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Abstract. This article studies disruption tolerant networks (DTNs)
where each node knows the probabilistic distribution of contacts with
other nodes. It proposes a framework that allows one to formalize the
behaviour of such a network. It generalizes extreme cases that have been
studied before where either (a) nodes only know their contact frequency
with each other or (b) they have a perfect knowledge of who meets who
and when. This paper then gives an example of how this framework can
be used; it shows how one can find a packet forwarding algorithm opti-
mized to meet the delay/bandwidth consumption trade-off: packets are
duplicated so as to (statistically) guarantee a given delay or delivery
probability, but not too much so as to reduce the bandwidth, energy,
and memory consumption.

1 Introduction

Disruption (or Delay) Tolerant Networks (DTNs, [1]) have been the subject of
much research activity in the last few years, pushing further the concept of
Ad Hoc networks. Like Ad Hoc networks, DTNs are infrastructureless, thus the
packets are relayed from one node to the next until they reach their destina-
tion. However, in DTNs, node clusters can be completely disconnected from the
rest of the network. In this case, nodes must buffer the packets and wait until
node mobility changes the network’s topology, allowing the packets to be finally
delivered.

A network of Bluetooth-enabled PDAs, a village intermittently connected
via low Earth orbiting satellites, or even an interplanetary Internet ([2]) are
examples of disruption tolerant networks.

The atomic data unit is a group of packets to be delivered together. In DTN
parlance, it is called a message or a bundle; we use the latter in the following.

Routing in such networks is particularly challenging since it requires to take
into account the uncertainty of mobiles movements. The first method that has
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been proposed in the literature is pretty radical and proposes to forward bun-
dles in an “epidemic” way ([3, 4]), i.e., to copy them each time a new node is
encountered. This method of course results in optimum delays and delivery prob-
abilities, at the expense of an extremely high consumption of bandwidth (and,
thus, energy) and memory. To mitigate those shortcomings, the epidemic routing
has been enhanced using heuristics that allow the propagation of bundles to a
subset of all the nodes ([5, 6]).

More advance heuristics have been introduced to cope with the nodes limited
memory. Cache mechanisms have been proposed, where the most interesting
bundles are kept (i.e. those that are likely to reach their destination soon) and
the others are discarded when the cache is full ([7–10]).

Few papers explore how the expected delay could be more precisely estimated
(notable exceptions are [11, 12]). It has been proved ([13]) that a perfect knowl-
edge of the future node meetings allows the computation of an optimal bundle
routing.

This short introduction emphasizes two shortcomings:

– Previous works suppose either that nodes contacts are perfectly determinis-
tic, or that only the contact frequency is known for each pair of nodes. In
this paper, we introduce a framework which generalizes those extreme cases
and formalizes the nodes contact predictability. It allows one to compute the
expected impact of a particular bundle forwarding strategy;

– Previous works only propose bundle forwarding heuristics. In what follows,
we give an example of how the above-mentioned framework can be used to
find a bundle routing strategy that fulfills delivery guarantees while limiting
bandwidth/energy consumption.

2 Predictable future contacts

The network is composed of a finite set of wireless nodes N that can move and
thus, from time to time, come into contact.

In the sequel, a contact between two nodes happens when those nodes have
setup a bi-directional wireless link between them. A contact is always considered
long enough to allow all the required data exchanges to take place1.

2.1 Contact profiles

We expect the mobiles motion to be predictable, yet obviously the degree of
predictability varies from one network to another. Sometimes nodes motion is
known in advance because they must stick to a given schedule (e.g. a network of
buses) or because their trajectory can easily be modelled (e.g. nodes embedded
in a satellite). Other networks are less predictable, yet not totally random: col-
leagues could be pretty sure to meet every day during working hours, without

1This is a major difference with [13] which does not neglect bundle transmission
times.
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Fig. 1. Contact profile and first contact distribution: example. Top: A contact
profile: the height of a bar gives the probability that two nodes meet (at least once)
during the corresponding 12-hour time period. Bottom: The corresponding first contact
distribution; each bar corresponds to a 12-hour period.

any other time guarantee. Mobile nodes behaviour could also be learnt automat-
ically so as to extract cyclical contact patterns.

