than a predefined threshold is labeled as an
OFF period. Based on the inactive periods distribution, we empirically set the
threshold to 1 second, a result consistent with [1, 2, 10].

Similarly, we aggregate Web pages into user sessions, setting empirically a
threshold value to 300 seconds to separate OFF periods from inter-sessions3.

2 See [9] for other kinds of traffic.
3 Note that the precise value of this threshold does not impact significantly the results.



2.3 Traffic Generation

While in this paper we apply LiTGen to Web traffic, it can obviously be adapted
to any kind of traffic [9]. When numerous applications are multiplexed, we first
set the number of users for each of them. For validation purposes we extract
each application proportion and number of users from the captured trace. In an
operational network these statistics can be derived from operator’s knowledge
of customers subscribed services. LiTGen then generates traffic for each user
independently, from upper level entities (sessions) to lower ones (packets). For
a given user, the process begins by generating a session starting at time t = 0.
Lower levels traffic entities are then created until all the user’s packets have
been generated. A random circular shift is performed on each packet timestamp
to accurately mix the different users traffic, since the final synthetic trace is
obtained by superimposing synthetic traffic of all users and all applications.

3 Validation

We evaluate LiTGen on its ability to capture the complexity of the traffic corre-
lation structure. To this aim, we use an energy spectrum comparison method to
match the packets arrivals time series extracted from the captured trace and the
corresponding synthetic trace. Since the 24-hour trace is not stationary (see [8]
for details), the analysis is performed on a one-hour long period extracted from
the entire captured trace. The results presented in the following correspond then
to a given one-hour period; similar results were obtained for the other one-hour
extracted traces.

3.1 Wavelet analysis

We use the Logscale Diagram Estimate or LDE [11] to perform discrete wavelet
transform analysis. For a given time series of packets arrivals, the LDE produces
a logarithm plot of the data wavelet spectrum estimates. Although the LDE has
the ability to identify correlation structures in the data trace [12], we mainly use
it to assess the accuracy of the synthetic traces produced by LiTGen.

We first generate synthetic traffic using a simple version of our generator,
called basic LiTGen. In this version, all traffic entities are generated from re-
newal processes, using the empirical distributions extracted from the captured
trace; and no dependency of any kind is introduced between the random vari-
ables. Figure 1 shows that the spectrum of the synthetic trace produced by basic
LiTGen (thin curve) is far different from the captured trace spectrum. As a first
conclusion basic LiTGen does not succeed in reproducing the captured traffic
scaling structure with a good accuracy. We thus need to introduce additional
dependencies between the random variables. In the following we investigate the
impact of the introduction of a very simple correlation structure in LiTGen on
the produced traces.

Previous studies [8, 13] pointed out that a great part of the LDE energy was
due to the organization of packets within flows. This leads to refine LiTGen’s



488mus 0.002 0.0078 0.031 0.12 0.5 2s 8s 32s 128s 512s

−11 −9 −7 −5 −3 −1 1 3 5 7 9
7

11

15

19

23

scale j

lo
g 2 V

ar
ia

nc
e(

j)

Captured trace
Synthetic trace using basic LiTGen
Synthetic trace using extended LiTGen

Fig. 1. Evaluating basic VS extended LiTGen

Approximated f(s)=mean(IAs
pkt)df(s) = a.sb, a = 0.8811 and b = −0.5897

Indices of Goodness of fit

Sum of Squares due to Error 0.1868

Square of the multiple correlation (R-Square) 0.8712

Degrees of Freedom Adjusted R-Square 0.8693

Root Mean Squared Error 0.0524

Table 1. Fitting the average values of IAs
pkt.

model: in this extension, referred to as extended LiTGen, the in-objects pack-
ets arrival times are still modeled by renewal processes, but now the average
in-object packets inter-arrival times depend on the corresponding object size.
Thus, in order to evaluate extended LiTGen, we extract size-dependent empiri-
cal distributions of in-objects packets inter-arrivals from the captured trace (the
maximum object’s size in terms of packets, extracted from the captured trace,
is equal to 15547). When generating traffic, the packets inter-arrivals in a Web
object of size s are then taken from the corresponding IAs

pkt distribution.

