
A Fast Pattern-Matching Algorithm for Network
Intrusion Detection System∗

Jung-Sik Sung1, Seok-Min Kang2, Taeck-Geun Kwon2

1 ETRI, 161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, Korea
jssung@etri.re.kr

2 Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 305-764, Korea
{esemkang, tgkwon}@cnu.ac.kr

Abstract. We present a multi-gigabit rate multiple pattern-matching algorithm
with TCAM that enables protecting against malicious attacks in a high-speed
network. The proposed algorithm significantly reduces the number of TCAM
lookups per payload with m-byte jumping window scheme. Due to the reduced
number of TCAM lookups, we can easily achieve multi-gigabit rate for
scanning the packet payload in order to inspect the content. Furthermore,
multi-packet inspection is achieved easily by the extended state transition
diagram with the shifting distance. With experimental results, we have clearly
justified the proposed algorithm works well for a multi-gigabit network
intrusion detection system.

1. Introduction

Network intrusion detection systems (NIDSs) monitor every packet in the network to
detect malicious attacks. In a high-speed network, an NIDS may be overloaded as the
packet arrival rate becomes high. Hence, the hardware-based approach of
implementing the NIDS will be appropriate in order to support the high-speed
network. Some researches [1], [2], [3] focus on the hardware implementation to
achieve the line-speed intrusion detection. Recently, technologies for high
performance network processors have driven a new breed of solutions that perform at
high data rates while remaining flexible through software [4].

There are many approaches for solving multiple pattern-matching problems. The
multiple pattern-matching algorithms [5], [6] use software approaches. However,
software-based pattern-matching is not able to inspect all packets in the high-speed
network. Gigabit rate pattern-matching algorithms such as [7], [8] are TCAM-based
algorithms that can be used with TCAM. In this paper, the scheme in [7], [8] is
referred to a ‘sliding window’ in which every one-byte shifted fixed-length partial
payload should be examined to match the TCAM and the partial payload should be
extracted with a sliding window manner. Although the sliding window based pattern
matching is intuitive and simple, the scheme has three problems. First, it has lower

∗ This research was supported in part by ITRC program of the Ministry of Information and

Communication, Korea. Correspondence to T. -G. Kwon

2 Jung-Sik Sung1, Seok-Min Kang2, Taeck-Geun Kwon2

scan speed. It can provide an answer for searching a packet of length n, in a
deterministic time of O(n) TCAM lookups, because one TCAM lookup is needed for
every byte position in the packet. Since the TCAM lookup time is known and fixed,
we need to minimize the number of TCAM lookups per packet to support the multi-
gigabit rate NIDS. Second, it is very complicated and needs more memory when the
pattern is longer than TCAM width. Suppose the width of the TCAM is w bytes and
let T = t0,t1,…,tn-1 be the text. Partial pattern is matched at ti,…,ti+w-1, it should check
whether occurrence of previous partial matching at ti-w,…,ti-1, and keeps matching
information for next partial matching. Third, it does not support multi-packet
inspection where the pattern split into continuous two payloads. This situation is
common in NIDS, where intrusion signatures can be segmented into packets which
contain the user data such as E-mails, attached files, etc.

In this paper, we revise deep packet inspection algorithm introduced in our recent
paper [9] and extend the algorithm to provide content inspection over multiple
packets. In our algorithm, TCAM lookups for searching a packet of length n, is
O(n/m), if the size of the jumping window is m. We devise the state transition diagram
for keeping previous partial matching when the pattern is longer than TCAM width.
So it is very simple and does not waste memory. In order to support multi-packet
inspection, we use extended state transition diagram by alignment of the last jumping
window of previous payload. In addition, we have implemented the proposed
algorithm using Intel IXP28XX network processors (NPs) with TCAM. We have
some preliminary experimental results which verify the proposed scheme improves
significantly the performance of deep packet inspection.

The rest of the paper is organized as follows. In Section 2, we describe problems of
multiple pattern-matching using TCAM. We explain the jumping window algorithms
to map the multiple patterns into TCAM and efficiently scan packets at high speeds in
Section 3. In Section 4, we extend the algorithm in order to inspect multiple packets.
In Section 5, we give experimental results with our 10Gbps network processor based
NIDS. Finally, we conclude the paper.