We therefore suppose that each node pair {a, b} ⊂ N can estimate its contact
probability for (discrete) each time step in the near future. We call it a contact
profile and denote it Cab : N → [0, 1]. In the following, we suppose the profile
known for each node pair.

Contact profiles can easily represent situations usually depicted in the liter-
ature:

– A constant profile Cab(t) = k describes a node pair that only knows its con-
tact frequency. For example, the profile Cab(t) = 1/30 (contact probability
per day) corresponds to two nodes a and b meeting once a month on average.

– Perfect knowledge of meeting times results in a profile made of peaks: ∀t ∈
N : Cab(t) ∈ {0, 1}.

In practice, unknown contact profiles could be replaced by a constant function
equal to zero on its domain to get a defensive approximation of their behaviour.

The following sections aim at studying how bundles propagate from one node
to another in a network whose nodes’ contact profiles are known.



2.2 First contact distribution

It is easy to deduce the probability distribution of a (first) contact at time t
between nodes a and b ∈ N given their profile Cab; we denote this distribution
dab. Since the probability of a first contact at time t is the probability of meeting
at time step t times the probability not to meet at time steps 0, 1, . . . , t− 1. We
have (∀a, b ∈ N ):

dab(t) = Cab(t)

t−1
∏

i=0

(

1 − Cab(i)
)

∀t ∈ N (1)

The distributions domain is N since contact profiles have been defined using
discrete time steps. We extend the distributions to R to get rid of this artifact.
Notice that dab is not a well-defined probability distribution since its integral
over its domain is not equal to 1: two nodes might never meet.

Definition 1. The first contact distribution set, C, is the set of functions2

f : R
+ → R

+ such that
∫

∞

0
f(x) dx ≤ 1.

Contact profiles do not allow us to express contact interdependencies; for
example, they cannot model that two nodes are certain to meet exactly once
during the weekend without knowing exactly which day (if a probability of .5
is assignated to Saturday and Sunday, there is a .25 probability that the nodes
will meet twice). First contact distributions have no such limitations. Therefore,
when it is possible, one could find preferable to generate them directly without
relying on contact profiles.

Figure 1 gives an example contact profile Cab (top) and the corresponding
first contact distribution dab (bottom).

Notice that if a bundle is delivered directly from a to b, knowing the first
contact distribution allows an easy verification of a large spectrum of guarantees,
such as the average delay or the probability of delivery before a certain date.

3 Delivery distributions

3.1 Definition

First contact distributions can be generalized to take into account the knowledge
that no contact were made before a certain date.

Let Dab(T, t) be the probability distribution that a and b require a delay of t
time steps to meet for the first time after time step T . Since these distributions
will be the building blocks that allow us to compute when a bundle can be
delivered to its destination, we call them delivery distributions. Dab can directly
be derived from the contact profile Cab (∀a, b ∈ N ):

Dab(T, t) = Cab(T + t)

T+t−1
∏

i=T

(

1 − Cab(i)
)

∀T, t ∈ N (2)

2
R

+ denotes the set of positive reals.



As before, the domain of these functions can be extended to R
+2

.

Definition 2. The delivery distribution set, D, holds all the functions
f : R

+2
→ R

+ such that ∀T ∈ R
+ :

∫

∞

0
f(T, x) dx ≤ 1.

Notice the inequality.
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Fig. 2. Contact probability density. The Dab(T, t) delivery distribution matching
the contact profile given in figure 1.

Figure 2 draws the Dab(T, t) distribution corresponding to the contact profile
given in figure 1. Notice that the D(T, ·) functions of course belong to C (∀T ≥ 0).

Notice that Dab(T, ·) is the expected delivery delay distribution for a bundle
sent directly from a source a to a destination b if a decides to send it at time T .

