
Construction of a Proxy-based Overlay Skeleton Tree
for Large-Scale Real-Time Group Communications

Jun Guo and Sanjay Jha

School of Computer Science and Engineering
The University of New South Wales, Sydney, NSW 2052, Australia

{jguo,sjha}@cse.unsw.edu.au

Abstract. We consider the problem of constructing a proxy-based over-
lay skeleton tree (POST) in the backbone service domain of a two-tier
overlay multicast infrastructure. Spanning all multicast proxies deployed
in the overlay backbone, POST acts as an efficient resource sharing plat-
form for supporting large numbers of concurrent multicast sessions, with-
out the need of tree computation for each individual session. The problem
is concerned with deciding an appropriate deployment of multicast prox-
ies in the overlay backbone, upon which we wish to find an optimal POST
solution so that the maximum end-to-end latency is minimized subject
to degree balancing constraints. This problem is shown to be NP-hard.
We present a simple heuristic method for deploying multicast proxies,
and devise a low complexity greedy algorithm for optimizing the end-to-
end latency and degree distribution of POST. Simulation experiments
confirm that our proposed approach yields good quality approximate
solutions that are close to the optimum.

1 Introduction

Due to the complexity of deploying Internet-wide IP multicast [1] and the in-
ability of end-system multicast to support high-bandwidth delay-sensitive group
communications [2, 3], proxy-assisted two-tier overlay multicast has been upheld
as a viable alternative to support manageable and scalable inter-domain multi-
cast services for real-time applications on the Internet (see [4–6] and references
therein). In this paper, we refer to the proxy-assisted overlay multicast architec-
ture as overlay multicast for brevity.

One salient feature of overlay multicast is the set of dedicated multicast
proxies that a multicast service provider strategically deploys in the backbone
service domain. Advances in hardware technologies have made it possible to
endow proxies with large processing power and high fanout capability at ever
decreasing cost. Multicast proxies are typically placed at co-location facilities
with high-speed connection to the Internet. This way, they can readily utilize
the over-provisioned links in the core networks [7] without experiencing signif-
icant variations in end-to-end delay [8]. In comparison with peer-to-peer trees
formed entirely by end hosts with limited last-mile bandwidth, overlay multi-
cast trees based on multicast proxies are much flatter and wider. Moreover, they

2 J. Guo and S. Jha

are fairly static and thus eliminate large control overhead caused by dynamic
tree maintenance in end-system multicast. Since multicast proxies are applica-
tion layer servers and thus can use unicast mechanism to communicate between
each other, overlay multicast effectively obviates the need for router support as
required by IP multicast.

In a high level description, multicast proxies can be classified into edge proxies
and transit proxies. As illustrated in Fig. 1, edge proxies are placed at the edge
of the overlay backbone. Transit proxies are placed deep in the overlay backbone.
Transit proxies and edge proxies constitute Tier 1, while edge proxies and end
hosts constitute Tier 2. Each edge proxy acts as a member proxy for the cluster of
end hosts within its service area, and sends the multicast traffic into or receives
the multicast traffic from the overlay backbone by means of a transit proxy.
Each transit proxy is responsible for replicating and forwarding multicast traffic
to other transit proxies or edge proxies.

Since overlay multicast is designed to support multiple concurrent multicast
sessions in the backbone service domain, multicast proxies essentially constitute
a resource sharing environment. This gives rise to the concern of how to manage
the multicast state scalability issue, so that the overlay backbone can support
as many groups as possible without incurring significant control overhead. In
the literature, the idea of aggregated multicast with intergroup tree sharing has
been proposed [9]. Multicast sessions with approximately the same set of end
hosts are forced to share a single overlay topology to reduce the global control
overhead. Based on the aggregated multicast approach, the overlay multicast
routing protocol proposed in [6] was shown to significantly reduce the control
overhead for establishing and maintaining overlay multicast trees.

