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Abstract. The network distance estimation schemes based on Euclidean
embedding have been shown to provide reasonably good overall accu-
racy. While some recent studies have revealed that triangle inequality

violations (TIVs) inherent in network distances among Internet hosts
fundamentally limit their accuracy, these Euclidean embedding meth-
ods are nonetheless appealing and useful for many applications due to
their simplicity and scalability. In this paper, we investigate why the Eu-
clidean embedding shows reasonable accuracy despite the prevalence of
TIVs, focusing in particular on the effect of clustering among Internet
hosts. Through mathematical analysis and experiments, we demonstrate
that clustering of Internet hosts reduces the effective dimension of the
distances, hence low-dimension Euclidean embedding suffices to produce
reasonable accuracy. Our findings also provide us with good guidelines
as to how to select landmarks to improve the accuracy, and explains why
random selection of a large number of landmarks improves the accuracy.

1 Introduction

Network distance estimation schemes have been extensively studied during the
past several years. These schemes include [1–5], just to name a few. Among many
proposed schemes, the coordinate based schemes are gaining interest because of
its simplicity and reasonably good accuracy. In the coordinate based system,
each host is assigned a set of coordinates. The set of coordinates represents
the position of the host in a virtual Euclidean space. The network distance
is estimated by the Euclidean distance between the two hosts in the virtual
Euclidean space. To assign coordinates to the hosts, many schemes rely on a
set of special hosts called landmarks. Each host measures the distances to the
landmarks and transforms the measured distances into a set of coordinates by
using various optimization techniques.

Although Euclidean embedding methods for network distance estimation in
general provide reasonably accurate distance estimation for a majority of nodes,
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there are fundamental limitations on their accuracy. In particular, recent stud-
ies [6, 7] have shown that the triangle inequality violations (TIVs) prevalent in
the network distances among Internet hosts fundamentally limit the suitability
of Euclidean embedding of network distances, thus the accuracy of Euclidean
embedding-based distance estimation methods. Despite these limitations, Eu-
clidean embedding methods are nonetheless appealing and useful for some ap-
plications, due to their simplicity and scalability. For example, P2P applications
can easily employ the geographic forwarding such as GPSR for scalable object
look up by assigning coordinates to hosts and objects based on network distances
and random hash functions ([8], [9]).

In this paper, we investigate why the Euclidean embedding shows reasonable
accuracy despite the prevalence of TIVs in network distances. In particular, we
explore the effects of clustering among Internet hosts on network distance es-
timation – in particular, in terms of landmark selections – and how to exploit
such clusters to judiciously select landmarks to obtain more accurate distance
estimations. Clustering of Internet hosts are primarily due to the Internet rout-
ing hierarchy and AS (Autonomous System) topology. In other words, there are
inherent clusters of hosts where distances between hosts within the same cluster
are significantly smaller than those across clusters. In [7] we have showed that
distances (i.e., latencies) among hosts within the same cluster tend to have more
TIVs than among hosts in different clusters. In this paper based on mathemati-
cal analysis and simulation experiments, we demonstrate that reasonably good
estimation of inter-cluster distances can hide the inaccuracy of small distances
due to TIVs. Our findings provide us with good guidelines as to how to select
landmarks to improve the accuracy of distance estimation. For instance, land-
marks should be selected from each cluster and the number of landmarks should
be proportional to the size of the clusters.

Before we proceed to present our work in more details, we would like to
emphasize that the goal of this paper is not to try to improve the accuracy
of Euclidean-embedding based distance estimation methods, which, as stated
earlier, are fundamentally limited by the prevalence of TIVs. Instead, the goal
is to understand the underlying factors that contribute to reasonably accurate
distance estimations using the Euclidean embedding approach (while within the
confines of its fundamental limitations), and to provide good guidelines for land-
mark selections to produce best possible results. The remainder of the paper is
organized as follows. Section 2 describes the GNP and Virtual Landmarks meth-
ods. In Section 3, we show that clusters help improve the accuracy of Virtual
Landmark Method. We discuss the effect of clusters on the landmark selection
in Section 4. We conclude the paper in Section 5.

2 Background

In this section, we describe two representatives of Euclidean embedding based
distance estimation schemes : Global Network Positioning (GNP) ([2]) and Vir-
tual Landmarks ([3]).
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GNP uses a fixed set of landmarks as the reference points. The landmarks
measure the distances among themselves and assign coordinates by using simplex
downhill optimization method. Basically, they assign coordinates such that the
error between the actual distance and the estimated one is minimized. Then, each
host measures the distances from itself to the landmarks. Based on the already
assigned coordinates of the landmarks and the measured distances, each host
finds out the coordinates that minimize the estimation errors by using iterative
simplex downhill method.