2. Jumping Window Pattern Match Algorithm

A pattern is a string to be searched for a payload and it usually appears at an arbitrary
position in the payload. For example, virus and worm patterns are located in an
attached file and they may appear at any position in the packet payload. We should
search several sub-patterns relevant to each jumping window for matching a pattern if
the pattern would be occupied into continuous several jumping windows of a payload.
In other words, we can create TCAM entries, all possible position-aware patterns
(PAPs) from one pattern. Therefore, we succeed pattern-matching with jumping-
window scheme although the pattern appears at an arbitrary position in the payload.
Let T = t0,t1,…,tn-1 be the payload, and its length be n bytes. Let P = p0,p1,…, pm-1 be
the pattern to be searched, and its length be m bytes. P is located in the substring of T,
where

ts,…,ts+m-1 = p0,…,pm-1, 0 ≤ s ≤ n-m. (1)

A Fast Pattern-Matching Algorithm for Network Intrusion Detection System(3

The payload is divided into multiple jumping window substrings with m-byte
window, where

⎥
⎥

⎤
⎢
⎢

⎡ −≤≤−+ m
mnstt mssm 0,,..., 1)1(

. (2)

If (m-i) sequential bytes of P is found from ith position within sth jumping window
substring of T, where

tsm+i,…,t(s+1)m-1 = p0,…,pm-1-i, i=0,1,2,…,m-1. (3)

Then, the rest of P, the remaining i bytes is found from the first position within (s+1)th
jumping window substring of T. On this occasion, P is found in T. Therefore, we can
make PAPs from P with 0~(m-1) shifting and can split PAPs into fixed-size sub-
patterns, position-aware sub-patterns(PASes) as shown in Fig. 1 (‘-’ denotes “don’t
care” state of TCAM). We can match the pattern P in the payload T with jumping
window scheme when these PASes generated from P are stored in the TCAM.

Fig. 1. Position-aware patterns and position-aware fixed sub-patterns

Fig. 2. State transition diagram

Given the pattern of “GATT” the position of the pattern in the payload is one of

“GATT,” “−GATT,” “−−GATT,” …, “(m -1)−GATT.” When m is 4, the pattern may
be found at the different position of the payload such as “GATT,” “−GATT,”
“−−GATT”, or “−−−GATT.” We put the above derived patterns into the TCAM table.
Then, a TCAM lookup operation is carried out for every segment of m bytes called a

4 Jung-Sik Sung1, Seok-Min Kang2, Taeck-Geun Kwon2

jumping window for a packet payload. Usually, the width of the TCAM, which will
be used for matching the pattern in a parallel way, is fixed. Therefore, if the TCAM
width is smaller than the pattern, we have to split a long pattern into shorter sub-
patterns with the same length of the TCAM width. If one PAP splits into several
PASes, a pattern-matching operation will be completed when all PASes are matched
to the TCAM entries in series. Hence, for the matching operation of multiple PASes, a
PAS matching function requires the result of the previous PAS matching operation.
To increase the speed of searching, we employ the state transition diagram to find the
result of the previous PAS matching operation as shown in Fig. 2.

3 Multi-packet inspection

We consider a pattern that split on two payloads Ti, Ti+1 and it usually appears at
several jumping windows of Ti, Ti+1. That is, it split into tail end of the former and
beginning of the latter. In case of Fig. 3 (a), the pattern P = p0,p1,…,pm-1 split into “p0”
and “p1p2…pm-1” in Ti and Ti+1, respectively. At the window before last of Ti as
illustrated in Fig. 3 (a), pattern-matching does not occur and the state is initial state, 0.
We fit the last window with shifting distance because the remaining bytes are too
small to fit into the jumping window. There is no previous pattern-matching, the state
of the last window is initial state, 0. However in case of Fig. 3 (b), the partial pattern
“p0” is matched and transits to state Sm-1. Due to lookup TCAM with m-byte window,
the last window of Ti needs m-byte alignment. The start point of last window is
shifted to m-(n%m) bytes left. We call it shifting distance. In order to fit the last
window, the pre-condition state should be changed according to the shifting distance.
For example, state Sm-1 must move into initial state 0 if 3 bytes, i.e., “−−p0,” are
shifted for fitting the last search window.

Fig. 3. Example of multi-packet inspection processing: shifted state transition for

alignment of a search window
For the split pattern matching, states can move to other states in order to align the

last window if the previous partial match is done successfully. The state transition

A Fast Pattern-Matching Algorithm for Network Intrusion Detection System(5

diagram should have this state transition information for the alignment. With the
extended state transition, split pattern into the next packet payload can be easily
matched. Furthermore, it requires storing only the last state information instead of the
large packet reassembly buffer.

