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Abstract. In Wireless Sensor Networks (WSN), the effective detection
and reconstruction of the event signal is mainly based on the regulation of
sampling and communication parameters used by the sensor nodes. The
aim of this paper is to understand the effect of these parameters on the
reconstruction performance of event signal in WSN. Theoretical analysis
and results show that with proper selection of sampling and communica-
tion parameters, the event signal can be satisfactorily reconstructed at
the sink. Furthermore, this study also reveals that the non-uniform and
irregular sampling of the event signal outperform the uniform sampling
in terms of the reconstruction performance while providing significant en-
ergy conservation. Moreover, it is also shown that node density is closely
related with the reconstruction performance such that a certain node
density is imperative to assure a certain level of reconstruction quality.

Key words: Wireless sensor networks, event signal reconstruction, non-
uniform sampling, irregular sampling.

1 Introduction

In Wireless Sensor Networks (WSN), energy-efficient and reliable communication
is mainly based on the regulation of sampling and communication parameters
such as reporting frequency1 (or sampling frequency), number of source nodes,
size of the source node selection area around the event. Therefore, to effectively
reconstruct the observed physical phenomenon at the sink, it is imperative to
understand the effect of these parameters over the reconstruction performance.

There has been some research efforts about the reconstruction of the observed
phenomenon in WSN. In [2], the effect of the compression over the reconstruction
of event signal is investigated. The upper bound for the compression rate which

1 The sampling frequency of a sensor node is the number of samples taken from the
sensed event signal. However, since in WSNs each data packet includes a number
of samples, reporting frequency which is defined as the number of transmitted data
packet per unit time is directly proportional with sampling frequency. Therefore,
throughout this paper, we mainly use the sampling frequency.
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can achieve the given distortion bound is given. In [3], to effectively reconstruct
the correlated observations of sensor nodes, both asymmetric and symmetric
encoder settings are proposed. In [4], a source-channel matching approach is
proposed to estimate the observed field, which can provide the analysis for the
effect of the parameters such as number of nodes, power, field complexity over
the estimation. In [5], to efficiently reconstruct the observed field, the tradeoff
between coding rate and reliability characterized by the loss probability is inves-
tigated. In [6], the relation between the system throughput and reconstruction
distortion is investigated for the case in which the reconstruction is performed by
a large scale sensor network with mobile agents. However, none of these studies
consider actual signal reconstruction. They use either estimated or compressed
version of sensor samples to reach to an estimation of the event signal instead
of an actual event signal reconstruction. Furthermore, they do not incorporate
the sampling and communication parameters to investigate their effects on the
actual reconstruction of the event signal.

In this paper, a theoretical analysis for the reconstruction of event signal at
the sink is performed. The aim of this theoretical analysis is to understand the
effect of the sampling and communication parameters over the performance of
event signal reconstruction in WSN. The main contributions and results of this
work can be outlined as follows:

1. Exact event signal reconstruction is performed using the sensor readings
instead of an estimation of the event features. It is shown that with proper
selection of sampling and communication parameters, an event signal can be
satisfactorily reconstructed at the sink.

2. For a given application-specific reconstruction error constraint, the uniform
sampling scheme, in which source nodes use the same sampling frequency, is
inefficient for the reconstruction of the event signal with high frequency com-
ponents. However, the non-uniform and irregular sampling schemes, in which
source nodes use heterogeneous sampling frequencies, enable sensor network
to effectively reconstruct the event signal with high frequency components
as well as providing significant energy conservation.

3. The reconstruction performance can also be affected by the size of the source
node selection area around the event. When this area is decreased, the lower
reconstruction error can be obtained as well as significant energy conserva-
tion can be achieved with smaller number of sources. This highlights the node
density problem coupled with the reconstruction process. That is, to achieve
a certain level of reconstruction error, certain node density is imperative.

The remainder of this paper is organized as follows. In Section 2, we introduce
the theoretical model for event signal reconstruction. In Section 3, by using the
theoretical model given in Section 2, we first give the results on the performance
of event signal reconstruction with uniform, non-uniform and irregular sampling
schemes, respectively. Then, we present the comparative results of these three
sampling schemes. The concluding remarks are given in Section 4.
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2 Reconstruction of Observed Event Signal

In WSN applications, the physical phenomena which are collectively observed by
the sensor nodes can be modeled by a single point source or a field source. Here,
we adopt the point source model [7] for event signal, and then we introduce the
model for the event signal reconstruction. Note that, event signal reconstruction
analysis introduced in this paper can be directly extended to the field source
case.

