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Abstract. In this paper, we analyze traffic seen at public WLANs “in
the wild” where we do not have access to any of the backend infrastruc-
ture. We study six such traces collected around Portland, Oregon and
conduct an analysis of fine time scale (second or fraction of a second)
packet, flow, and error characteristics of these networks.
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1 Introduction

Analysis of the MAC-level behavior of WLANs is required in order to better
deploy and design future systems. To this end, collection and analysis of traffic
traces is an important task. The main research reported in this paper analyzes
traffic traces collected using a commercial sniffer VWave [1] which has nano-
second time resolution. We characterize the packet level and flow level behavior
of these traces and note significant similarities. This result is good news, in that
the statistical models we derive can be widely applied for simulations. Our work
differs from prior work which have considered congested WLANs at conferences
and long-term, coarse-resolution, datasets [2] in favor of studying lightly loaded
public hotspots at high resolution, which we conjecture are the norm and not
an exception.1

2 Data collection methodology

The Veriwave WT20 hardware [1] consists of two 802.11 reference radios, real-
time linux, and two processors. The WT20 provides nanosecond resolution and
it logs the time when it began seeing a frame and the time when the frame
finished arriving.

We face two challenges in data collection: The first is placement of the VWave
sniffer. Because it has a lower effective receiver sensitivity than most access
points today (-75dBm versus -90dBm), we must prevent a large possible packet
loss with careful antenna choice and placement. The second problem is practical
– we had to obtain permission from the three merchants and further needed to

1 This work was funded by the NSF under grant no. 0325014
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ensure that our equipment was as unobtrusive as possible so as not to affect
the “normal” behavior of the users. We collected data at six different locations
of which three were located on-campus and three off-campus. Table 1 lists the
traces with some gross statistics.

Capture Length Total Range 802.11 IP TCP UDP Users
Name (hours) Pkts Mgt. Mean Max
psu-cs 1 127901 6-771 pps 41543 73473 8803 5965 2.6 5
(at PSU) (35 pps) 7k-7Mbps
library 4 696811 5-672 pps 159699 297481 190962 105405 2.1 3
(at PSU) (48 pps) 4k-7Mbps
cafeteria 4 1431897 7-1318 169541 1026304 911549 108474 10.2 19
(at PSU) (99 pps) 8k-10Mbps
pioneer-sq 4 307880 1-265 206526 99011 94066 4734 2.5 4
(outdoor) (21 pps) 1k-3Mbps
urban-grind 2 490528 10-355 87423 390514 350034 38696 6.9 9
(coffee shop) (58 pps) 6k-3Mbps
powell 4 762574 8-296 150622 565689 529228 20345 3.4 7
(book store) (53 pps) 6k-2Mbps

Table 1. Gross statistics of the captures

3 Detailed Data analysis

Our analysis is organized into four categories: network load in terms of users and
their residing times, anaysis of MAC-layer errors, the packet arrival process, and
finally flow arrival processes and duration times.

3.1 User load

We consider the number of users over time and the average time spent by a
user in the WLAN. We identify the presence of users by a successful DHCP
ACK. User departures are indicated by the last message seen with a given MAC
address. Table 1 gives the mean and maximum number of users for each capture.

The second statistic we consider is the length of time users stay active in the
WLAN (see Table 2). Residing time in four cases fits an exponential distribution
(“exp”) and in two cases fits the weibull distribution (“wbl”). The quality of the
fits is very good as measured by the deviation metric Λ [3] 2. Indeed, for all the
fits reported, Λ < 0.25.

psu-cs library cafeteria pioneer-sq urban powell
mean 1363s 5057 3675 4124 4896 2471
max 3486s 13001 11878 12911 8342 8081
std 1203 4900 3332 4744 2969 2181
fit exp exp exp wbl,[a, b] = [3276, 0.68] wbl,[a.b] = [5283, 1.44] exp

Table 2. Residing time of users.

2 This metric for determining the quality of a fit for traffic analysis was first used in
[3] where the author explains the rationale behind using this metric rather than a
chi-square metric or other metrics.



Analysis of WLAN Traffic in the Wild 3

3.2 Error analysis

The lower receiver sensitivity of the VWave, makes FCS a poor choice for error
analysis. Instead, for the remainder of this section we use MAC retransmissions
as an indicator of error and not the FCS value (this is consistant with [4]). We
observe a moderate linear correlation between MAC retransmissions and load,
with correlation coefficients of 0.53 and 0.54 for packets/sec and bytes/sec re-
spectively. We do see a general reduction in MAC retransmissions with improving
rssi, but the relationship does not have a clear fit. And hence, neither load nor
signal strength can be conclusively named as a cause of error.
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Fig. 1. Censored error data PDF and fit.

To fit a distribution to the error process, we compute the probability of
error/sec (i.e., for each second what is the probability that a packet will be
in error) and then use this set of data to fit a distribution. We note that the
probability of no error is quite high and thus any distribution fitting will fail. We
therefore resort to a simple technique where we censor the data. To explain this,
consider Figure 1 which shows the PDF and a lognormal fit of censored error
data. The error data is censored as follows: we have 14400 seconds of data of
which 7700 seconds saw no MAC layer retransmissions (50%). The PDF shown
corresponds only to the times when there were MAC layer retransmissions. Table
3 summarizes the fit observed for all six traces after censoring. It is interesting to

note that in all cases except one, the best fit for the censored data is a lognormal

fit with parameters [µ, σ] that are relatively close. Indeed the fits are very good
as indicated by the deviation metric Λ. The one exceptional trace, pioneer, is
our only capture of an outdoor node – this may serve to explain the different
error process observed.