The resulting spectrum (circle curve in Fig. 1) is barely distinguishable from
the captured one. The introduction of this simple dependency between the ob-
jects sizes and the packets inter-arrival times succeeds in reproducing accurately
the traffic correlation structure. This dependency may reflect the impact of TCP
slow start on objects of different sizes: the bigger an object, the shorter its average
packets inter-arrival times. Indeed, the average values of the IAs

pkt distributions
can be approximated with a good accuracy by a decreasing power law, strength-
ening the previous conjecture. Table 1 gives the goodness of such a fit taking
into account the objects of size s<70 (fit with cutoff, the population of objects
of larger size is scarce, 99% of the captured values correspond to objects of size
s<12).
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Fig. 2. Investigating grouped IAg
pkt distributions in LiTGen

Without considering network or protocol peculiarities, extended LiTGen re-
produces the second order traffic characteristics while remaining much simpler
than [4]. However, in order to use extended LiTGen in operational conditions, we
need to be able to characterize how the packets inter-arrival times distribution
depends on the objects sizes. Obviously, the best would be to model analyti-
cally this relation, either by finding a suitable distribution whose parameters
are described as functions of the objects sizes, or, as stated before, by involving
simple (e.g. Markovian) TCP and/or network models as an input of our traffic
generator. This work is currently under investigation.

As a first attempt to understand the impact of this relation between the in-
objects packets inter-arrivals and the objects sizes over the traffic characteristics,
and to help us carrying through analytical modeling, we first investigate the
possibility of reducing the number of IAs

pkt distributions to be considered, in
order for LiTGen to remain simple and accurate. To this aim, we group objects
of different sizes and compute “grouped” IAg

pkt distributions. This operation
requires to determine how many groups are needed and their composition.

We first group objects by maintaining an equivalent size p of the popula-
tion for each group. The first group contains all the objects of size s = 2 and
defines the population p. The following group is made by gathering objects of
increasing sizes till the population of the group reaches p; and so on for the
other groups. Because the population of the first group is large, we obtain only
three groups corresponding to the following object sizes: {[2], [3;6], [7;15547]}.
Thus, the packets inter-arrival times in a Web object composed of two packets
are taken from the empirical distribution IAs=2

pkt . The packets inter-arrival times
in a Web object composed of three to six packets are taken from the empirical
distribution IAs=3∪4∪5∪6

pkt ; and so on. The resulting spectrum (triangle line in
Fig. 2) is very similar to the basic LiTGen one. Finally, the small objects do not
have a major impact on the spectrum. The large ones, even if less represented,
carry a great number of packets, and have a significant impact on the spectra,
at medium and large time scales.
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Fig. 3. LiTGen underlying model evaluation: semi-experiments methodology

In another attempt, we group the objects by describing the objects sizes dis-
tribution along a binary tree. The root of the tree is a single group corresponding
to basic LiTGen and the use of one empirical distribution IApkt (not dependent
on the objects sizes). The set of groups representing the tree leaves (deepest
level n in the tree) corresponds then to extended LiTGen and the use of the
maximum number n of empirical distributions IAs

pkt, for each different object
size s. Finally, the intermediate levels i in the tree correspond to the use of i em-
pirical distributions IAgi

pkt during the generation process. In figure 2, we observe
spectra of the groups formed by specific levels of the binary tree. As the level
observed is deeper in the tree (see the figure, from level n/64 to n/4), and the
number of IAg

pkt distributions used is greater, the corresponding spectrum grad-
ually gets closer to the reference spectrum (and extended LiTGen) confirming
the equivalent contribution of small and large objects. Other methods to build
objects groups led to similar spectra and interpretation. In conclusion, no key
value defining the number of groups appears; the ability to reduce the number
of IAs

pkt distributions to model depends directly on the desired accuracy.

3.2 Semi-experiments analysis

To exhibit the internal properties of LiTGen’s synthetic traffic, we now conduct
an analysis based on semi-experiments (SEs). SEs have been introduced in [14]
and consist in an arbitrary but insightful manipulation of internal parameters
of the time series studied. The comparison of the energy spectrum on the LDE
before and after the SE leads to conclusions about the importance of the role
played by the parameters modified by the SE. Using extended LiTGen, we apply
the same set of SEs to the captured and synthetic traces and observe how they
impact both spectra (Fig. 3(a) and 3(b)).

T-Pkt is a Truncation manipulation that transforms the objects arrival pro-
cess by keeping only the first packet of each object. Removing packets decreases
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Fig. 4. Sensitivity of the traffic scaling behaviors with regard to the r.v. distributions

the energy of the spectrum that takes smaller values. As shown in figures 3(a)
and 3(b), T-Pkt has a similar impact on the captured and the synthetic traces.