2.1 Modeling of Observed Event Signal

In WSN applications, the event signal modeled by a point source is assumed to
generate a continuous random process fS(t) having a variance σ2

S and a mean
µS . Assuming that the point source is at the center of the coordinate axis [7],
the sensor node situated at location (x, y) receives the signal given by

f(x, y, t) = fS(t −

√

x2 + y2

v
)e−

√
x2+y2

θs (1)

where v denotes the diffusion velocity of fS(t) and θs denotes the attenuation
constant of event signal fS(t). Since f(x, y, t) is the delayed and attenuated
version of fS(t), the variance and mean of f(x, y, t) can be expressed by

µE(x, y) = µse
−

√
x2+y2

θs (2)

σ2
E(x, y) = (σse

−
√

x2+y2

θs )2 (3)

Using the observations which are attenuated and delayed version of the event
signal, each sensor node generates its data packets. The kth data packet gener-
ated by sampling the received signal f(xi, yi, t) by sensor node ni at location
(xi, yi), i.e., Si,k, is defined as

Si,k =
[

f(xi, yi, tkp) f(xi, yi, tkp+1) ... f(xi, yi, t(k+1)p)
]

(4)

where Si,k is p× 1 vector, p and k denote the packet length and packet number,
respectively, f(xi, yi, tkp) is a sample of event signal f(xi, yi, t), taken at time
tkp. Next, we introduce the model for the reconstruction of event signal at the
sink.

2.2 Event Signal Reconstruction

In WSNs, after the detection of an event, sensor nodes sample the event signal
and send the generated data packets (Si,k) to the sink. During this process,
sensor circuitries add noise to these packets (Si,k) as

S′
i,k = Si,k + Ni,k (5)
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where S′
i,k is the noisy version of the sensor packet Si,k and Ni,k is the observation

noise, where Ni,k ∼ N(0, σ2
N ). In addition to the additive noise, due to the

constraint in cost, power, and communication, in WSNs, packet losses often
arise during the communication between the sensor nodes and the sink. In this
paper, to model the packet losses, we assume an overall packet loss probability
λ which includes loss due to channel errors, collision, and congestion. Hence, we
define the lossy and noisy version of the sensor packet (Xi,k) as

Xi,k =

{

0 with probability λ
Si,k + Ni,k with probability (1 − λ)

In WSNs, the packet losses heavily depend on the increasing contention in the
forward path which is mainly based on the excessive communication load which
results in collision, and congestion in the forward path. Therefore, the overall
packet loss probability in a sensor network can be modeled by the sampling
and communication parameters affecting the communication load over sensor
network. Using ns-2 network simulator [11], we conduct comprehensive set of
simulation experiments to model the overall packet loss probability (λ) based on
sampling and communication parameters used by sensor nodes. The simulation
setting used in these experiments is given in Table 1. The experiment results
given in Fig. 1 show that the overall packet loss probability (λ) is mainly based
on the number of source nodes (M) and their sampling frequency (f). Using
OriginLab [10] data fitting toolbox, we analytically express the overall packet
loss probability λ as a function of number of source nodes and their sampling
frequency as follows

λ = 1 − e−0.01f/(150e−

M
15 +5) (6)

where M is the number of source nodes, f is the sampling frequency of source
nodes (samples/sec.).

Since uncoded transmission considerably outperforms any approach based
on the separation paradigm when the measured physical phenomenon is recon-
structed within some prescribed distortion level [8], we assume that the sensors
perform uncoded transmission. When the sensor nodes transmit the uncoded
observations, minimum mean square error (MMSE) estimation is the optimal
decoding technique. Therefore, the decoded version of the sensor packet Si,k,
i.e., Zi,k, can be expressed as follows

Zi,k =

(

σ2
E(xi, yi) + µ2

E(xi, yi)
)

(Xi,k)

(1 − λ)
(

σ2
E(xi, yi) + µ2

E(xi, yi) + σ2
N

) (7)

By using decoded sensor packets (Zi,k ∀i, k), to generate the samples used for
reconstruction of the event signal fS(t), sink first averages the decoded sensor
packets and then, arranges the successive averaged packets as follows

As =
1

M

[

M
∑

i=1

Zi,1

M
∑

i=1

Zi,2 . . .

