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Abstract. In this report we deal with the time to buffer overflow in a finite-buffer
queue with MMPP (Markov-modulated Poisson process) arrivals. The results in-
clude a closed-form formula for the transform of the distribution of the time to
buffer overflow. The main benefit of this formula is that, using properties of the
transform, we can easily compute the average overflow time and all the moments
(variance etc). Moreover, by means of an inversion algorithm, we can obtain the
probability density function and cumulative distribution function of the overflow
time. Analytical results are illustrated by a numerical example based on MMPP
parameterization fitted to an IP traffic trace file.
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1 Introduction

The popularity of MMPP in various areas of network traffic modeling, simulation and
performance evaluation is connected with the fact that it is probably the simplest model
that allows for precise fitting of the statistical parameters of the traffic, including its
autocorrelation structure. In other words, the MMPP, remaining analytically tractable,
can reflect burstiness and self-similarity of network traffic which results in reliable per-
formance parameters (like loss ratio, queueing delay, buffer occupancy) obtained using
MMPP-based models [1].

In this paper we deal with the time to buffer overflow, an informative performance
characteristic for buffering processes in network elements (see [2] for a deeper discus-
sion). As the distribution of the time to overflow heavily depends on the autocorrelation
structure of the traffic, it is very important to use a model that is able to mimic that struc-
ture properly. MMPP is very well suited for this purpose, especially taking into account
that the methodology for fitting traces to MMPP is well developed (see [1],[3]-[6]).

The main result of this paper is a closed-form formula for the Laplace transform of
the buffer overflow time distribution in a finite-buffer queue, presented in Theorem 1.
Using this formula, we can easily compute the average overflow time, all moments, the
probability density function and cumulative distribution function. A finite buffer of size
b and general type of service time are assumed, which means that in Kendall’s notation
we investigate herein theMMPP/G/1/b queueing system.

To the best of the author’s knowledge there have been no reported results of this
type yet. Most of the papers are devoted to other queueing characteristics, mainly to
queue size distribution or queueing delay (workload). In particular, these characteris-
tics for various MMPP queueing models in the stationary regime can be found by the



reader in [7]-[9], while their time-dependent versions in [10]-[15]. There are also some
papers in which approximation techniques for analysis of MMPP queues are shown,
for instance [16]-[18]. As regards the buffer overflow time, in [19, 20] some asymptotic
results devoted to related problems can be found. In [21], a solution for discrete-time
Markovian queues ofGeom(n)/Geom(n)/ 1/N type is given.

Finally, in [22] systems with exponential service times are investigated. The ap-
proach presented herein is different, and it does not restrict analysis to Markovian or
exponential service times, which excludes some cases which are important from a prac-
tical point of view, like constant service time. It also has an advantage of giving solu-
tions in a closed, easy to use, form.

The remaining part of paper is organized in the following way. In section 2, the
arrival process, the queueing model and the notation used throughout the article are
presented. In section 3, the analysis of the buffer overflow time is performed. In partic-
ular, a formal definition of the overflow time is given and the main result of the paper,
Theorem 1, is proven. In addition, some computational issues are discussed at the end
of that section. In section 4, a numerical illustration based on IP traffic is presented.
Finally, remarks concluding the paper are gathered in section 5.

2 The model

For a very good survey on MMPP we refer the reader to [7]. Following the authors, a
Markov-modulated Poisson process can is obtained by varying the arrival rate of the
Poisson process according to anm-state continuous-time Markov chain. In particular,
when the Markov chain is in statei, arrivals occur according to a Poisson process of
rateλi. Therefore MMPP is parametrized by twom×m matrices:

Q – infinitesimal generator of the continuous-time Markov chain,
Λ = diag(λ1, . . . , λm) – it has arrival rates on its diagonal, non-diagonal elements
are zeros.

In this article we deal with a single-server queue whose arrival process is given by
an MMPP. The service time is distributed according to a distribution functionF (·),
which may assume any form, and the standard independence assumptions are made.
The buffer size is finite and equal tob, including service position. This means that if a
packet (cell, job, customer) at its arrival finds the buffer full, it is blocked and lost.