4 Performance Evaluation

For the evaluation of the multi-gigabit rate pattern-matching in NIDS, we have
implemented IDS microblock which is a microcode program of Intel IXP28XX NP
[10] to detect intrusion patterns in the packet payload. The IXP28XX NP
development platform consists of dual network processor units (NPUs), 9-Mbit IDT’s
TCAM [11], and 10 ports of gigabit Ethernet (GbE). In this paper, we have generated
packets matched with the Snort rule header using the traffic generator Smartbits
6000B. In the following experiments, throughputs are measured for various packet
lengths with a single microengine (ME). Although the Intel IXP28XX NPU has 16
MEs, only 12 MEs are used to receive and transmit packets through external
interfaces and process them in the current Intel’s 10-port GbE IPv4/IPv6 forwarding
application. We could add at most 4 MEs without modification of the current
application for implementing our algorithm.

Fig. 4. Compares of TCAM Access

Fig. 5. Effects of the window size, m

Fig. 4 shows the result of TCAM access for pattern matching with varying the
packet size for sliding window and 8-byte jumping window. For this experiment, only
one ME is used for deep packet inspection among 16MEs. The number of TCAM
access of sliding window increases rapidly as the packet length increases, while that
of our algorithm increases slowly. With the maximum packet size, i.e., 1518 bytes in
the Internet, the throughput of our proposed algorithm is about 1Gbps, while sliding
window shows only the performance of about 200Mbps[12]. In this experiment, we
proved that the number of TCAM access in the 8-byte jumping window is
approximately 1/8 of the number of TCAM access in the sliding window scheme. Fig.
5 shows the effect of the window size, m. As the window size increases, the number
of TCAM access is reduced 1/m.

6 Jung-Sik Sung1, Seok-Min Kang2, Taeck-Geun Kwon2

5 Conclusion

In this paper, we have presented a multi-gigabit pattern-matching algorithm for
network intrusion detection system in the high-speed network. The TCAM-based
deep packet inspection algorithm developed in this paper uses a jumping window
scheme, which is supported by position-aware sub-patterns and the state transition
diagram to reduce the number of TCAM lookups. We have implemented the proposed
algorithm on the Intel IXDP28xx platform. The performance of packet processing
with our proposed algorithm is more than 3Gbps at the worst-case situation with the
maximum packet size. We expect an increase of the performance through microcode
optimization and window size augment. We’ve proven the feasibility of the proposed
algorithm with our experimental implementation that runs on the IXDP28xx platform.
In order to detect malicious attack split in two continuous packet, we extended the
state transition diagram with shifting distance. Therefore, first pattern-matching in
next packet is achieved easily with the state transition of previous packet. In this
paper, we describe that the pattern length is the same value as window size, m.
However, our proposed algorithm is applicable even if it is greater or lesser than
window size m.

References

1. S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull and J. W. Lockwood: Deep Packet
Inspection using Parallel Bloom Filters in IEEE Micro, Vol. 24, No. 1, Jan. 2004, 52-61.

2. J. Lockwood, J. Moscola, M. Kulig, D. Reddick, and T. Brooks: Internet Worm and Virus
Protection in Dynamically Reconfigurable Hardware in Military and Aerospace
Programmable Logic Device (MAPLD), Sep. 2003.

3. I. Sourdis and D. Pnevmatikatos: Fast, Large-Scale String Match for a 10Gbps FPGA-based
Network Intrusion Detection System in Conference on Field Programmable Logic and
Applications, Sep. 2003.

4. P. Jungck and S. S.Y. Shim: Issues in high-speed internet security in IEEE Computer
Magazine, Vol. 37, No. 7, July 2004, 22-28.

5. M. Fisk and G. Varghese: Fast content-based packet handling for intrusion detection in Tech.
Report CS2001-0670, UCSD, May 2001.

6. S. Wu and U. Manber: A fast algorithm for multi-pattern searching in Tech. Report, TR94-
17, University of Arizona, May 1994.

7. J. Bo and L. Bin: High-speed discrete content Sensitive pattern match algorithm for deep
packet filtering in Int’l Conf on Computer Networks and Mobile Computing, 2003.

8. F. Yu, R. H. Katz and T. V. Lakshman: Gigabit rate packet pattern-matching using TCAM in
IEEE Int’l Conf on Network Protocols, Oct. 2004, 174-183.

9. J. Sung, S. Kang, Y. Lee, T. Kwon, and B. Kim: A Multi-gigabit Rate Deep Packet
Inspection Algorithm using TCAM in IEEE Globecom, Nov. 2005.

10. Intel: Intel 2800 Network Processor in Hardware Reference Manual, Jan. 2004.
11. IDT: Integrated IP Co-Processor (IIPC) with QDR Interface in IDT75K52134/

IDT75K62134 User Manual, Sep. 2002.
12. S. Kang, I. Song, Y. Lee, and T. Kwon: Design and Implementation of a Multi-gigabit

Intrusion and Virus/Worm Detection System in IEEE ICC, June 2006 (to appear).