M
∑

i=1

Zi,( τf
p

)

]

(8)
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Fig. 1. The overall packet loss probability (λ) for the varying M and f .

where As (1 × τf vector) consists of the samples used for reconstruction of the
event signal fS(t), τ is a reconstruction interval (second). In order to obtain a
reconstruction of the event signal fS(t), i.e., Ŝ(t), As is provided as the input to
an ideal reconstruction (low-pass) filter [9] with frequency response Hr(jΩ) and
impulse response hr(t). Then, the output of the filter is expressed as

Ŝ(t) =

τf
∑

n=1

As[n]hr(t −
n

f
) (9)

Here, assuming that the event signal fS(t) is a band-limited with the highest
frequency component of ΩF , a cutoff frequency Ωc of the filter must be ΩF <
Ωc < πf − ΩF as long as πf > 2ΩF is satisfied. 2 Hence, for cutoff frequency
πf , the corresponding impulse response hr(t) can be given by

hr(t) =
sinπft

πft
(10)

and by substituting hr(t) into (9), we obtain Ŝ(t) as follows

Ŝ(t) =

τf
∑

n=1

As[n]
sin[π(ft − n)]

π(ft − n)
(11)

Using (7), (8), (9), (10), (11), the overall reconstruction operation can be
formulated as in (12).

2 This is known as Nyquist Sampling Theorem and ΩF and 2ΩF are called as the
Nyquist Frequency and Nyquist Rate, respectively.
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Ŝ(t, τ, f,M, p) =
1

M

τf/p
∑

k=1

p
∑

j=1

M
∑

i=1

(

(

σ2
E(xi, yi) + µ2

E(xi, yi)
)

Xi,k[j]
(

e−0.01f/(150e−

M
15 +5)

) ×

×

sin
[

π
(

ft − ((k − 1)p + j)
)

]

(

σ2
E(xi, yi) + µ2

E(xi, yi) + σ2
N

)

π
(

ft −
(

(k − 1)p + j
)

)

)

(12)

Since the reconstructed event signal Ŝ(t, τ, f,M, p) is a continuous time signal
as the event signal fS(t), to measure the reconstruction efficiency, we resample
Ŝ(t, τ, f,M, p) and fS(t) with a sampling frequency which is higher than Nyquist
rate. Based on the resampled version of Ŝ(t, τ, f,M, p) and fS(t), we define the
deterministic reconstruction error Er used for measuring the efficiency of the
event signal reconstruction as

Er =
1

τf

τf
∑

i=1

(fS [i] − Ŝ[i, τ, f,M, p])2 (13)

where fS [i] and Ŝ[i, τ, f,M, p] are ith sample of fS(t) and Ŝ(t, τ, f,M, p), re-
spectively. Next, using the theoretical reconstruction model given in Section 2.2,
we give the performance results of the event signal reconstruction with uniform,
non-uniform and irregular sampling schemes.

3 Reconstruction Performance Analysis and Results

Here, we consider the scenario in which 300 sensor nodes are randomly deployed
in a 100× 100m field and a point source which characterizes the observed event
signal is located at the center. We first perform the event signal reconstruction
with three different sampling schemes:

– Uniform Sampling: In this scheme, source nodes sample the event signal
with the same sampling frequency (f).

– Non-uniform Sampling: In this scheme, source nodes select their sampling
frequency according to their distance to the event location such that source
nodes closer to event location use higher sampling frequency.

– Irregular Sampling: In this scheme, source nodes take samples from the
event signal with a probability while sampling the event signal with a sam-
pling frequency.

Then, we present the comparative results on the reconstruction performance
of these sampling schemes. To make results more reliable, we take 100 Monte
Carlo runs for every result in each scenario. For the event signal reconstruction
process, we use fS(t) = sin(2π50t) + sin(2π120t) as an event signal which con-
sists of 50Hz and 120Hz sinusoidal components as an event signal. According to
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the Nyquist Sampling Theory, since fS(t) includes 50Hz and 120Hz sinusoidal
components, fS(t) can be reconstructed with the sampling frequency larger than
the Nyquist rate 240 Samples/sec. We set the simulation parameters in Table
1.