The following nomenclature is used throughout the paper:

J(t) – the state of the modulating Markov chain at timet
X(t) – the queue size at timet
P(·) – the probability
Pi,j(n, t) = P(N(t) = n, J(t) = j|N(0) = 0, J(0) = i) – the counting function
for the MMPP.N(t) denotes the total number of arrivals in(0, t]
Qij – element of the matrixQ. This notation is used for all matrices.
z(s) = ((s + λ1 −Q11)−1, . . . , (s + λm −Qmm)−1)T – column vector of sizem
with elements(s + λi −Qii)−1

d̃n,i(s) =
∑m

j=1

∑n−1
k=0

∫∞
0

e−stPi,j(k, t)(1− F (t))dt,



d̃n(s) = (d̃n,1(s), . . . , d̃n,m(s))T ,
z(s) = ((s + λ1 −Q11)−1, . . . , (s + λm −Qmm)−1)T .
ak,i,j(s) =

∫∞
0

e−stPi,j(k, t)dF (t),

pij =
{

0 if i = j,
Qij/(λi −Qii) if i 6= j.

In addition, the followingm×m matrices are used:

0 = m×m matrix of zeroes,

I = m×m identity matrix,

Ak(s) = [ak,i,j(s)]i,j ,

Z(s) =
[
(λi −Qii)pij

s + λi −Qii

]

i,j

,

E(s) =
[

Λij

s + λi −Qii

]

i,j

,

R0(s) = 0,

R1(s) = A−1
0 (s),

Rk+1(s) = A−1
0 (s)(Rk(s)−

k∑

i=0

Ai+1(s)Rk−i(s)), k ≥ 1.

In this notation[bi,j ]i,j denotes anm×m matrix with elementsbi,j .

3 Time to buffer overflow

The time to buffer overflow is denoted herein byτn,i and defined formally in the fol-
lowing way. LetX(t), t ≥ 0 be the queue size process. Let the initial queue size ben,
0 ≤ n < b, and the initial state of the modulating Markov process bei, 1 ≤ i ≤ m.
Then

τn,i = inf{t > 0 : X(t) = b|X(0) = n, J(0) = i}.
Although usually we are interested only inτ0,i, that is in the overflow time starting

from empty buffer, the analysis presented below covers all possible initial lengths of the
queue.

The distribution of the buffet overflow time will be presented using the transform of
the tail ofτn,i, namely:

ln,i(s) =
∫ ∞

0

e−stP(τn,i > t)dt,

and its column vector:

ln(s) = (ln,1(s), ln,2(s), . . . , ln,m(s))T .

Using the transform of the tail is very convenient because having calculatedln,i(s)
we can easily obtain the expected value ofτn,i:

Eτn,i = ln,i(0), (1)



the transform of its cumulative distribution function:
∫ ∞

0

e−stP(τn,i < t)dt =
1
s
− ln,i(s), (2)

or the transform of its probability density function:
∫ ∞

0

e−stP′t(τn,i < t)dt = 1− sln,i(s). (3)

Theorem 1. For theMMPP/G/1/b queue it holds true that:

ln(s) =
b−n∑

k=0

Rb−n−k(s)Ak(s)G−1
b (s)hb(s)−

b−n∑

k=1

Rb−n−k(s)d̃k(s), n < b, (4)

where

Gb(s) = (I − Z(s))
b∑

k=0

Rb−k(s)Ak(s)− E(s)
b−1∑

k=0

Rb−1−k(s)Ak(s), (5)

hb(s) = (I − Z(s))
b∑

k=1

Rb−k(s)d̃k(s)− E(s)
b−1∑

k=1

Rb−1−k(s)d̃k(s)− z(s). (6)

P r o o f of Theorem 1. Conditioning on the first departure epoch we get for0 <
n < b, 1 ≤ i ≤ m:

P(τn,i > t) =
m∑

j=1

b−n−1∑

k=0

∫ t

0

P(τn+k−1,j > t− u)Pi,j(k, u)dF (u)

+(1− F (t))
m∑

j=1

b−n−1∑

k=0

Pi,j(k, t), (7)

and for1 ≤ i ≤ m:

P(τ0,i > t) =
m∑

j=1

∫ t

0

P(τ0,j > t− u)pij(λi −Qii)e−(λi−Qii)udu

+
m∑

j=1

∫ t

0

P(τ1,j > t− u)Λije
−(λi−Qii)udu

+e−(λi−Qii)t. (8)