In this paper, we introduce the concept of proxy-based overlay skeleton tree
(POST) and advocate it as an efficient approach to further reduce the compu-
tation cost and control overhead of overly multicast trees. POST is computed in
such a way that it spans all multicast proxies provisioned in the overlay back-
bone. The computation of POST is feasible due to the fact that in practice the
multicast service provider has complete administrative control over all multicast
proxies deployed in the overlay multicast network. POST can be used as a de-
fault tree to support any multicast session in the overlay backbone, so long as all
branches along the skeleton tree connecting the participating edge proxies have
enough bandwidth to support the requested multicast session. For example, the
skeleton tree depicted in Fig. 1 can be used to support a multicast session par-
ticipated by edge proxies B, C and D, so long as all the four branches, namely
(B,G), (G,H), (C,H) and (D,H), have enough bandwidth. POST can also be used
to support low-overhead control message passing among multicast proxies in the
overlay backbone.

Two measures of “goodness” for a POST are end-to-end latency and degree
distribution. On the one hand, an overlay routing path joining two edge proxies
in the POST is likely to traverse a series of transit proxies. Consequently, it
is important to minimize the maximum end-to-end latency (i.e. tree diameter)
of the POST. This is essential to the provision of good quality delay-sensitive

Construction of a Proxy-based Overlay Skeleton Tree 3

Fig. 1. Proxy-assisted two-tier overlay multicast architecture

multicast services in the overlay multicast network. On the other hand, each
transit proxy in the overlay backbone has in general one interface with limited
access bandwidth to the Internet. Thus, it is important to distribute the degree
evenly between transit proxies for load balancing and to reduce access link stress.
Higher link stress indicates greater contention for an interface and is likely to
result in higher congestion and packet loss.

Our contribution in this paper is to propose an optimization problem for con-
structing an efficient POST in the multicast overlay backbone. We also demon-
strate in this paper that appropriate placement of multicast proxies can have
significant impact on the performance of POST. The optimization problem is
concerned with deciding an appropriate deployment of multicast proxies in the
overlay backbone, upon which we wish to find an optimal POST solution so
that the tree diameter is minimized subject to degree balancing constraints. We
frame the problem as a constrained spanning tree problem, which is shown to
be NP-hard. We present a simple heuristic method for deploying multicast prox-
ies, and devise a low complexity greedy algorithm for optimizing the end-to-end
latency and degree distribution of the POST.

The rest of this paper is organized as follows. We discuss the related work
in Sect. 2. Section 3 deals with the formulation of the optimization problem. In
Sect. 4, we describe our solution method. Simulation experiments are reported
in Sect. 5. Finally, we provide concluding remarks in Sect. 6.

2 Related Work

Existing proposals in [4, 5] for building an overlay multicast backbone tree were
all based on the assumption that the proxy deployment is given. Also, these pro-
posals considered tree computation for a single multicast session only. The rout-
ing protocols proposed in [4] addressed two constrained spanning tree problems
for single-source streaming applications: 1) Minimize the maximum end-to-end
latency subject to access bandwidth constraint at each participating multicast
proxy; 2) Minimize the average end-to-end latency subject to access bandwidth
constraint at each participating multicast proxy. The routing protocols proposed
in [5] addressed two constrained spanning tree problems for multi-source multi-

4 J. Guo and S. Jha

cast applications: 1)Minimize the tree diameter subject to access bandwidth con-
straint at each participating multicast proxy; 2) Balance the access bandwidth
usage at each participating multicast proxy subject to tree diameter bound.
The CT algorithm proposed in [5] is closely related to our work, which can be
modified to compute a POST in our context.

In [10], Lao, Cui, and Gerla considered the deployment problem for edge prox-
ies in the overlay backbone. They adopted a similar approach to the K-median
problem commonly used for web server replica placement in content distribu-
tion networks [11]. Their approach is used in this paper for the deployment of
edge proxies. In our context, we further study the deployment problem for tran-
sit proxies, and demonstrate that it has significant impact on the end-to-end
latency performance of POST.

3 Problem Formulation

Consider an overlay network in the form of a complete undirected graph G =
(W,P, E). W is the set of N edge proxies which have been deployed using the
approach of [10]. P is the set of K potential nodes in the physical topology for
deploying M , M < K, transit proxies. E is the set of undirected edges, where
an edge (i, j) ∈ E between two nodes i, j ∈ W ∪ P represents the bidirectional
unicast path with long-term average latency li,j between i and j in the physical
topology. In practice, unicast latency quantities can be obtained from active or
passive measurements of TCP connection round trip time [8, 12].