Table 1. Simulation Parameters

Network size (100 × 100 m)

Attenuation constant (θs) 50

Number of sensor nodes 300

Number of source nodes 16 − 100

Reconstruction interval (τ) 10 s

Sampling frequency (f) 50 − 10000 (samples/sec)

Packet length (p) 100 (samples)

Packet length (byte) 50 byte

Sensor transmission range 20 m

Sensor channel capacity 2 Mb/sec

Routing DSR

MAC 802.11

3.1 Event Signal Reconstruction With Uniform Sampling

In this section, we perform the reconstruction of event signal with the uniform
sampling scheme. In Fig. 2, Er is given with varying f for different values
of M . As observed, for f = 50 and f = 100, Er takes its maximum value
because the sampling frequencies 50 and 100 are less than the Nyquist rate
(240 Samples/sec). However, although the sampling frequency 200 is less than
the Nyquist rate, it can reduce Er. This is mainly because that the sampling
frequency 200 can be sufficient for the reconstruction of the 50Hz sinusoidal
component in fS(t), which decreases the overall reconstruction error. In Fig. 3
(a), the event signal fS(t) is shown. In Fig. 3 (b) the reconstructed event signal
is shown by using the sampling frequency 500. Since the sampling frequency
500 is larger than the Nyquist rate, the event signal fS(t) can be satisfactorily
reconstructed at the sink. The amplitude difference between fS(t) and the re-
constructed signal results from the attenuation in the event signal from source
nodes to sink.

The common technique for improving the reconstruction accuracy is to uti-
lize oversampling. However, as observed in Fig. 2, it cannot be always possible
to decrease Er by increasing f . While f increases, as observed in Fig. 1, λ in-
creases. Therefore, at the higher f , the sufficient number of samples required
for the reconstruction cannot be successfully delivered to sink and Er increases.
This highlights the reconstruction problem for the event signal with high fre-
quency components, which necessitates high sampling frequency according to
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the Nyquist Sampling Theory. Therefore, the uniform sampling does not stand
as an effective sampling scheme to reconstruct the event signal with higher fre-
quency components.

Reconstruction accuracy is also influenced by M such that while M increases,
due to the increasing contention, λ increases as shown in Fig. 1. Therefore, as M
increases, it is getting more difficult to deliver the sufficient number of samples
to sink for the event signal reconstruction. Due to this result, as observed in
Fig. 2, the smaller Er cannot be obtained at the higher f by using higher M .
However, as M decreases, the smaller Er cannot be obtained at the lower f .
Therefore, M must be selected according to the event signal requirements such
that if fS(t) has larger bandwidth, M must be selected as smaller value and
if fS(t) has smaller bandwidth, M must be selected as higher value to obtain
smaller Er.
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Fig. 2. Er with varying f for different M in uniform sampling.

3.2 Event Signal Reconstruction With Non-Uniform Sampling

Here, to realize non-uniform sampling, we divide 100 × 100m environment to 5
levels called L1, L2, L3, L4 and L5 such that from L1 to L5, the size of the levels
are 20×20m, 40×40m, 60×60m, 80×80m and 100×100m, respectively. While
the source nodes in L1 use the sampling frequency f , the source nodes between
L1 and L2 use f/2 and the source nodes between L2 and L3 use f/3 and so on.
Consequently, there exist 5 different levels of sampling frequency from f to f/5.

In Fig. 4, Er is shown with varying f for different M . For the illustration
purposes, in f axis of Fig. 4, we show only the largest sampling frequency in
L1. For example, f = 1000 means that the source nodes in L1 use f = 1000
and the source nodes between L1 and L2 use f = 500 and so on. Moreover,
to compute λ, we use the average sampling frequency, fa, which represents all

sampling frequencies in 5 levels, i.e., fa =
(

f + f
2 + f

3 + f
4 + f

5

)

/5.
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Fig. 3. (a) Event signal fS(t). (b) Reconstructed event signal.

As observed in Fig. 4, similar to uniform sampling, in non-uniform sampling,
Er is not be reduced at the higher f . However, since fa is less than f used in
uniform sampling, as observed in Fig. 1, smaller λ can be obtained at the higher
sampling frequencies with respect to uniform sampling. This is mainly because
decrease in f results in less contention at the forward path. Therefore, at the
higher f , non-uniform sampling enables WSN to deliver more information to sink
and to obtain smaller Er. This allows WSN to reconstruct the event signal with
higher frequency components which necessitates the higher sampling frequency.
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Fig. 4. Er with varying f for different M in non-uniform sampling.