The first part of (7) covers the situation where the first departure timeu is beforet and
and the buffer does not get full by the timeu. The second part covers the situation where
the first departure timeu is aftert and the buffer does not get full by the timet. The
first part of (8) corresponds to the situation where the modulating state changes by the



time t, while the second part corresponds to the case where the first arrival occurs by
the timet. Finally, the last part of (8) covers the situation where nothing happens by the
time t.
Using transforms we obtain for0 < n < b, 1 ≤ i ≤ m:

ln,i(s) =
m∑

j=1

b−n−1∑

k=0

ak,i,j(s)ln+k−1,j(s) + d̃b−n,i(s),

and for1 ≤ i ≤ m:

l0,i(s) =
m∑

j=1

l0,j(s)
pij(λi −Qii)
s + λi −Qii

+
m∑

j=1

l1,j(s)
Λij

s + λi −Qii
+

1
s + λi −Qii

.

Using vector notation we have:

ln(s) =
b−n−1∑

k=0

Ak(s)ln+k−1(s) + d̃b−n(s), 0 < n < b,

l0(s) = Z(s)l0(s) + E(s)l1(s) + z(s).

Replacingln(s) = ub−n(s) we obtain:

n−1∑

k=−1

Ak+1(s)un−k(s)− un(s) = ψn(s), 0 < n < b, (9)

ub(s) = Z(s)ub(s) + E(s)ub−1(s) + z(s), (10)

with
ψn(s) = An(s)u1(s)− d̃n(s).

All possible solutions of the system (9) have the following form:

un(s) = Rn(s)c(s) +
n∑

k=1

Rn−k(s)ψk(s), n ≥ 1, (11)

wherec(s) is a vector which does not depend onn (see Theorem 1 in [23]). Putting
n = 1 into (11) we get

c(s) = A0(s)u1(s)

and

un(s) =
n∑

k=0

Rn−k(s)Ak(s)u1(s)−
n∑

k=1

Rn−k(s)d̃k(s).

Finally, by means of the boundary condition (10) we get

u1(s) = G−1
b (s)hb(s).

This finishes the proof of Theorem 1. ¤



In order to make (4) useful for practical purposes we have compute first matrices
Ak(s), Rk(s), Z(s), E(s) and vectorsd̃k(s), z(s). Firstly, Z(s), E(s) andz(s) can
be computed in an obvious way. Secondly, computingRk(s) is also easy if we know
matricesAk(s). Therefore we are reduced to finding an efficient way of calculating
Ak(s) and d̃k(s). This can be done by means of the uniformization technique [8]. In
particular, forAk(s) we have

An(s) =
∞∑

j=0

γj(s)Kn,j , (12)

where

K0,0 = I,

Kn,0 = 0, n ≥ 1,

K0,j+1 = K0,j(I + θ−1D0), θ = max
i
{(−D0)ii}

Kn,j+1 = θ−1
n−1∑

i=0

Ki,jDn−i + Kn,j(I + θ−1D0),

γj(s) =
∫ ∞

0

e−(θ+s)t(θt)j

j!
dF (t).

The truncation rule for the sum in (12) can be found in [7]. Vectorsd̃k(s) can be com-
puted using the followingm×m matrices:

Dk(s) =
[∫ ∞

0

e−stPi,j(k, t)(1− F (t))dt

]

i,j

.

The uniformization technique gives now:

Dn(s) =
∞∑

j=0

δj(s)Kn,j ,

with

δj(s) =
∫ ∞

0

e−(θ+s)t(θt)j

j!
(1− F (t))dt.

Naturally, we have

d̃n,i(s) =
m∑

j=1

n−1∑

k=0

(Dk(s))i,j .

Having computed all coefficient matrices and vectors we may proceed to compute
the mean buffer overflow time and transforms of its pdf and cdf, using (1), (2) and
(3), respectively. If we are also interested in the precise shape of the density function,



algorithms for the numerical Laplace transform inversion have to be used. For example,
in [24] the following method based on the Euler summation formula is proposed:

f(t) ≈
m∑

k=0

n+k∑

j=0

(
m

k

)
2−m(−1)jaj(t), (13)

where

ak(t) =
eA/2t

2lt
d̃k(t), k ≥ 0,

d̃0(t) = f∗
(

A

2lt

)
+ 2

l∑

j=1

Re

[
f∗

(
A

2lt
+

ijπ

lt

)
eijπ/t

]
,

d̃k(t) = 2
l∑

j=1

Re

[
f∗

(
A

2lt
+

ijπ

lt
+

ikπ

t

)
eijπ/t

]
, k ≥ 1.

f(t) is the original function,f∗(s) denotes a transform to be inverted while coefficients
m, n, A, l are used to control the inversion error. Typical values arem = 11, n = 38,
A = 19 andl = 1.