However, the iterative simplex downhill method has very high computation
time. To reduce the computation time, Virtual Landmarks method employs Prin-
cipal Component Analysis (PCA). PCA is based on the singular value decom-
position on the symmetric distance matrix among n nodes. The following de-
scription on singular value decomposition is mostly adopted from [3]. Let D be
the n × n matrix and each entry dij is the distance from node i to node j. The
singular value decomposition of the matrix D has the form

D = U · W · V T , (1)

where U is an n×n orthogonal matrix , V is an n×n orthogonal matrix, and W is
an n×n diagonal matrix. The diagonal entries of W are called the singular values
of the matrix D. The singular values of D are the nonnegative square roots of the
eigenvalues of DT D, and the columns of U and V are orthonormal eigenvectors
of DDT and DT D. The number of non-zero singular values is the rank of the
matrix D. Let x1, x2, · · · , xk be the k(< n) eigenvectors corresponding to the
k largest eigenvalues. We stack the vectors into rows to form a transformation
matrix, M ∈ R

k×n, i.e., M = (x1, x2, · · · , xk)T . The dimension reduction is by
simply multiplying M to a given high dimensional distance vector, v ∈ R

n, i.e.,
v′ = Mv, where v′ ∈ R

k.
In Virtual Landmarks, the distances among the landmarks are first measured

to form the distance matrix D. Then, the transformation matrix M and the
coordinates of the landmarks are computed based on the above discussion. Each
host measures the distances from itself to the landmarks (let’s call the distance
vector, h. Such h is also called Lipschitz Embedding.) By computing Mh, the
coordinates of each host are computed. One thing to note is that the number of
the large singular values of D can represent the number of clusters as described
in the next section.

3 Impact of Clusters on the Accuracy of Euclidean

Embedding

Euclidean embedding of network distances is basically an optimization problem.
It tries to assign coordinates to hosts so that the difference between the esti-
mated distance and the real one is minimized. GNP strictly follows this idea by
using simplex downhill method. Even though GNP uses the two phase coordi-
nate computation (one for landmarks and one for hosts), which is different from
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the global optimization, it mimics the global optimization in such a way that
the accuracy of GNP may approach the accuracy of the optimal embedding.
Especially when the data set is from a Euclidean space, GNP is able to find the
very accurate coordinates up to some precision errors of the machine.

Virtual Landmarks method, however, does not have any strong justification
on why the Lipschitz embedding can estimate the distances with reasonable er-
rors. All [3] shows is that the PCA can reduce the dimension of the Lipschitz em-
bedding without much accuracy loss from the accuracy of Lipschitz embedding.
This thought motivates us to investigate why PCA-based Euclidean embedding
shows reasonably good estimation accuracy. We conjecture that the existence
of clusters may have some impacts on the accuracy. One intuition is that when
the number of clusters is small, the Lipschitz embedding can achieve good accu-
racy for estimating the inter cluster distances, which shows the reasonable good
accuracy overall.

To justify our conjecture, we first show the estimation accuracy of Virtual
Landmarks method over various synthetic and real measurement data sets. Then,
we relate the accuracy with the number of clusters in the data set, which is
accurately found by the number of large singular values of PCA used in Virtual
Landmarks method. For the metric of the accuracy, we use the relative error,
rx,y, which is defined as follows.

rx,y =
|dx,y − d̂x,y|

min(dx,y, d̂x,y)
, (2)

where dx,y is the actual distance between hosts x and y and d̂x,y is the estimated
one.

We first generate two types of synthetic distance matrices : Random points
and Clustered points from Euclidean spaces. For the random point data sets, we
randomly generate 360 points from a unit hyper cube of 2 and 8 dimensional
Euclidean space. They are called “d-2” and “d-8” respectively. For the clustered
points, we first select k (the number of clusters, 6 in the experiments) points as
cluster centers in a unit hyper cube. Then, we generate c nodes within a small
hyper cube (side length is 0.1, which is 10% of the side of the unit hyper cube. c

is 60, 30, and 20 depending on the number of clusters.) centered at each cluster
center. The number of dimensions is 2 and 8. We construct the distance matrix
among the nodes by using the Euclidean distance between each pair of nodes.
The two distance matrices are called “d-2-cl” and “d-8-cl” according to their
dimensions.