3.3 Event Signal Reconstruction With Irregular Sampling

In irregular sampling, source nodes take the samples from the event signal with
the probability α while they sample the event signal with the sample frequency
f . Therefore, in irregular sampling, to compute λ we use αf as a normalized
sampling frequency fn.
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To observe the effect of α on the event signal reconstruction, in Fig. 5, Er is
shown with varying f for different α. It can be possible to choose α according
to the reconstruction error requirements and the event signal bandwidth such
that as α decreases, since fn decreases, less contention and overall packet losses
in the forward path can be obtained. Therefore, it can be possible to deliver
more information to sink at the higher f and this enables the reconstruction of
event signal with higher frequency components. However, for the reconstruction
of event signal with low frequency components, as α decreases, since the number
of delivered samples decreases, this results in increase in Er. Therefore, to obtain
lower Er at lower f , α must be increased.
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3.4 Comparative Results on Three Sampling Schemes

To compare the uniform, non-uniform and irregular sampling schemes, in Fig. 6,
Er is shown with varying f for these three sampling schemes. In terms of Er, the
non-uniform sampling scheme outperforms the uniform and irregular sampling
scheme. For an application-specific Er constraint (Er = 0.85) shown in Fig.
6, non-uniform sampling scheme enables the sensor network to reconstruct the
event signal having higher frequency components as well as providing smaller Er

with respect to non-uniform and irregular sampling. For smaller f , the uniform
and irregular sampling have almost the same Er performance.

However, for higher f , irregular sampling provides smaller Er performance
with respect to uniform sampling scheme. Therefore, with a given application-
specific Er constraint, it can be possible to reconstruct the event signal having
higher frequency components using irregular sampling scheme.

To show the energy efficiency of three sampling schemes, we evaluate the
average energy consumption for the three reconstruction schemes. We assume
that each source node consumes one unit of average energy denoted by Eav to
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Fig. 7. (a) Average energy consumption for three sampling schemes. (b) Er with
varying f for different size of A.

transmit a sample of the event signal to sink. Using the same simulation pa-
rameters (M = 48, α = 0.2, τ = 10s) in Fig. 6, we can compute the average
energy consumption as τfMEav. For all sampling schemes, τ , M and Eav are
the same. However, f changes according to the sampling schemes such that while
in the uniform sampling each source node transmits f samples per second, in
irregular sampling, each source node transmit fn = αf samples per second and
in the non-uniform sampling, on average, fa samples per second. According to
this energy model, in Fig. 7 (a), for three sampling schemes, the average energy
consumption is shown with varying sampling frequency. The irregular and non-
uniform sampling significantly outperforms the uniform sampling in terms of
energy consumption, because the irregular sampling and the non-uniform sam-
pling transmit the less number of samples per unit time (fn and fa, respectively)
to reconstruct the event signal with respect to the uniform sampling.

The reconstruction error can also be affected by the attenuation in the re-
ceived event signal. The attenuation in the received signal increases with the
distance between the point source and the source nodes. In Fig. 7 (b), for the
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different size of source node selection area (A) around the event and for M = 48,
the reconstruction error is shown with varying sampling frequency by using the
uniform sampling scheme. The reconstruction error (Er) decreases while A de-
creases because the attenuation in the received signal decreases while A de-
creases. Furthermore, it is seen in Fig. 7 (b) that the minimum Er is achieved
for A = 20x20m and M = 48. Therefore, to achieve this minimum reconstruc-
tion error, in each 10x10m area, there should exist at least 12 sensor nodes. This
highlights the node density problem in the reconstruction process such that for
a certain level of reconstruction error, a certain node density is imperative.

4 Conclusion

In this paper, theoretical analysis and results show that with proper selection
of sampling and communication parameters, the observed physical phenomenon
can be satisfactorily reconstructed at the sink node. It is also shown that the
uniform sampling is inefficient for the reconstruction of the event signal with
high frequency components and non-uniform sampling and irregular sampling
significantly outperform the uniform sampling for the reconstruction of event sig-
nal with high frequency components and energy conservation. Therefore, unlike
the existing congestion control mechanisms, non-uniform and irregular sampling
based rate control stands as a promising approach. Furthermore, as a result of
the attenuation in the sensed event signal, it is also shown that to achieve a
certain level of reconstruction error, certain node density is imperative.
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