From P , we wish to decide an appropriate set of nodes PT for deploying the
M transit proxies. We then wish to form a POST, i.e. T = (W,PT, ET), spanning
all nodes in W ∪ PT where ET are the edges included in T . An edge (i, j) ∈ E
can be included in T if and only if at least one of the two nodes i and j is in PT.
Consequently, the set of internal nodes of T is composed of transit proxies only,
and the set of leaf nodes of T is exclusively composed of edge proxies.

For each pair of edge proxies i and j in T , we define Ri,j as the set of edges
that form the overlay routing path between i and j. Let Li,j denote the latency
of the overlay routing path between i and j. Given the unicast latency matrix
{li,j}, we readily have

Li,j =
∑

(i,j)∈Ri,j

li,j . (1)

Let Lmax denote the maximum end-to-end delay (i.e. the diameter of T),
which is given by

Lmax = max
i<j∈W

Li,j . (2)

Consider the case where the unicast latency matrix {li,j} satisfies the triangle
inequality. Thus, the latency Li,j of the overlay routing path between any two
edge proxies i and j can not be smaller than the latency li,j of the unicast path
between the two nodes. This allows us to establish the lower bound (LB) on
Lmax as

LLB
max = max

i<j∈W
li,j . (3)

Construction of a Proxy-based Overlay Skeleton Tree 5

Let d(i) denote the degree of transit proxy i. The following proposition states
a property on the sum

∑
i∈PT

d(i) of degrees of transit proxies in T .

Proposition 1. The sum of degrees of transit proxies in T is N + 2M − 2.

Proof. Consider the subtree of T composed of M transit proxies only. It follows
from Corollary 1.5.3 of [13] that a spanning tree with M nodes has exactly M−1
edges. Each such edge is incident to two transit proxies, which contributes two
counts towards the sum of degrees of transit proxies. Now, each of the N edge
proxies must be connected to one transit proxy, and thus contributes one count
towards the degree of the transit proxy to which it is connected. Therefore, the
sum of degrees of transit proxies in the entire T is N + 2M − 2. ut

We define a degree balancing index F , given by

F = max
i∈PT

d(i)− min
i∈PT

d(i) . (4)

A smaller value of F indicates a more balanced degree distribution among transit
proxies. Let FLB denote the lower bound on F . Clearly, FLB = 0 if

N + 2M − 2 = kM, k = 1, 2, . . . (5)

and we require each transit proxy to have a degree of exactly k in T . In situations
where (5) does not hold, FLB = 1. In such cases, letting k = bN+2M−2

M c and
n = N + 2M − 2− kM , we require n transit proxies to have a degree of exactly
k + 1, and the remaining M − n transit proxies to have a degree of exactly k.

Before we present the formal statement of the optimization problem, we shall
first clarify the motivation of such a problem by considering a 14-node example
illustrated in Fig. 2.

Fig. 2. Overlay topology and unicast latency matrix

We assume that five edge proxies have been deployed at nodes 1, 2, 4, 7
and 10. A routine computation of (3) on the unicast latency matrix {li,j} gives

6 J. Guo and S. Jha

LLB
max = 14 for this particular instance. From the remaining nine nodes, we

wish to choose three nodes for deploying the transit proxies. Since M = 3 and
N +2M−2 = 9, we have FLB = 0. To achieve this, we require each transit proxy
to have a degree of exactly three in T . An optimal solution displayed in Fig. 3
chooses nodes 5, 6 and 9 for placing the transit proxies, and computes a POST
with minimal tree diameter of 14 that hits LLB

max. Our proposed heuristic method
chooses nodes 3, 6 and 9 for the transit proxies. The best POST based on this
heuristic proxy placement solution achieves Lmax = 18. In contrast, a random
placement of transit proxies at nodes 3, 8 and 12 incurs a large tree diameter of
28. This justifies that appropriate placement of transit proxies in the multicast
overlay backbone can have large impact on the latency performance of POST.

Fig. 3. Solutions for POST

Definition 1. Minimum diameter degree-balanced spanning tree problem

Given a complete undirected graph G = (W,P, E), find a constrained spanning
tree T = (W,PT, ET) such that the tree diameter Lmax is minimized and T is
subject to constraints on: 1) PT ∈ P , |PT| = M ; 2) All nodes in PT are for
internal nodes, while all nodes in W are for leaf nodes; 3) F is restricted to FLB.

