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Abstract. We describe an analytic approach for the calculation of the
departure process from a burst ggregation algorithm that uses both a
timer and maximum/minimum burst size. The arrival process of packets
is assumed to be Poisson or bursty modelled by an Interrupted Pois-
son Process (IPP). The analytic results are approximate and validation
against simulation data showed that they have good accuracy.

1 Introduction

An important design aspect of an OBS network is the burst aggregation process
performed at the edge nodes. This process concentrates upper layer packets
which are then transmitted optically over the OBS network. In view of this, the
burst aggregation strategy defines the burst arrival process to the OBS network.
This process depends on the parameters of the aggregation process, and so far it
has not been adequately studied. However, it is important that the burst arrival
process to an OBS network is well characterized if we are to understand better
the performance of OBS networks.

The main parameters of a burst assembly algorithm are a timer and the
maximum and minimum burst size. When the timer expires, the edge node
assembles a burst that consists of packets in the edge’s packet queue that have
the same destination. This procedure takes place in the electrical domain, and
the resulting bursts are transmitted in the optical domain. If the arrival rate
at an edge node is very high, then each time the timer expires, there may be a
large number of packets waiting in the packet queue. This would lead to large
data bursts if all packets are assembled into a single burst. Large bursts decrease
the performance in the OBS network, since they occupy the resources for long
intervals. As a result, they block other bursts thus leading to a high burst loss
probability [1]. In order to avoid this problem, a maximum burst size is used to
bound the size of a burst. Another drawback of the burst assembly algorithm,
if it is driven entirely by a timer, is that bursts can be very small if the arrival
rate to the edge node is very low. This results to high overheads, since the OBS
network has to set up a path for each burst. The solution to this problem is to
use a lower bound for the burst size. If this lower limit is not reached, when the
timer expires, then the burst is not transmitted.
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Various algorithms have been proposed to aggregate packets into bursts.
Most of these assembly algorithms use either an assembly timer or a maximum
and minimum burst length or both as a way of creating bursts. Let T be the
length of the timer, Bmax the maximum burst length and Bmin the minimum
burst length. We can classify the assembly algorithms into the following three
categories:

– Time-based aggregation algorithms: In this case a fixed-threshold T is
used to create a burst. In some implementations, a minimum length Bmin

is required [2]. If the burst is shorter than Bmin then padding is used to
increase the length to Bmin. The shortcoming of the time-based assembly
algorithm is that, under heavy traffic load, the number of packets that are
gathered until the timer expires may be high, thus resulting to large bursts.

– Burst-length based aggregation algorithms: In this case, the burst
is sent out as soon as the burst length exceeds a given maximum burst
length Bmax. Thus, the packets are buffered until the total size reaches the
maximum threshold. The main disadvantage of this algorithm is that it does
not constraint the waiting time of the packets in the packet queue. Therefore,
when the traffic is low, waiting time may be large.

– Time and burst-length based burst aggregation algorithms: The
disadvantages of the aggregation algorithms based on a timer or a maximum
burst length can be overcome using a combination of a timer and maximum
and minimum burst lengths. In this case, the packets are buffered until the
timer expires. Then, we compare the total size of the packets in the queue
with the upper and lower limits, Bmax and Bmin. If the size is less than Bmin,
then we keep the packets in the packet queue until the next aggregation
period, i.e. until the next time when the timer expires. If the size is greater
than Bmin but less than Bmax we aggregate all the packets in one burst. If
the size is greater than Bmax, we make one burst of maximum size and then
we repeat this process with the remaining bits.

We note that an adaptation scheme has to be created which will assemble
packets into bursts at the transmitter’s side, and correctly recover these packets
at the receiver’s side. There are several examples of adaptation schemes, such as
the schemes used for the formation of AAL 5 PDU and AAL 2 CPS packets in
ATM networks. In OBS depending upon the adaptation scheme, a packet may
straddle over two successive bursts. Alternatively, a burst may be allowed to
exceed a maximum burst size, so that the last packet is included in its entirety.
In this paper we assume that the maximum burst size is strictly enforced, and
therefore a packet may straddle over two successive bursts.