Furthermore, we use two real measurement data sets : Planetlab and King.
PlanetLab is derived from the distances measured among the Planetlab nodes
on Sep 30th 2005 [10]. We choose the minimum of the 96 measurement data
points for each measurement between node pairs. After removing the hosts that
have missing distance information and the hosts that have same /24 prefixes, we
obtain a 148 × 148 distance matrix among 148 nodes. King data set is the one
used in [4]. After removing the hosts that have missing distance information, we
finally get a distance matrix among 462 hosts.
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Fig. 1. Accuracy of Virtual Landmark Method : Virtual Landmarks method shows
lower accuracy for high dimensional Euclidean data set. However, when the data set
has clusters, the accuracy degradation is limited.

We run Virtual Landmarks method to embed the above distance matrices into
the Euclidean space. In this experiment, we use 18 randomly selected landmarks.
For “d-2” and “d-2-cl”, we use 3 dimensions and for “d-8” and “d-8-cl”, we use
9 dimensions. For King and Planetlab data sets, we use 7 dimensions, which
are suggested in [2, 3]. The cumulative distributions of the relative errors are
shown in Fig 1. One surprising result is that the accuracy for “d-8” is very poor.
However, when the data sets have clusters such as in ”d-8-cl”, the accuracy is
reasonably good. Planetlab also shows reasonably good accuracy in that more
than 70 % of the estimations show the relative error less than 0.25.

The result highly suggests that the accuracy of the Virtual Landmarks method
is related with the existence of clusters. To explain this relationship, we focus on
the suggestion of the authors of the Virtual Landmarks method on choosing the
number of dimensions. They suggest that the number of dimensions should be
the number of dominant singular values of PCA. Interestingly, in the following,
we show that the number of dominant singular values is the number of clusters.
This implies that the coordinates computed by the Virtual Landmarks are ac-
tually the approximate distances from each host to the clusters. [11] also states
similar insights that the PCA dimension reduction automatically performs data
clustering according to the K-means objective function.

To show that the number of dominant singular values is the number of clus-
ters, we need to define the number of dominant singular values. For that purpose,
we use the magnitude change r(i) of the ith singular value. The number of dom-
inant singular values is defined as i such that r(i) is the largest. r(i) is defined
as follows, where the singular values (λi) are sorted in descending order,

r(i) =

{

1 if i = 0 or (λi = 0, λi−1 = 0)
λi−1

λi

(≥ 1)otherwise
(3)
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We first prove that the number of dominant singular values is the number
of clusters for a distance matrix with extremely tight clusters, i.e., the points in
each cluster are at the same position in the Euclidean space.

Theorem 1. Let C = {C1, C2, · · · , Ck} be the k clusters of points in a d dimen-
sional hyper cube. Each cluster Ci contains ni points. Let N =

∑

i ni. Let S be
the set of N points. Let D be the N × N distance matrix among the points in
S. Let λi be the i-th singular value of the singular value decomposition of D for
i = 0, · · · , N −1. If the assumption that the points in Ci are at the same position
for i = 1, · · · , k holds, then

r(k) = max
i>1

r(i),

for k > 1, where r(i) is defined in (3).

Proof. Since we assume that the points in Ci are at the same position for i =
1, · · · , k, the distance matrix D is k × k block matrix. The i, j block is ni × nj

matrix. Since the points in each cluster have the same position and the distance
between two nodes is the Euclidean distance, the first n1 rows of the matrix
D are the same, the second n2 rows of the matrix D are the same, and so on.
Since all the diagonal blocks are 0, there are k distinct rows in the matrix D.
This means that the rank of D is k. The number of non-zero singular values of
the singular value decomposition of D is actually the rank of D, i.e., k. Since
k + 1-th singular value is 0, r(k) = ∞ = maxi>1(i). So the number of dominant
singular values of D is k, the number of clusters. ⊓⊔

To show that the same is true for non-extreme data sets, we use three kinds
of data sets including Euclidean distance matrix with clusters, Topology based
synthetic distance matrices, and the real measurement data sets. For Topology
based synthetic distance matrices, we first use BRITE tool from Boston Univer-
sity to generate synthetic 2-level topologies. Then, we move the nodes in each
AS into smaller regions to make clear clusters, which look like the one in Fig. 2.
We create 6 AS, 12 AS, and 18 AS topologies, and each topology has 360 nodes
in total. By assigning the Euclidean distance between adjacent nodes as the
weight of the link and running hierarchical routing, we compute the distance
matrix among hosts. Furthermore, we use one more real measurement data set
called NLANR data set. NLANR data set is collected from Active Measurement
Project (AMP) ([12]) on April 7. 2004. After removing some hosts that have
missing distance information, we finally get a distance matrix among 83 hosts.