For brevity, in the rest of this paper, we shall refer to this problem as the
MDDB problem. Such a heavily constrained spanning tree problem is NP-hard,
since its decision problem can be reduced to the NP-complete weighted diameter
problem ([14], page 205). We thus resort to heuristic methods to find near-
optimal solutions for this challenging problem.

4 Solution

Our approach for solving the MDDB problem contains two parts. In the first
part, we present a simple heuristic method for deploying the set of transit proxies.
In the second part, we devise a low complexity algorithm for greedily optimizing
the end-to-end latency of T subject to degree balancing among transit proxies.

Construction of a Proxy-based Overlay Skeleton Tree 7

4.1 Proxy Deployment

For all i ∈ P , we obtain si, which is computed by

si =
∑

j∈W

li,j . (6)

We choose M nodes in the set P with the smallest values on si to constitute the
set of transit proxies PT. We define the node with the smallest value on si as
the central proxy, since it has the smallest summed distance to all edge proxies
in the set W . For brevity, in the rest of this paper, we refer to this method as
HPTP, which stands for Heuristic Placement of Transit Proxies.

4.2 Degree Balancing

An important objective of our greedy algorithm is to guarantee that the degree
balancing index F of internal nodes of T is restricted to FLB. As we have dis-
cussed in Sect. 3, if FLB = 0, we require each of the M internal nodes to have
a degree of exactly k, where k = N+2M−2

M . This case can be easily resolved.
For each node j that has just been added to the partial tree of T , we check the
cumulated degree d(i) of the internal node i which connects node j. If d(i) = k,
we mark node i so that node i will not be considered by any of the remaining
unconnected nodes.

On the other hand, if FLB = 1, we require n internal nodes to have a degree
of exactly k + 1, and the remaining M − n internal nodes to have a degree of
exactly k, where in this case k = bN+2M−2

M c and n = N + 2M − 2 − kM . To
achieve this, we make sure that once the n-th internal node whose degree reaches
k + 1 has been marked, we further check for each unmarked internal node if its
degree has reached k. If so, we mark such nodes accordingly, again to make sure
that they will not be considered by any of the remaining unconnected nodes.

4.3 Tree Construction

Let V denote the set of all transit proxies in the partial tree T ′ of T constructed
so far. Let V = PT − V denote the set of all transit proxies not yet in T ′. Let
P̄ denote the set of all internal nodes that have been marked. Let σi denote
the latency of the longest overlay routing path from an unmarked internal node
i to any other node in T ′. Starting from the initial T ′ with V including the
central proxy only, for each unconnected transit proxy j in the set V , we find an
unmarked internal node i in T ′ that minimizes δj = lj,i + σi. We then identify
the unconnected transit proxy j in the set V with the smallest value on such
δj , and add it to T ′ by creating an edge joining node i and node j. After node
j is added to the tree, we update V and V , and we apply the degree balancing
module to check if node i needs to be marked into the set P̄ . This procedure is
iterated until all M transit proxies have been connected.

In cases where ties exist either on i or on j, we break the ties on i by choosing
node i such that

∑
v∈V (lv,i + σi) is the largest. Intuitively, if we do not go for

8 J. Guo and S. Jha

node i at this iteration, later node i would more likely lead to larger σi values
of some other transit proxies not yet in the tree. On the other hand, we break
the ties on j by choosing node j such that

∑
v∈V−P̄ (σv + lv,j) is the largest.

Similarly, if we do not connect node j at this iteration, later node j would more
likely be connected to an internal node which yields larger σj value of node j.

After all transit proxies have been connected, we now let V denote the set
of all edge proxies in the partial tree T ′ of T constructed so far, and Let V =
W − V denote the set of all edge proxies not yet in T ′. At any iteration, for
each unconnected node j in the set V , we find an unmarked internal node i in
T ′ which minimizes δj = lj,i + σi. We then identify the unconnected node j in
V with the largest (not smallest) value on such δj , and add it to T ′ by creating
an edge joining node i and node j. Intuitively, if we do not connect node j at
this iteration, later it would more likely contribute towards a larger value on the
tree diameter. Once node j is added to the tree, we update V and V , and we
again apply the degree balancing module to check if node i needs to be marked
into the set P̄ .

