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Abstract. Most Internet-based collaborative computing systems face the major 
problem: freeriding. The abundance of freeriders, and load imbalance it creates, 
punishes those peers who do actively contribute to the network by forcing them 
to overuse their resources. Hence, the overall system performance becomes to 
degrade quickly. The goal of this paper is aimed to provide an efficient 
approach to distinguish the dishonest peers from the honest peers. The key idea 
of our approach is to make use of the relationship between the perceived 
throughput and the available bandwidth. First, we do a comprehensive study of 
available bandwidth estimation tools. Next, we propose integrity-aware 
bandwidth guarding algorithm, which is designed according to the perceived 
throughput and the available bandwidth estimation. Finally, the simulation 
results illustrate that our approach can correctly identify dishonest peers and be 
of great help in constructing a better overlay structure for many peer-to-peer 
and multicast applications. 
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1   Introduction 

A peer-to-peer (or P2P) computer network is a network that relies primarily on the 
computing power and bandwidth of the participants in the network rather than 
concentrating it in a relatively low number of servers. An important characteristic in 
peer-to-peer networks is that all clients provide resources, including bandwidth, 
storage space, and computing power. Thus, as nodes arrive and demand on the system 
increases, the total capacity of the system also increases. Peer-to-peer computing has 
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changed the way people interact in the areas of information sharing and collaboration. 
Hence, in the past few years, peer-to-peer applications have become more and more 
popular in the Internet. 

Most Internet-based collaborative computing systems, including P2P file sharing 
system such as Gnutella, Napster, and Kazaa, potentially face the problem of 
freeriding: that is, users or peers that consume resources of the system without 
contributing anything in return. Many studies [15][17] have shown up to 70% of 
Gnutella clients do not share any files, and nearly 50% of all responses are returned 
by 1% of the peers. This abundance of freeriders, and load imbalance it creates, 
punishes those peers who do actively contribute to the network by forcing them to 
overuse their resources (e.g. bandwidth).  Hence, the system performance becomes 
to degrade quickly. 

Previous research works [17] in this area has focused primarily on currency-based 
systems wherein peers gain currency for uploading files, and use currency when 
downloading files. In [14], they propose an EigenTrust algorithm, in which the global 
reputation of each peer i is given by the local trust values assigned to peer i by other 
peers, to construct the reputation management. On the other hand, BitTorrent [16] 
employs a tit-for-tat incentive mechanism to reduce freeriding and increase user 
cooperation. However, they also find out that in torrent with a large number of 
seeders, the BitTorrent tit-for-tat mechanism may not succeed in producing a 
disincentive for freeriding: in such torrents, freeriders may actually experience faster 
download times than cooperating peers. Hence, to cope with the above problem, the 
goal of this paper is how to figure out an efficient approach to distinguish the honest 
peers from the dishonest peers (e.g., freeriders), which consume resources of the 
system but contribute little or nothing in return.  

Since the Internet traffic is quite dynamic over time, it is not easy to distinguish 
the dishonest peers from the honest peers on the Internet according the perceived 
throughput. That is, such throughput-based approach is difficult to distinguish the 
reason of throughput degradation due to the network congestion or the bad peers. In 
this work, we aim to propose an efficient method to distinguish the dishonest peers 
from the honest peers. The key idea of our approach is to observe the relationship 
between the perceived throughput and the available bandwidth. When a network 
connection is affected by congestion, the available bandwidth and the throughput 
should both decrease. On the other hand, when the dishonest peer reduces its sending 
rate and the perceived throughput might decreases irregularly, but the available 
bandwidth should be the same or increase.  

There are many peer-to-peer–based services and applications in which our 
integrity-aware bandwidth guarding scheme can be of great help. For example, the 
fair sharing and peers are encouraged to contribute as much as possible. P2P file 
sharing system or P2P based multicast applications. By selecting a proper peer to 
cooperate with, not only the throughput of each peer could increase but also the 
system performance could improve substantially. We illustrate these points in the 
section 3. At last, we note that the proposed approach can be used in conjunction with 
currency-based approach, Eigentrust-based approach, or the reputation system to 
provide more efficient way to distinguish the dishonest peers.    