We apply PCA on the distance matrices. As can be seen in Fig. 3(a), there
are high peaks at the singular value number that equals the number of clusters in
the Euclidean distance matrices. Similarly, Fig. 3(b) shows that the high peaks
occur at the right number of ASes (i.e. clusters). This clear peak does not appear
for the real Measurement data sets as can be seen in Fig. 3(c). However, there are
still several reasonable peaks around 5-7, which means that Virtual Landmarks
can get benefit from the existence of clusters. This is manifested in Fig. 1, where
the accuracy of Planetlab is similar to that of “d-8-cl”.
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Fig. 2. Example : 18 ASes with 20 nodes in each AS. There are total 360 nodes in the
topology.

To corroborate whether there exist clusters in the real measurement data
set, we cluster the Planetlab data set (202 nodes including the nodes that have
same /24 prefixes) by the spectral clustering algorithm4. Then, we compute the
average intra cluster distances of the clusters and find the locations of the hosts
in each cluster 5 (refer to Table 1). The average distances are computed after
excluding 3 outliers (the hosts that have largest average distance to all the other
hosts in the cluster) from each cluster. The second column shows the number of
hosts in each cluster and the number in the parenthesis is the number of hosts
after excluding 3 outliers. Most of the clusters have very small average intra
cluster distances (1.328ms to 14.444ms) except the cluster 5. The cluster 5 has
high intra cluster distances and the hosts of the cluster are scattered around
Europe, Asia, and Australia. However the hosts in other clusters are located
in relatively small regional areas. In general, the Internet has 5-7 clusters with
small intra-cluster distances.

4 Effect of Clusters on Landmark Selection

In this section, we investigate the effect of clusters on the landmark selection
problem. [13] shows some experiment results suggesting that one landmark from
each cluster improves the accuracy. Furthermore, they show that the random
landmark selection is reasonably good when the number of landmarks is around
20-30. However, the paper only shows experimental results rather than a rigorous
analysis. Here, we provide a theorem stating that the number of landmarks
selected in a cluster should be proportional to the number of hosts in that cluster,
not just one landmark from each cluster.

Theorem 2. Under the assumption that the hosts in each cluster are at the
same position, the distance estimation that uses number of landmarks propor-

4 We think that any clustering method is fine for this purpose
5 We look up the location of each IP address at ”http://www.ip2location.com”
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Cluster Num of intra cluster Countries Locations
hosts dist (ms)

1 26(23) 14.012 USA, Canada East cost cities,

2 31(28) 6.761 USA, Canada East cost cities,

3 17(14) 4.322 USA California, Washington,
Arizona

4 17(14) 7.744 USA, Canada Washington, Oregon,
Calgary, Vancouver

5 56(53) 69.391 Europe, Asia, Australia -

6 21(18) 1.328 USA CA

7 34(31) 14.444 USA Central USA from
Michigan to Texas

Table 1. Properties of Clusters (Planet lab data).

tional to the hosts in a cluster performs better than one that uses equal number
of landmarks in each cluster.

Proof. Let C = {C1, C2, · · · , Cc} be the set of c active clusters. Let N the
set of all the hosts. Let ni be the number of hosts in cluster Ci. Let n =
min(n1, n2, · · · , nc). In the proportional landmarks case, the number of land-
marks in cluster Ci is ni

n
(for simplicity, we assume all these numbers are in-

tegers). Let P be the set of landmarks used in distance estimation in the pro-

portional landmarks case. Let k =

∑

c

i=1
ni

nc
be the number of landmarks per

cluster used in distance estimation in the equal landmarks case. Let E be the
entire set of landmarks used in distance estimation in the equal landmarks case.

So |P| = |E| = kc =

∑

c

i=1
ni

n
. Let L be the set of c landmarks, one from each

cluster. So L is a subset of P and E . We assume that the objective function of
the distance estimation system is

min
∑

x

∑

y

|dx,y − d̂x,y|
2, (4)

where x, y ∈ N and dx,y is the actual distance between x and y, and d̂x,y is the
estimated one.