3.3 Packet arrival analysis

The metric we consider here is the number of packets/second seen in each trace
(the bytes/sec metric follows the same distribution in all six cases). Table 4
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Censored data Fit for censored data

psu-cs 0.63 lognormal [µ, σ] = [1.8, 0.75], Λ = 0.09
library 0.66 lognormal [µ, σ] = [1.87, 0.75], Λ = 0.15
cafeteria 0.31 lognormal [µ, σ] = [2.0, 0.9], Λ = 0.07
pioneer 0.32 gamma [a, b] = [3.5, 5.3], Λ = 0.45
urban 0.65 lognormal [µ, σ] = [1.25, 0.85], Λ = 0.21
powell 0.5 lognormal [µ, σ] = [1.71, 0.93], Λ = 0.09

Table 3. Fit for censored error data. The second column represents probability of
zero retransmissions/second. The third column is the fit for the data when there is a
non-zero probability of retransmission. For the fit parameters we use standard notation.

summarizes the best distributional fit for each of the six traces. We see that for
half the traces t-location scale gives a good fit and for the other half inverse
gaussian provides a good fit. Interestingly, the three traces following the inverse
gaussian fit correspond to a cafeteria – one at the university, one at a bookstore
and a third which is a coffee shop. The three traces that follow t-location scale
were generally characterized by few average users (2.1 – 2.6) and lower packet
rates which caused non-stationarity.

Mean Fit Fit Deviation
pkts/sec parameters (quality)

psu-cs 35.3 t-loc scale [µ, σ, ν] = [20, 5.16, 1.09] Λ = 2.2
library 48.3 t-loc scale [µ, σ, ν] = [32.6, 6.1, 1.1] Λ = 0.62
cafeteria 99.3 inv gaussian [µ, λ] = [99.3, 75.9] Λ = 0.28
pioneer-sq 21.3 t-loc scale [µ, σ, ν] = [14.1, 3.3, 1.1] Λ = 0.79
urban-grind 58.1 inv gaussian [µ, λ] = [58.1, 97.3] Λ = 0.33
powell 52.9 inv gaussian [µ, λ] = [52.9, 36.7] Λ = 1.4

Table 4. Distribution fits for pkts/sec.

3.4 Flow analysis

Flows are more representative of user behavior than are packet traces, and thus,
it is important to consider various flow metrics as well when comparing different
traces. We use two flow metrics in this study – flow arrival rate (number of
flows/sec) and flow duration (seconds). We do not consider flow interarrival time
distribution because the flow arrival rate metric is a cumulative metric based on
the flow interarrival times.

To determine flows, we proceeded as follows: we consider pairs of commu-
nicating IP address/port tuples and then identify as flows sequential packet
exchanges where there were no gaps greater than t = 64s. Flow duration is com-
puted based on a time difference between the first and last packet seen. Table 5
summarizes the distribution fit for flows/sec and flow duration. Four traces ex-
hibit the same negative binomial distribution for flow duration. The exceptions
are the library and cafeteria traces. The flow arrival rate distributions, on the
other hand, show much more variation.

Our results for the flow arrival process contrast sharply with the results of
[5] where the authors find that a weibull distribution fits the observed data.
However, their result was based on an hourly scale (i.e., number of flow ar-
rivals/hour) whereas our results model flow arrivals/sec. Our results can thus
be used for fine time-grained modeling while their results can be used at larger
time scales (hours, days).
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A second result from [5] shows that flow duration as measured by number
of packets in the flow is lognormal. We measure flow duration by time and in
our case we generally see a negative binomial distribution with two exceptions.
One possible reason for the difference in results is the definition of flows. Unlike
[5], we split a TCP flow into more flows if there is a lull in packets exceeding
64s. In other words, idle times (“thinking”) may result in separate flows for the
same TCP connection. This model of defining flows has previously been used in
Internet traffic modeling [6].

Flow arrival rate Parameters Flow duration Parameters

psu-cs exponential µ = 11.18 neg binomial [r, p] = [19.1, 0.69]
Λ = 2.9 Λ = 0.26

library t-loc scale [µ, σ, ν] = [6, 4.6, 0.7] inv gaussian [µ, λ] = [9.5, 1.9]
Λ = 1.1 Λ = 2.3

cafeteria exponential µ = 9.6 (flows/100s) weibull [a, b] = [6.7, 0.78]
Λ = 0.8 Λ = 6.5

pioneer-sq generalized [k, σ, µ] = [2, 4.3, 1.9] neg binomial [r, p] = [0.56, 0.06]
extreme value Λ = 2 Λ = 0.9

urban-grind neg-binomial [r, p] = [0.1, 0.005] neg-binomial [r, p] = [0.58, 0.35]
Λ = 0.18 Λ = 2.5

powell neg binomial [r, p] = [0.018, 0.007] neg binomial [r, p] = [0.7, 0.03]
Λ = 2.9 Λ = 11

Table 5. Flow distribution fit.

4 Conclusions

The broad results of our analysis are as follows: user residing times can be well
modeled by an exponential distribution, packet errors generally follow a lognor-
mal distribution (censored data), load in packets/sec can be modeled using an
inverse gaussian distribution (though for very lightly loaded networks t-location
scale provides a better fit), flow duration are mostly negative binomial while
flow rates do not follow a common distribution. We can conclude that despite
the diversity of the WLANs monitored, the users generally are similarly behaved,
which is a very useful result from the point of view of future analysis.
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