S-Thin tests for the independence of objects. It randomly Selects objects
with some probability, here equal to 0.9. When applying S-Thin, the spectra
of the two traces keep the same shape but drop by a small amount close to
log2(0.9)=−0.15 (barely visible on the plots).

A-Pois targets the interactions between objects. This manipulation repo-
sitions the objects Arrival times according to a Poisson process and randomly
permutes the objects order (preserving the internal structure of objects). While
A-Pois is a drastic manipulation, it has similarly very little effect on the spec-
tra of the two traces, indicating the negligible contribution of the objects arrival
process.

P-Uni reveals the impact of in-objects packets burstiness. It uniformly dis-
tributes arrival times of packets in each object while preserving packets count
and object duration. This manipulation flattens the spectrum from scales j =−11
to j =−5 in a comparable manner for the captured and synthetic traces.

To sum up, the captured and synthetic traces spectra present similar reac-
tions to each SE. As a consequence, LiTGen reproduces the key internal proper-
ties of the captured traffic highlighted by the SEs, i.e. the objects arrival process
has few influence; the objects can be considered as independent and the pack-
ets arrival process within objects contributes mostly to the energy spectrum.
The simple structure of LiTGen, which still relies on renewal processes, is thus
sufficient to reproduce these traffic internal properties.

4 Sensitivity of the traffic with regard to the distributions

We now investigate if “well-known” distributions can accurately approximate
the empirical ones. Using statistical goodness of fit tests, we found that heavy
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tailed distributions approximate well the majority of the random variables: while
Npage, Nobj and Toff are close to power laws, Nsession and IAobj are close to sub
exponential distributions (respectively Lognormal and Weibull, see [15] for more
details). Even if we did not manage to model IApkt by a well-known distribution
accurately, it is closer to sub exponential distributions than exponential ones.
Finally, TIS can be well approximated by an exponential distribution.

While several works studied the relationship between traffic burstiness, and
network or protocol characteristics (e.g. loss probabilities, RTT, link capacities,
TCP dynamics) [4, 13, 16], the flexibility of extended LiTGen enables us to inves-
tigate the impact of random variables distributions on traffic burstiness. To this
aim, we replace individually the empirical distribution of each random variable
by a memoryless distribution (exponential or geometric) of same mean. We thus
create seven synthetic traces, each one corresponding to a given random variable
being replaced. We then compare these traces to the reference synthetic trace
generated by extended LiTGen calibrated with the empirical distributions.

Fig. 4(a) illustrates the investigation of IAobj , Npage, Toff , Nsession and TIS .
Even if heavy tailed distributions fit accurately these random variables, except
TIS , their modeling by memoryless distributions leads to very few impact on the
data spectra. Indeed, we can barely distinguish the synthetic traces from the
reference one. In conclusion, the traffic scaling structure of the studied wireless
trace is insensitive with respect to the distributions of these random variables.

In Fig. 4(b), we present the investigation of IApkt and Nobj . As an example,
we observe that modeling IApkt by an exponential distribution flattens the spec-
trum at scales below j =−3. The traffic scaling structure is then very sensitive
to the distributions of IApkt and Nobj . This confirms the results obtained by
the SEs methodology that highlighted the packets inter-arrival process within
objects as the main source of energy in the spectrum.

Finally, we create two new synthetic traces, which we compare to the refer-
ence one. We obtain the first trace by modeling the insensitive random variables
(cf. Fig. 4(a)) with memoryless distributions. We thus create a synthetic trace



in which only Nobj and IApkt are calibrated with empirical distributions. Fig. 5
shows that the corresponding spectrum (triangle line) matches the reference
one. This result has a strong practical appeal: five of the seven random variables
are modeled by memoryless distributions, while reproducing the traffic scaling
structure. Moreover, we found that this spectrum reproduces the traffic internal
properties highlighted by the semi-experiments in section 3.2. In Fig. 5, the last
synthetic trace is obtained by modeling all the random variables with mem-
oryless distributions. We observe a great deviation between the corresponding
spectrum (square line) and the reference one, which confirms the sensitivity of
the traffic with respect to the distributions of IApkt and Nobj .

5 Conclusion

This paper describes LiTGen, a light traffic generator that reproduces accurately
the traffic scaling properties at small and large time scales. Illustrated on Web
traffic, we show the accuracy of LiTGen to maintain second-order traffic char-
acteristics without considering network or protocol peculiarities. We highlighted
the dependency between objects sizes and in-object packets inter-arrivals, and
showed how this impacts the quality of the generator.