3.2 Order relation on distributions

We define an order relation between first contact distributions. Intuitively, this
relation allows one to compare two distributions to find which one represents
more frequent or predictable contacts. A rigorous definition is given below.

Definition 3. The first contact distributions d1 ∈ C is greater (or equal) than
d2 ∈ C (denoted d1 � d2) if and only if:

∀x ≥ 0 :

∫ x

0

d1(t) dt ≥

∫ x

0

d2(t) dt (3)

This relation is a partial order (but not a total order as there exist d1, d2 ∈ C
such that neither d1 � d2 nor d1 � d2; see [14] for more details).

It appears difficult to define a total order on C: comparing two distributions
that cannot be ordered using the � relation is a matter of choice and depends
on the bundle delivery guarantees one wants to enforce. The � relation is thus a
least common denominator, and could be replaced in what follows with a more
restrictive order definition.



The worst (smallest) element of C is the ⊥ (bottom) distribution: ⊥(t) = 0
(∀t ≥ 0). The best (greatest) first contact distribution is denoted ⊤ (top):
⊤(t) = δ(t) (∀t ≥ 0); the δ symbol denotes the Dirac distribution.

The � relation can be extended to D. For all D1,D2 ∈ D:

D1 � D2 ⇐⇒ ∀T ≥ 0 : D1(T, ·) � D2(T, ·)

The D⊥ delivery distribution is such that ∀T ≥ 0 : D⊥(T, ·) ≡ ⊥. The defi-
nition of D⊤ follows immediately.

4 Delivery distribution operators

4.1 The forwarding operator

Let Dsbd be the delivery distribution associated with the delivery of a bundle
from a source node s to a destination d via node b. More precisely, if s decides to
send a bundle at time T , it will reach d after a delay described by the Dsbd(T, ·)
distribution. Dsbd can be computed thanks to Dsb and Dbd:

Dsbd ≡ Dsb ⊗ Dbd (4)

The ⊗ (or forwarding) operator is a function defined for all distribution pair.
We have ⊗ : D2 → D:

(

D1 ⊗ D2

)

(T, t) =

∫ t

0

D1(T, x)D2(T + x, t − x) dx (5)

It is easy to see that this operator is associative but not commutative.

Equation (5) simply states that since the total delivery delay is equal to t, if
the delay to reach b is equal to x, then the delay from b to d is t − x.

Equation (4) can be generalized: a bundle could be forwarded through several
intermediate hops before reaching its destination. We denote Ds−d (notice the
dash) the delivery delay distribution for a bundle sent from a source s to a
destination d at time T ; from now on, ⊗ will thus be applied to any kind of
delivery distributions.

For example, the graph below depicts a simple delivery path, i.e. a sequence
of forwarding nodes; the corresponding delivery distribution is also given.

s // a // b // d : Ds−d ≡ Dsa ⊗ Dab ⊗ Dbd

We say that two delivery paths with a common source s and destination d
are disjoint if the intersection of the set of nodes they involve is {s, d}.



4.2 The duplication operator

Let Ds
EE

d

d
be the delivery distribution associated with the delivery of a bundle

from s to d if it is duplicated so as to follow the disjoint delivery paths described
by the distributions Ds−d and D′

s−d. We have:

Ds
EE

d

d
≡ Ds−d ⊕ D′

s−d (6)

The ⊕ (or duplication) operator is a function ⊕ : D2 → D, defined as follows:

(

D1 ⊕ D2

)

(T, t) =

(

1 −

∫ t

0

D1(T, x) dx

)

D2(T, t)+

(

1 −

∫ t

0

D2(T, x) dx

)

D1(T, t) (7)

The expected delay computed is that of the first bundle to reach the destina-
tion d. It is easy to see that ⊕ is associative and commutative. Operators ⊗ and
⊕ can be combined to consider more complex forwarding strategies, assigning a
higher precedence to ⊗.

Equation (7) is the sum of two terms. Each term is the probability that the
bundle reaches the destination after a delay t using one path and that the bundle
following the other path is not arrived yet.