4 Numerical illustration

For numerical purposes, we are going to use a parameterization of MMPP fitted to an
IP traffic trace file. Using one million packet headers from the file FRG-1137208198-
1.tsh, recorded at the FGR aggregation point run by PMA (Passive Measurement and
Analysis Project [25]), the following MMPP parameteriztion was obtained in [15]:

Q =




−172.53 38.80 30.85 0.88 102.00
16.76−883.26 97.52 398.9 370.08

281.48 445.97−1594.49 410.98 456.06
23.61 205.74 58.49−598.93 311.09

368.48 277.28 7.91 32.45−686.12




,

(λ1, · · · , λ5) = (59620.6, 113826.1, 7892.6, 123563.2, 55428.2).

The mean packet size is 850 bytes. Other basic characteristics of the traffic sample
and its MMPP model are shown in Table 1. It is important that the autocorrelation
function fits the original traffic reasonably well on several time scales (see Fig. 5 in
[15]).

It is assumed that service time,d, is constant, the initial queue size is 0, and that the
initial state of the modulating process is distributed according to

π = (0.52174, 0.12808, 0.023151, 0.11352, 0.21351),

which is the steady state vector of the underlying Markov chain,J(t).
Now, manipulating the service time we may obtain different traffic intensities

ρ = dπΛ 1.



Table 1.Parameters of the original and MMPP traffic.

mean interarrival time [µs] arrival rate, [pkts/s]
original traffic 13.940 71732

MMPP 13.941 71729
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Fig. 1. Mean time to overflow versus the buffer size for MMPP arrivals and five different traffic
intensities, namely 0.5, 0.6, 0.7, 0.8 and 0.9.

Sample results for five different traffic intensities are depicted in Figure 1. Each curve
represents the average time to overflow as a function of the buffer size in logarithmic
scale. Analyzing this set of results we can notice a few things.

Firstly, for large buffers the average overflow time seems to grow linearly (on log-
scaled plot) with the buffer size. This effect can potentially be used for estimation of
the overflow time in large-buffer systems using numerical results obtained for much
smaller buffers.

Secondly, a characteristic bend can be observed in a low range (between 5 and
10KB) of each curve. This indicates that for a very small queueing capacity the system’s
behaviour is significantly different.

Thirdly, the time to overflow decreases when the traffic intensity grows but this
effect was to be expected.

Now we demonstrate how the autocorrelation structure of the traffic influences
the buffer overflow time. For this purpose we consider the Poisson arrivals instead of
MMPP. Naturally, the same arrival rate is assumed. Figure 2 reports average overflow
times in this case. As the Poisson process is the simplest case of MMPP, the shapes of
curves are similar, but there are great differences in values. For instance, in Table 2 a
comparison between MMPP and Poisson-arrival models for 20KB of buffering space
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Fig. 2. Mean time to overflow versus the buffer size for Poisson arrivals and five different traffic
intensities, namely 0.5, 0.6, 0.7, 0.8 and 0.9.

is shown. The overflow times in the autocorrelated model are always smaller, and the
difference grows enormously as the traffic intensity decreases.

Table 2.Mean overflow time [s] for MMPP and Poisson arrivals and the buffer size of 20KB.

traffic Poisson MMPP
intensity arrivals arrivals

0.5 5.958×107 1.629×100

0.6 8.780×104 3.543×10−2

0.7 3.367×102 1.441×10−2

0.8 3.004×100 1.128×10−2

0.9 7.256×10−2 9.758×10−3

5 Conclusions

In this paper a comprehensive solution for the buffer overflow time in a finite-buffer
queue fed by the Markov-modulated Poisson process is shown. As the MMPP is able
to mimic the complex autocorrelation structure of network traffic, this solution may be
helpful in the proper sizing of buffers in network elements.

The main result is presented in a closed, easy to use, form. It allows one to obtain
all characteristics of the overflow time distribution, including the mean value, the mo-
ments, pdf, cdf etc. It has also the following advantage in numerical calculations. As the



sequencesAk(s), Rk(s), d̃k(s) do not depend on the buffer size,b, nor the initial queue
length,n, after computing these sequences up to some index we can obtain a variety of
results for different values ofn andb with practically no additional effort.
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