In cases where ties exist either on i or on j, we break the ties on i again by
choosing node i such that

∑
v∈V (lv,i + σi) is the largest. Intuitively, if we do

not go for node i in this case, later node i would certainly lead to larger overlay
latency between all nodes it has connected and some unconnected leaf nodes it
would connect. On the other hand, we break the ties on j by choosing node j
such that

∑
v∈PT−P̄ (σv + lv,j) is the largest. Similarly, if we do not connect node

j at this iteration, later node j would more likely be connected to an internal
node which contributes towards a larger value on the tree diameter.

It can be shown that this greedy algorithm is O(MN2) in complexity. For
brevity, we refer to it as GOLD (Greedily Optimize Latency and Degree) in the
rest of this paper.

5 Simulation Experiments

We have studied the performance of our proposed algorithms for the MDDB
problem through detained simulation experiments. The various network topolo-
gies used in our experiments were obtained from the GT-ITM topology generator
[15]. We used the flat random graph model for the small size topologies and the
transit-stub graph model for the large size topologies. Unicast latency between
different pairs of nodes ranges from 1 to 50 ms in the flat random graphs and
from 1 to 500 ms in the transit-stub graphs. The number of nodes in the flat
random graphs was varied between 14, 16 and 18. All transit-stub graphs had
1,200 nodes. In each graph, edge proxies were placed at a set of nodes, chosen
uniformly at random. The number of edge proxies was fixed to five in the flat
random graphs and varied between 400, 500 and 600 in the transit-stub graphs.
The number of transit proxies was fixed to three in the flat random graphs and
varied from 20 to 40 in the transit-stub graphs.

Based on these network topologies, we design the following experiments to
study the performance of our proposed algorithms for the MDDB problem. We

Construction of a Proxy-based Overlay Skeleton Tree 9

have derived an integer linear programming (ILP) formulation for the MDDB
problem (see Appendix). The ILP formulation was used to find optimal solutions
of the MDDB problem for small size topologies. Note that this ILP model was
also used to compute the best POST solution based on a given heuristic proxy
placement solution obtained by HPTP. This is done by fixing the indicator vari-
ables defined for proxy placement in the ILP model to the corresponding nodes
found by HPTP. This allows us to examine the quality of HPTP.

Figure 4 presents the results from experiments with the flat random graphs.
For each graph, we have randomly generated 20 sets of different edge proxy place-
ment solutions. We observe from these results that the performance of HPTP is
reasonably good, considering that it is such a simple approach. In many cases,
HPTP hits the optimal solution identified by ILP. The worst case performance
among these results is 40% away from the optimum. Since we are not able to use
ILP to solve for large size problem instances due to its known exponential com-
putational complexity, we used GOLD to compute approximate POST solutions
for HPTP on large size topologies.

The CT algorithm proposed in [5] was designed for a minimum diameter
degree-limited spanning tree problem to address efficient routing in the multi-
cast overlay backbone. It is similar to Prim’s algorithm [16] for minimum span-
ning tree in a sense that the tree construction process starts from an arbitrarily
selected node and takes an arbitrary tie-breaking approach. In contrast, GOLD
starts from the central proxy of the overlay backbone and takes an elaborate
tie-breaking approach in the tree construction process. For the purpose of com-
parison, we have directly combined the CT algorithm with the degree balancing
module of GOLD. The resulting tree construction method is referred to as en-
hanced CT (ECT) in the simulation experiments.

Given that we have established the lower bound on Lmax, we used LLB
max as the

benchmark to measure the quality of HPTP on large size topologies. The Lmax

results presented in Fig. 5 were plotted in the form of percentage deviation from
LLB

max, given by (Lmax − LLB
max)/LLB

max(%). These results clearly demonstrate the
enhanced performance of GOLD in comparison with ECT. In all cases, GOLD
improves Lmax by up to 4.4%. Such a performance gain is only at the expense of a
modicum of additional computation cost, as demonstrated in Table 1. Moreover,
HPTP shows sufficiently good performance on these transit-stub graphs. Even
though we rely on GOLD to find approximate POST solutions, the percentage
deviation is yet less than 18% in all cases.