The rest of the paper is organized as follows. In section 2, we first introduce the 
general framework of our approach, several potential candidates of available 



bandwidth estimate tools and explain our algorithm in details. In section 3, we first do 
an accuracy study of the proposed approach and then illustrate how to integrate our 
approach to substantially improve the performance of multicast applications or peer-
to-peer applications. Finally, future work is given in the section 4.  

2 Framework 

In this work, we propose a fast and precise bandwidth guarding approach, which is an 
active detecting method and consider the peer integrity. The major idea of the 
integrity-aware bandwidth guarding approach is to explore the relationship between 
the available bandwidth and the throughput and differentiate the honest peers from the 
dishonest peers. As we discussed before, most of the detecting schemes are based on 
the observation of the connection throughput. However, such passive detecting 
methods are difficult to identify the degradation of throughput which is based on peer’ 
selfish behaviour or network congestion. Thus, to address the above problem, we let 
each host be able to figure out its corresponding host’s behaviour by investigating the 
perceived throughput and the available bandwidth.  Since a peer might be able to 
decrease the connection throughput but it is difficult for him to manipulate the 
available bandwidth of the path.  

There are two major components in our approach and they are (a) selection of a 
proper available bandwidth probing scheme, and (b) an intelligent irregular 
throughput detecting algorithm. In the following, we first do a comparison study 
about several famous available bandwidth detecting schemes and then present how to 
integrate this available bandwidth probing scheme into our framework to discover the 
dishonest peers. 

2.1 Studies on Available Bandwidth Estimation Tools 

Available bandwidth is useful information for the route selection, quality-of-service 
verification, and traffic engineering in the overlay network or Internet. The definition 
of available bandwidth is the unused capacity at a link. Figure 1 illustrates the 
relationship between the link capacity, cross traffic, and the available bandwidth. C is 
the capacity of the link and A[0,T] is the traffic from time 0 to time T. The available 
bandwidth is the average unused bandwidth over some time interval T. Thus, 
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In general, the bandwidth estimation techniques are classified into single packet 
methods and packet pair methods. Single packet methods estimate the link capacity 
by measuring the time difference between the round-trip time (RTT) to one end of an 
individual link and that to the other end of the same link. Single packet tools include 
pathchar, clink, and pchar.  

Packet pair methods send groups of back-to-back packets, i.e., packet pairs, to a 
server which echoes them back to the sender. The spacing between packet pair is 



determined by the bottleneck link. Example tools include NetDyn probes, bprobe, 
nettimer, and Spruce [1]. In this paper, we focus on comparing three available 
bandwidth estimation tools: Spruce [1], Iperf [7], and pathChirp [2]. 

 

 
Fig. 1. The Definition of Available Bandwidth 

2.2 Comparison of Available Bandwidth Estimation Tools 

Since the performance of our integrity-aware bandwidth guarding approach depends 
on the efficiency of the available bandwidth estimation tool, we need to choose the 
suitable available bandwidth estimation tool with light-weight probing traffic and 
accurate estimation in multi-bottleneck network paths. Thus, we compare three 
available bandwidth estimation tools, i.e., Spruce, pathChirp and Iperf, in single 
bottleneck, pre-bottleneck and post-bottleneck environments. 
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rst, we set up a simple experiment as shown in Figure 2(a) to evaluate the 
of the estimation tools. The bottleneck controller is installed with FreeBSD 
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and Dummynet. The experimental result is depicted in Figure 2(b). We can see that 
all tools perform well under a single bottleneck case. 

In the next experiment, we would like to create a post-bottleneck scenario for the 
targeted connection. So, we prepare six computers to construct the emulation 
experiment. In Figure 3, the sender and the receiver are hosts with Linux Fedora 
2.6.11-1.1369_FC4smp. 