It can be proven that we have both D1 ⊕D2 � D1 and D1 ⊕D2 � D2. This
means that, contrary to what happens in deterministic networks, duplicating a
bundle to send it along two paths can improve performance: it is not the case
that the best path always delivers the bundle first.

Figure 3 shows an example of the distributions obtained using the “dupli-
cation” operator. As expected, duplicating bundles shortens the delays and in-
creases the delivery probability.
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Fig. 3. Duplication (⊕) operator: example. We denote D1 the delivery distribution
depicted in figure 2. Let D2 be a distribution that corresponds to nodes that are certain
to meet on day 9, 16 and 25. This plot depicts D1 ⊕D2.



4.3 The scheduling operator

Let Ds d

d
be the delivery distribution that, every time a bundle has to be sent,

chooses the best delivery strategy out of Ds−d and D′

s−d. We have:

Ds d

d
≡ Ds−d ⊘ D′

s−d (8)

The definition of ⊘ is straightforward. It is a function ⊘ : D2 → D such that:

(

D1 ⊘ D2

)

(T, t) =

{

D1(T, t) if D2(T, ·) 6� D1(T, ·)

D2(T, t) otherwise
(9)

If s sends a bundle at time T , it is delivered using D2(T, ·) if and only if
D2(T, ·) � D1(T, ·). This operator is not commutative since � is not a total
order: when D1(T, ·) and D2(T, ·) cannot be compared, D1(T, ·) is chosen. This
new operator can be combined with the other two (⊗ and ⊕) assigning it a lower
precedence.

The following example involves all the operators defined above. Two plain
arrows leaving a node depict a duplication. Two arrows leaving a node, one of
them dotted, depict a scheduling operation. The dotted arrow leads to the second
argument of ⊘, emphasizing the operator’s non-commutativity.

e // d

s //

##G

G

G

b //

;;

f // d

c // d

: Ds−d ≡
(

Dsc ⊗ Dcd

)

⊕
(

Dsb ⊗ (Dbf ⊗ Dfd ⊘ Dbe ⊗ Ded)
)

4.4 Delivery schemes

We have defined a delivery path as a delivery strategy that only involves for-
warding.

A delivery scheme with source s and destination d is a general delivery strat-
egy that allows a bundle to be delivered from s to d. It can use an arbitrary
number of forwarding, duplication and scheduling operations.

5 Delivery guarantees

Knowing the delay distribution d ∈ C associated with the delivery of a bundle
allows us to verify a large range of conditions on permissible delays or on delivery
probabilities. For example, the condition

∫

∞

0

d(t) t dt ≤ dmax

imposes a maximum expected delay dmax, while

∫ 1h

0

d(t) dt ≥ .9 and

∫ 24h

0

d(t) dt ≥ .99



matches distributions delivering a bundle in less than one hour nine times out
of ten, and in less than a day with a probability of 99%.

We naturally impose that a condition fulfilled for a certain delivery scheme
must be fulfilled for better schemes.

Definition 4. A delivery condition C is a predicate: C : C → {true, false} iff
∀d1, d2 ∈ C such that d1 � d2, we have C(d2) =⇒ C(d1).

A condition C can be extended to a delivery distribution D ∈ D:

C(D) ⇐⇒ ∀T ≥ 0 : C
(

D(T, ·)
)

6 Delivering bundles with guarantees

6.1 Probabilistic Bellman-Ford

Algorithm 1 adapts the Bellman-Ford algorithm to predictable disruption toler-
ant networks. In this section, we do not allow bundle duplication. Notice that,
in general, the concept of “shortest path” is meaningless since the � relation is
a partial order.