Table 1. CPU time on a 3.2GHz Xeon machine for M = 40

N = 400 N = 500 N = 600

ECT 0.84 sec 1.27 sec 1.80 sec
GOLD 0.90 sec 1.35 sec 1.95 sec

10 J. Guo and S. Jha

0 5 10 15 20
10

12

14

16

18

20

Case ID

T
re

e
di

am
te

r
(m

s)

Flat random (N=5, K=9, M=3)

HPTP
ILP

0 5 10 15 20
10

15

20

25

30

35

40

45

50

Case ID

T
re

e
di

am
te

r
(m

s)

Flat random (N=5, K=11, M=3)

HPTP
ILP

0 5 10 15 20
20

30

40

50

60

70

80

Case ID

T
re

e
di

am
te

r
(m

s)

Flat random (N=5, K=13, M=3)

HPTP
ILP

Fig. 4. Quality of HPTP

20 25 30 35 40
10

12

14

16

18

20

M

P
er

ce
nt

ag
e

de
vi

at
io

n

Transit−stub (N=400)

ECT
GOLD

20 25 30 35 40
10

12

14

16

18

20

M

P
er

ce
nt

ag
e

de
vi

at
io

n

Transit−stub (N=500)

ECT
GOLD

20 25 30 35 40
10

12

14

16

18

20

M

P
er

ce
nt

ag
e

de
vi

at
io

n

Transit−stub (N=600)

ECT
GOLD

Fig. 5. Performance comparison between ECT and GOLD

6 Conclusion and Future Work

In this paper, we have introduced the concept of POST and advocated it as
an efficient approach to support large-scale real-time group communications in
two-tier overlay multicast networks. We have demonstrated that appropriate
placement of multicast proxies can have significant impact on the latency per-
formance of POST. We have proposed a constrained spanning tree problem to
find optimal solutions for POST such that its maximum end-to-end latency can
be minimized subject to degree balancing constraints. A low complexity heuristic
approach has been developed, which has been shown by simulation experiments
to be scalable for large-size overlay multicast networks and yield good quality
solutions of POST. The proposed algorithm can be utilized by a weight-coded
genetic algorithm to further improve the solution quality [17]. In our future work,
we plan to design efficient restoration algorithms to endow POST with resilience
capability [18].

Acknowledgments. We thank Dr Vijay Sivaraman for his insightful comments.
This project is supported by Australian Research Council (ARC) Discovery
Grant DP0557519.

References

1. Diot, C., Levine, B.N., Lyles, B., Kassem, H., Balensiefen, D.: Deployment issues
for the IP multicast service and architecture. IEEE Network 14(1) (Jan./Feb.

Construction of a Proxy-based Overlay Skeleton Tree 11

2000) 78–88
2. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer mul-

ticast. In: Proc. ACM SIGCOMM 02. (Aug. 2002) 205–217
3. Chu, Y.H., Rao, S.G., Zhang, H.: A case for end system multicast. In: Proc. ACM

SIGMETRICS 00. (Jun. 2000) 1–12
4. Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, B., Khuller, S.: Construc-

tion of an efficient overlay multicast infrastructure for real-time applications. In:
Proc. IEEE INFOCOM 03. (Mar. 2003) 1521–1531

5. Shi, S.Y., Turner, J.S.: Routing in overlay multicast networks. In: Proc. IEEE
INFOCOM 02. (Jun. 2002) 1200–1208

6. Lao, L., Cui, J.H., Gerla, M.: TOMA: a viable solution for large-scale multicast
service support. In: Proc. IFIP NETWORKING 05. (May 2005) 906–917

7. Bhattacharyya, S., Diot, C., Jetcheva, J., Taft, N.: Pop-level and access-link-level
traffic dynamics in a tier-1 POP. In: Proc. ACM IMW 01. (Nov. 2001) 39–53

8. Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Inferring TCP con-
nection characteristics through passive measurements. In: Proc. IEEE INFOCOM
04. (Mar. 2004) 1582–1592

9. Fei, A., Cui, J., Gerla, M., Faloutsos, M.: Aggregated multicast: an approach to
reduce multicast state. In: Proc. IEEE GLOBECOM 01. (Nov. 2001) 1595–1599

10. Lao, L., Cui, J.H., Gerla, M.: Multicast service overlay design. In: Proc. SPECTS
05. (Jul. 2005)

11. Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the placement of web server
replicas. In: Proc. IEEE INFOCOM 01. (Apr. 2001) 1587–1596

12. Paxson, V.: End-to-end internet packet dynamics. IEEE/ACM Trans. Networking
7(3) (Jun. 1999) 277–292

13. Diestel, R.: Graph Theory. 3rd edn. Springer-Verlag, New York (2005)
14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, San Francisco (1979)
15. Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an internetwork.