Let Ka =
∑

x

∑

y |dx,y−da
x,y|

2 where x, y ∈ N and Da = (da
x,y) is the distance

matrix obtained by the distance estimation method using the landmarks from
P . That is, Da is such that

∑

p

∑

q |dp,q − da
p,q|

2 is minimum, where p, q ∈ P .
Thus, Da minimizes

∑

p

∑

q

lplq|dp,q − da
p,q|

2, (5)

where p, q ∈ L and li is the number of landmarks in the cluster to which node i

belongs.
Let Kb =

∑

x

∑

y |dx,y−db
x,y|

2 where x, y ∈ N and Db = (db
x,y) is the distance

matrix obtained by the distance estimation method using the landmarks from
E . That is, Db is such that

∑

p

∑

q |dp,q − db
p,q|

2 is minimum, where p, q ∈ E .
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Since all the hosts in a cluster are assumed to be at the same location, we
have Ka =

∑

p

∑

q ηpηq|dp,q − da
p,q|

2 where p, q ∈ L and ηi is the number of
hosts in the cluster to which node i belongs. Since ηp = n × lp, we have Ka =
n2

∑

p

∑

q lplq|dp,q − da
p,q|

2 where p, q ∈ L. Similarly, Kb = n2
∑

p

∑

q lplq|dp,q −

db
p,q|

2 where p, q ∈ L. Since Da minimizes (5), we have Ka ≤ Kb. ⊓⊔

This result applies to any embedding scheme that tries to optimize (4) includ-
ing both GNP and Virtual Landmarks method. One obstacle of applying propor-
tional landmark selection in the real situation is that ni

n
may not be an integer.

In this case, we can select one landmark from each cluster. To compute landmark
coordinates, we can use the weighted objective function

∑

p

∑

q npnq|dp,q−d̂p,q|2,
where p, q ∈ L. Then, to assign coordinates of a host i, we can use the weighted
objective function,

∑

q nq|di,q − d̂i,q|2. In other words, we give a weight to the
error between the host and the landmark, and the weight is proportional to the
number of hosts in the cluster.

A more serious obstacle is that we do not know the clusters in advance
because we do not have the distance matrix among all the hosts. However, in the
following, we show that the performance of the random landmark selection with
increasing number of landmarks actually converges to that of the proportional
(clustering based) landmark selection. The intuition is that when the number
of landmarks is large, the number of landmarks selected from each cluster is
proportional to the number of hosts in the cluster.

The data set used in this experiment is the 6 ASes (clusters) with 60 nodes in
each AS topology (total 360 nodes) used in the previous section. In the clustering
based method, we randomly select one host from each cluster as a landmark,
since we know the clusters that the hosts belong to. We select 6 such landmarks.
In the sampling based method, we randomly select a subset of hosts from the set
of entire hosts as landmarks. The numbers of landmarks in the sampling based
method are 6, 12, 18, 24, and 30. We use 6 as the number of dimensions. After
we select the landmarks, we run the Virtual Landmark method on the data set
20 times.

Fig. 4 shows the relative errors of the 20 runs at 50th, 70th, and 90th per-
centiles over different landmark selection method. “CL” represents the clustering
based method and “SA” represents the sampling based method. The number of
landmarks in each method is appended to the key. The bars show the average
relative errors with min and max values of the 20 runs. As can be seen in Fig. 4,
the clustering based selection shows better performance in average. Furthermore,
the clustering based selection has small min-max range at each percentile, which
shows the stability of the clustering based method. However, the sampling based
selection has large min-max ranges for small number of landmarks. When the
number of landmarks increases, the accuracy converges to that of the cluster-
ing based method. It shows that the proportional landmark selection can be
achieved by using a large number of landmarks. The data sets from 12 AS 30
node topology and 18 AS 20 node topology also show similar result.

Next, we run the same experiment with the King data set. In the clustering
based method, we first apply the spectral clustering algorithm to construct 10
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Fig. 4. Accuracy of different landmark selection methods with the Synthetic 6 AS 60
node topology.

clusters. Then, we randomly select one host from each cluster as the landmark.
In the sampling based method, we randomly select a set of hosts from the set
of entire hosts as landmarks. The numbers of landmarks in the sampling based
method are 10, 15, 20, 25, and 30. We use 10 as the number of dimensions. We
run the experiment 20 times with different sets of landmarks. Fig. 5 shows the
result of the King data set. Just like the result of the synthetic data sets shown
in Fig. 4, the sampling based method with 10 landmarks shows high variance
on the accuracy. As the number of landmarks increases, the variance decreases,
which means that the random selection approaches to the proportional selection.
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5 Conclusion

In this paper, we investigated the factors that make the Euclidean embedding
show reasonably good accuracy for distance estimation. We showed that the ex-
istence of clusters actually helps improve the accuracy of distance estimation
in Virtual Landmarks method because of the way that the Virtual Landmarks
method chooses the number of dimensions. We also showed that selecting land-
marks proportional to the size of clusters increases the accuracy and in reality,
the random selection of a large number of landmarks can achieve the performance
of proportional landmark selection.
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