Thanks to LiTGen, we investigated the impact of the random variables dis-
tributions describing the IP traffic structure. This investigation helped us to
model simply these random variables and also identified the crucial ones. As
an example, the objects sizes (in number of packets) and the respective packets
inter-arrivals have to be modeled carefully in order to reproduce accurately the
original traffic spectrum. Nevertheless, our study demonstrated that the presence
of heavy tailed distributions in traffic does not necessarily implies correlation,
some of them can be modeled by memoryless distributions without impacting
the traffic scaling properties.

In future works, we will investigate a new methodology to evaluate LiTGen’s
accuracy. We will compare the performance of a simple queue model fed, in the
one hand by the captured traffic and, in the other hand by the synthetic traffic
generated with LiTGen. The first results confirm LiTGen’s ability to catch the
captured traffic properties accurately: the performance of the queue under the
synthetic traffic are very close to the ones obtained under the captured traffic,
whereas simpler renewal processes (such as Poisson processes) as an input give
performance parameters that are very far from reality. We will also investigate
the dependency between object sizes and the packets arrival process as a possible
signature for anomaly detection.

References

1. Mah, B.A.: An empirical model of http network traffic. In: IEEE Infocom, Kobe,
Japan (April 1997)

2. Barford, P., Crovella, M.: Generating representative web workloads for network
and server performance evaluation. In: ACM SIGMETRICS, Madison, Wisconsin,
USA (June 1998)



3. Sommers, J., Barford, P.: Self-configuring network traffic generation. In: ACM
IMC, Taormina, Sicily, Italy (October 2004)

4. Vishwanath, K.V., Vahdat, A.: Realistic and responsive network traffic generation.
In: ACM SIGCOMM, Pisa, Italy (September 2006)

5. Crovella, M., Bestavros, A.: Self-similarity in world wide web traffic: Evidence and
possible causes. In: ACM SIGMETRICS, Philadelphia, PA, USA (May 1996)

6. Willinger, W., Taqqu, M.S., Sherman, R., Wilson, D.V.: Self-Similarity throught
high-variability: Statistical analysis of ethernet LAN traffic at the source level. In:
ACM SIGCOMM, Philadelphia, PA, USA (August 1995)

7. Misra, V., Gong, W.B.: A hierarchical model for teletraffic. In: IEEE CDC, Tampa,
Florida, USA (December 1998)

8. Ridoux, J., Nucci, A., Veitch, D.: Seeing the difference in IP traffic: Wireless versus
wireline. In: IEEE Infocom, Barcelona, Spain (April 2006)

9. Rolland, C., Ridoux, J., Baynat, B.: LiTGen, a lightweight traffic generator: ap-
plication to P2P and mail wireless traffic. In: PAM, Louvain-la-neuve, Belgium
(April 2007)

10. Donelson-Smith, F., Hernandez-Campos, F., Jeffay, K., Ott, D.: What TCP/IP
protocol headers can tell us about the web. In: ACM SIGMETRICS, Cambridge,
Massachusetts, USA (June 2001)

11. : D. Veitch and P. Abry: Matlab code for the wavelet based analysis of scaling
processes, http://www.cubinlab.ee.mu.oz.au/∼darryl/.

12. Abry, P., Taqqu, M.S., Flandrin, P., Veitch, D.: Wavelets for the analysis, esti-
mation, and synthesis of scaling data. In: Self-Similar Network Traffic and Perfor-
mance Evaluation. Wiley (2000)

13. Jiang, H., Dovrolis, C.: Why is the internet traffic bursty in short time scales? In:
Sigmetrics, Banff, Alberta, Canada (June 2005)

14. Hohn, N., Veitch, D., Abry, P.: Does fractal scaling at the IP level depend on TCP
flow arrival process? In: ACM IMC, Marseille, France (November 2002)

15. Rolland, C., Ridoux, J., Baynat, B.: Hierarchical models for different kinds of traf-
fics on CDMA-1xRTT networks. Technical report, UPMC - Paris VI, LIP6/CNRS
(2006) http://www-rp.lip6.fr/∼rolland/techreport.pdf.

16. Figueiredo, D., Liu, B., Misra, V., Towsley, D.: On the autocorrelation structure
of TCP traffic. In: Computer Networks. Volume 40. (October 2002) 339–361