In: Proc. IEEE INFOCOM 96. (Mar. 1996) 594–602
16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.

2nd edn. MIT Press, Cambridge, M.A. (2001)
17. Guo, J., Jha, S., Banerjee, S.: GOLD: An overlay multicast tree with globally

optimized latency and out-degree. Technical Report UNSW-CSE-TR-0615, The
University of New South Wales, Australia (2006)

18. Lau, W., Jha, S., Banerjee, S.: Efficient bandwidth guaranteed restoration algo-
rithms for multicast connections. In: Proc. IFIP NETWORKING 05. (May 2005)
1005–1017

Appendix

Here we provide an ILP formulation for the MDDB problem. For the convenience
of forming the overlay routing path between any two edge proxies in the ILP
formulation, we define E′ as a set of directed edges that include both directed
edges 〈i, j〉 and 〈j, i〉 for each undirected edge (i, j) in E. Let the 0-1 variables
xi, i ∈ P , indicate if a transit proxy is deployed at node i. Let the 0-1 variables
p
(m,n)
i,j , m < n ∈ W , 〈i, j〉 ∈ E′, indicate if the directed edge 〈i, j〉 is included in

the overlay routing path between node m and node n. Let the 0-1 variables ti,j ,

12 J. Guo and S. Jha

(i, j) ∈ E, indicate if the undirected edge (i, j) is used by the POST. Let the
non-negative variables dmax and dmin respectively identify the maximum degree
and the minimum degree among the transit proxies. For the latter, it is useful to
define a non-negative variable yi for each i ∈ P . Let the non-negative variable z
identify the diameter of the POST.

The MDDB problem can now be formulated as:

Minimize z (7)

subject to
∑

i∈P

xi = M (8)

∑

j:〈i,j〉∈E′
p
(m,n)
i,j −

∑

j:〈j,i〉∈E′
p
(m,n)
j,i =

1, if i = m
0, if i ∈ W ∪ P − {m,n}
−1, if i = n

∀m < n ∈ W (9)∑

m<n∈W

[
p
(m,n)
i,j + p

(m,n)
j,i

]
≤ N · (N − 1) · ti,j , ∀(i, j) ∈ E (10)

∑

(i,j)∈E

ti,j = N + M − 1 (11)

∑

j:(i,j)∈E

ti,j +
∑

j:(j,i)∈E

tj,i ≤ 1, ∀i ∈ W (12)

∑

j:(i,j)∈E

ti,j +
∑

j:(j,i)∈E

tj,i ≤ (N + M − 1) · xi, ∀i ∈ P (13)

z ≥
∑

〈i,j〉∈E′
p
(m,n)
i,j li,j , ∀m < n ∈ W (14)

dmax ≥
∑

j:(i,j)∈E

ti,j +
∑

j:(j,i)∈E

tj,i, ∀i ∈ P (15)

yi = (N + M − 1) · (1− xi) +
∑

j:(i,j)∈E

ti,j +
∑

j:(j,i)∈E

tj,i, ∀i ∈ P (16)

dmin ≤ yi, ∀i ∈ P (17)
dmax − dmin ≤ FLB (18)

Equation (8) restricts that M nodes in P are selected as transit proxies.
Equations (9) and (10) ensure that the solution is a spanning tree that includes
all edge proxies. More explicitly, they enforce one single overlay routing path
between any two edge proxies. Equations (11) to (13) ensure that the set of leaf
nodes of the spanning tree is exclusively composed of edge proxies, and the set
of internal nodes is composed of transit proxies only. Equation (14) identifies
the diameter of the spanning tree. Equations (15) to (18) enforce the balance of
degree among transit proxies. All the equations jointly ensure that the solution
is a POST that satisfies all constraints of the MDDB problem.