 

Fig. 3. The pre-bottleneck and post-bottleneck experiment environment 
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  Figure 4(a) illustrates the pre-bottleneck experimental result and the line w
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represents the ideal available bandwidth. It equals the capacity of the path minuses the 
cross traffic in the bottleneck. In this experiment, Iperf performs still better since its 
predicted result is very close to the ideal estimated result. The Spruce performs poorly 
in the experiment.  

We set up a post-bottleneck experiment as shown in Figure 4(b) to compare these 3 
available bandwidth estimation tools. We can see that Iperf still performs better and is 
able to get the most accurate estimation. The estimated bandwidth by the pathChirp is 
little higher than the actual value. We note that the Spruce failed to estimate the 
available bandwidth under such post-bottleneck case. 

 Fig. 5. The overhead comparison of pathChirp, Spruce, and Iperf  
 
Now we turn our attention to the probing overhead of the estimation tools. In other 

words, we hope that the probing overhead is as low as possible, i.e., the probing data 
does not affect the normal traffic. Hence, we do the comparison study of probing 
overhead. In Figure 5, we see that Iperf usually has probing overhead more than 
10Mbps. The overhead of the pathChirp is around 0.1Mbps and the Spruce’s 
overhead is less than 0.01Mbps. In conclusion, according to the accuracy and 
overhead comparison, we decide to choose pathChirp as our available bandwidth 
estimation tool. In fact, it performed well even in multi-bottleneck network 
environment with light weight probing overhead. 

2.3 Irregular Throughput Detection Algorithms 

To figure out a dishonest peer, the main idea of our approach is to observe the 
relationship between the received throughput and the available bandwidth. When a 
network connection is affected by congestion, the available bandwidth and the 
throughput should both decrease. However, when the user cheats by cutting down its 
transmission rate, the observed throughput tends to decrease irregularly but the 
available bandwidth is likely to be the same or increase. According to this important 
observation, we design our algorithm to figure out the irregular patterns and locate the 
immoral behaviors of the dishonest peers. 



Now we first introduce the notations, as shown in Table 1, to explain the details of 
our algorithm. We define Expected Throughput, RE[t], which is the expected 
throughput at time t without cheating. Based on RE[t], we compare the current 
throughput and expected throughput to check if the current throughput is reasonable 
or not. We apply Exponential Weighted Moving Average (EWMA) to compute RE[t] 
in our algorithm. In Algorithm 1 depicted in Figure 6, we update RE[t] every time 
interval τ. During time interval τ, we calculate the average perceived throughput 
Ravg[t-τ] and compare Ravg[t-τ] with RE[t]. 
 If RE[t] decreases more than αRE[t] and available bandwidth A[t] increases more 
than (1+ρ)A[t-τ], the throughput in time interval τ will be classified as cheating traffic 
and the traffic in time interval τ will not be counted in RE[t]. α  is defined 
as
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std , the coefficient of variance of throughput in time interval τ. We 

assume that the variation of the traffic in a short term could be approximated as a 
normal distribution and use the 95% conference interval, i.e., 1.6 times the standard 
deviation  

 Table 1.  Definitions of Notations 

RE[t] Expected throughput (achieved rate) at time t 

Ravg[t-τ] Average throughput in time interval τ 

Rstd[t-τ] The standard deviation of throughput in time intesrval τ 

A[t] Available bandwidth at time t 

Ρ The available bandwidth estimation error rate 

Ω The weighted parameter used in counting expected throughput 

Α The coefficient of variance of throughput in time interval τ 

 
Algorithm 1 Compute Expected Throughput 

 1: if |RE[t]－Ravg[t－τ,t] |＜αRE[t]  
and A[t] < (1＋ρ)A[t－τ] then 

 2:   return  
[t] ＝ RE[t－τ]×(1－ω) ＋ Ravg[t－τ,t]×ω 

 3: else 
 4:       return RE[t] ＝ RE[t－τ] 
 5: endif 

 
 