Algorithm 1: Probabilistic Bellman-Ford

Data: d is the destination node

∀ x ∈ N \ {d} : Bx ← D⊥;1

Bd ← D⊤;2

repeat3

stabilized ← true;4

forall x ∈ N do5

forall y ∈ N do6

Dxy−d ← Dxy ⊗By;7

if Bx 6= Bx ⊘Dxy−d then8

stabilized ← false;9

Bx ← Bx ⊘Dxy−d;10

until stabilized ;11

Similarly to the Bellman-Ford algorithm, algorithm 1 computes, for every
node n ∈ N , the best distribution leading to the destinations found so far (Bn).
This distribution is propagated to its neighbours (i.e. all the other nodes since
the network is infrastructureless).

Once node x receives the best delivery distribution By found by y, it computes
the delivery distribution obtained if it would send the bundle directly to y, and if



y would forward it according to By. The resulting distribution is denoted Dxy−d

(line 6).
Dxy−d is compared to the best known distribution to the destination (Bx)

by means of the ⊘ operator. If Dxy−d is better than Bx on some time intervals,
Bx is updated (line 9).

The algorithm terminates once no more Bx distribution is updated.
As mentioned before, this algorithm generalizes both [15] (i.e. converges to

the “shortest expected path”) and [13]3 (i.e. finds the exact shortest path in the
case of perfectly predictable networks).

The delivery computed by this algorithm depends on the order at which the
elements of N are picked up (lines 5 and 6). In practice, it might be preferable
to rely on a heuristic to choose the preferred elements first.

6.2 Guarantees

Our aim is now to find a way to deliver bundles that fulfills a given condition
C as specified in definition 4, while trying to minimize the network’s band-
width/energy/memory consumption.

Ideally, the DTN is predictable enough to enforce condition C without dupli-
cating any bundle. We thus propose to rely on algorithm 1 to find a first delivery
scheme (and, thus, a first delivery distribution D1).

If C is not fulfilled by D1, we search for another fast bundle forwarding
scheme using algorithm 1; let D2 be its delivery distribution. We then duplicate
the bundle on both delivery schemes, yielding a distribution D1 ⊕ D2. We have
already pointed out that D1 ⊕ D2 � D1, thus C(D1 ⊕ D2) is more likely to be
true then C(D1).

This process is iterated until C is finally fulfilled; see algorithm 2.
As mentioned in section 4.2, the distribution computed by the “duplication”

(⊕) operator is biased if its operands are not independent distributions.
To avoid this bias, we ensure that D1 and D2 are independent by forbidding

D2 to rely on the nodes involved in D1 (source and destination nodes excluded,
line 5). More details can be found in [14].

Nothing guarantees of course that there exists a way to deliver bundles that
satisfies C: even an epidemic broadcasting might not suffice.

7 Conclusion and future works

We propose to model contacts between a disruption tolerant network’s mobile
nodes as a random process, characterized by contact distributions. Such a de-
scription is more general than those generally encountered in the literature.

We have setup a framework that shows how such contact distributions can
be combined to compute the bundle delivery delay distribution corresponding to

3To be fair, this work also deals with message transmission delays, which are not
considered here.



Algorithm 2: Constrained probabilistic delivery

Data: Delivery condition C

Data: Bundle source s and destination d

B ← D⊥1

repeat2

Using nodes in N , compute D ∈ D via algorithm 13

B ← B ⊕D4

N ←
(

N \ {nodes involved in D}
)

∪ {s, d}5

until C(B) or N = {s, d}6

a given delivery strategy (i.e. a description of the nodes forwarding decisions).
This framework is formally defined and quite generic; it can be used to evaluate
quantitatively the performance of new routing protocols. It could be expanded
with new operators describing other (more subtle) forwarding schemes. A signif-
icant improvement would be to modify the framework so as to deal with bundles
transmission delays.

As a future work, real network traces can be analysed so as to quantify their
predictability; the delivery strategies elaborated using this framework could then
be compared with the heuristics proposed in the literature.

To demonstrate the applicability of the framework, we have used it to build
a new routing algorithm. It uses a modified Bellman-Ford algorithm adapted to
DTNs and asks the source to duplicate bundles. It tries to compute a routing
strategy that fulfills a given delivery condition without consuming too many
resources.
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