 
 
 
 

Fig. 6. Algorithm 1 Compute Expected Throughput 

 

 
 
 



In Algorithm 2 illustrated in Figure 7, we use the Expected Throughput, RE[t], and 
the available bandwidth to identify if the peers are cheating. α and ρ are defined as the 
same as in Algorithm 1. In Algorithm 2, we monitor the throughput and the available 
bandwidth as shown in second and third lines. If the throughput drops too fast and the 
available bandwidth increases more than (1+ρ)A[t-τ], we consider the peer may be 
cheating and increase the parameter possible_cheating. When the possible_cheating is 
more than µ, which is the threshold value and we use that to identify the peer as 
“dishonest peer.” The possible_cheating might increase while the network conditions 
return to the normal condition. This mechanism avoids the situation that the peer 
suffers sudden abnormal network conditions and may return to the normal condition 
in next time interval τ.  

 
 
 Algorithm 2 Irregular Throughput Detection 

 1: for all interval τ do 
 2:   if RE[t] － Ravg[t － τ,t] ＞ αRE[t] then 
 3:     if A[t] > (1＋ρ)A[t －τ] then 
 4: possible_cheating ← possible_cheating ＋ 1 
 5:       if possible_cheating ＞ µ then 
 6:         return cheating_detected 
 7:       end if 
 8:     else 
 9:possible_cheating ← possible_cheating － 1 
10:       return nothing 
11:     end if 
12:   end if 
13: end for 

 
 
 
 
 
 
 
 
 

 
 

Fig. 7.  Algorithm 2 Irregular Throughput Detection Algorithm 

We also take the available bandwidth A[t] into consideration. If the A[t] increases 
more than (1+α)A[t-τ], the traffic may be cheating. We define ρ the threshold of 
estimation error. By experiments shown in Figure 8, we observe that the estimation 
error is less than 5% in 129 seconds, i.e., 60 rounds. Hence, we set ρ equal to 5% and 
τ more than 129 seconds in Algorithm 1 because our experiment could have error rate 
almost  in 129 seconds. ω is the weighted parameter used in computing 
expected throughput. In this work, we let ω equal to 0.8. 

%5±

3 Results 

In this section, we evaluate the performance of the integrity-aware bandwidth 
guarding approach through the simulations, which are done by using the NS-2[10] 
simulator. We consider two different systems: peer-to-peer applications and multicast 
applications, in which the integrity-aware bandwidth guarding method can be of great 
help. The TCP-Friendly Rate Control (TFRC) protocol is used in all the simulations. 
In all simulations, we adopt the pathChirp to estimate the available bandwidth. 

The performance metrics are (a) the error rate: the ratio of correct detection of 
dishonest peers, (b) the average waiting time: the mean time to retrieve the targeted 



 
Fig. 8.  The estimation error of pathChirp  

 
file over all the peers, and (c) the longest waiting time: the amount of time for the 
slowest peer to retrieve the targeted file. 

3.1  Accuracy Study: Peer-to-Peer Applications   

In this experiment, we would like to illustrate the accuracy of our approach, i.e., 
the successful ratio of using our algorithm to tell the cheating peers from the honest 
ones. We use Brite [18] to generate the topology, which is in accordance to the 
Waxman model [19]. There are total 100 nodes and 200 links in our simulation 
topology. The bandwidth of each link is determined to follow the heavy-tailed 
distribution and the range of the bandwidth of the link is from 1 Mbps to 20 Mbps. In 
addition, we use the traditional throughput-based scheme as the baseline comparison.  

In the first experiment, we randomly select 50 connections and we vary the 
percentage of the dishonest peers from 20% to 80%. After some period of time, 
dishonest peers start to reduce by half of their original sending rate.  

From figure 9(a), we observe that the performance between the throughput-based 
approach and our integrity-aware approach is comparable to each other. This is 
because when the load on the network is low, the throughput is mainly determined by 
the sending rate of the peer, i.e., the throughput is able to imply the behavior of the 
peer. That is, when the dishonest peer decreases its sending rate, it is enough to 
distinguish most dishonest peers by observing the change of their throughput only. To 
explore the benefit of our integrity-aware bandwidth guarding approach, in the 
following experiment, we consider a scenario in which the background traffic is 
introduced into the network after 300 seconds such that all the connections suffer 
serious network congestion from that time. Moreover, there is no dishonest peer in 
this experiment.  

From Table 2, it is not surprising that the throughput-based detection approach 
works poorly, i.e., the error rate is 100%. This can be explained as follows. The 
throughput-based approach can not tell that the degradation of the throughput is due 
to the peer behavior or the actual network condition. On the contrary, since our 



approach considers both available bandwidth and throughput, the error rate is able to 
keep quite small, i.e., the error rate is 6% in this case. Therefore, it is essential to 
consider both available bandwidth and throughput to detect the cheating peer 
correctly.

 
Fig. 9. The Error Rate of Irregular Throughput Detection Algorithm  

Table 2.  Error rate of honest peers

  Throughput 
Detection 

Available bandwidth 
and throughput 

Honest peers 100% 6% 

 

 

3.2  Performance Study: Multicast Applications 

The motivation for this experiment is that we would like to illustrate the advantages 
by using our bandwidth guarding approach to figure out a better peer and construct a 
proper overlay structure for many systems or applications. That is, we want to 
investigate the impact of selecting a proper peer on the construction of multicast 
structure. We note that the performance of multicast systems primarily depends on the 
underlying multicast tree structure. Usually, a host would like to be placed as close as 
to the root to get the content first because the content is delivered from the root to the 
leaf node. For example, a dishonest peer would like to claim that it has quite large 
transmission bandwidth initially when the multicast tree is built. Hence, once the 
multicast tree is constructed based on the false information, all the peers under that 
dishonest host probably suffer a long waiting time until they get the required content 
or file.   



Fig. 10. (a) The average waiting time in different ratio of cheating peers (b) The longest 
waiting time in different ratio of cheating peers  

(b) (a) 

The simulation environment is as follows. There are 50 nodes, which want to join this 
multicast group. If a peer is a dishonest peer, it announces that its transmission 
bandwidth is from 2 to 5 times of its original transmission bandwidth. After the root is 
decided, the naïve method starts to construct the minimum spanning tree according to 
the claimed bandwidth of each peer. On the other hand, the root can use our integrity-
aware bandwidth guarding approach to build the suitable minimum spanning tree. The 
performance metrics are the average waiting time and the longest waiting time. The 
waiting time refers to the period of time which a peer spends to retrieve the required 
content.  

In Figure 10, we can see that the multicast application with the help of our 
approach always outperforms the multicast application with the naïve approach in 
term of the average waiting time and the longest waiting time. Furthermore, even a 
small amount of dishonest peers, such as 20% participants, are introduced into the 
system, the system performance still degrade quickly. That is, the dishonest peers 
claim that their transmission bandwidth is large and usually have better opportunities 
to be placed close to the root. Hence, all the hosts located under that dishonest peer 
will experience a longer waiting time to get the required content. Therefore, the 
integrity-aware bandwidth guarding algorithm can be used to substantially improve 
the performance of multicast applications.    

4 Future Work 

In this work, we have proposed an integrity-aware bandwidth guarding algorithm. 
This approach is able to correctly identify dishonest peers and avoid misjudging 
honest peers, which are affected by poor network conditions. In addition, our 
algorithm can be used to construct a better underlying structure, which can 
substantially improve the performance of multicast applications. Our ongoing work is 
focusing on how to integrate our approach with other approaches to develop a better 
reputation system, which could provide more incentives to attract honest peers. 
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