The burst aggregation process has been studied in [3], [4], [5], [6] and [2].
Papers [4], [5], [6] and [2] study the effect of burst aggregation algorithms on the
self-similarity characteristics of the input traffic. [3] gives an analytical method to
calculate the aggregated burst size for various algorithms, and assuming Poisson
arrivals of packets to the edge node. The authors did not consider the aggregation
algorithm that uses both a timer and a maximum/minimum burst size analyzed
in this paper. In this paper we obtain analytically the distribution of the number
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of bursts created by the aggregation algorithm which uses both a timer and a
maximum/minimum burst size. We first assume that the arrival of packets to
the edge node is Poisson, and then we extend the analysis to the case where
packets arrive according to an Interrupted Poisson Process (IPP). This process
models bursty traffic such as video, voice or data.

The rest of this paper is organized as follows. In Section 2 we obtain ana-
lytically the distribution of the number of bursts created at each aggregation
period assuming Poisson arrivals. In Section 3 we extend these results to IPP
arrivals. The results obtained in this paper are approximate and in Section 4 we
compare our analytical results with simulation data. Finally, Section 5 gives the
conclusions.

2 The case of Poisson Arrivals

We consider an edge node which receives packets in the electronic domain and
transmits them to destination edge nodes optically over an OBS network. The
arriving packets are queued to different packet queues, each associated with a
different destination edge node. We only consider a single packet queue in which
packets are queued for a specific destination. We assume that the arrival process
of packets to the queue is Poisson with a rate of λ. Packet size is exponentially
distributed with a mean of 1/b bytes. We recall that the length of the aggregation
period, i.e. the time after which the timer expires, is T .

Since packets arrive in a Poisson fashion, the probability that n packets arrive
within T is: P [X = n] = e−λT (λT )n

n! . Therefore, the pdf of the number of bytes
B that arrive during the ith aggregation period ((i− 1)T, iT ] is:

fB(x) =
∞∑

n=1

P [X = n]fSn(x), (1)

where fSn(x) is the probability that the total number of bytes associated with
n packets is x. This is obtained by convoluting n i.i.d. exponentially distributed
variables, which in fact is the pdf of an n-stage Erlang distribution [7], given by:
fSn(x) = b(bx)n−1e−bx

(n−1)! . Thus, the pdf of the number of bytes that arrive during
the ith aggregation period is:

fB(x) =
∞∑

n=1

e−λT (λT )nb(bx)n−1e−bx

n!(n− 1)!
(2)

The cumulative distribution function (cdf) of the number of bytes in the
packet queue at the end of the period T is:

FB(x) =
∫ ∞

0

fB(x)

where fB(x) is given by (2). Using FB(x) we can calculate the probability of the
number of bursts that are formed at the end of each period T . For instance, the
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number of bytes x has to be within the interval [0, Bmin−1] in order to have zero
bursts, it has to be within [Bmin, Bmin+Bmax−1] in order to have one burst, and
in general it has to be within the interval [Bmin+(k−1)Bmax, Bmin+kBmax−1]
in order to have k bursts. That is:

P [k = 0 bursts] =
∫ Bmin−1

0

fB(x) (3)

P [k bursts] =
∫ Bmin+kBmax−1

Bmin+(k−1)Bmax

fB(x), k >= 1 (4)

Expression 2 is quite difficult to work with, and whenever possible it is approx-
imated by a simple mixture of exponential distribution as described below. As
will be seen in order to do this, we need the first three moments of the number
of bytes in the packet queue at the end of each aggregation period. We note that
the number of bytes that arrive during period T is a random sum of exponen-
tially distributed variables. Therefore, the moment generating function (MGF)
of the number of bytes is [8]:

MB(t) = MN (ln(MS(t))) (5)

where MB(t) is the MGF of the number of bytes during interval ((i − 1)T, iT ],
MN (t) is the MGF of the number of packets N , and MS(t) the MGF of the packet
size S. Thus, we have: MN (t) = eλT (eln(MS(t))−1), MS(t) = b

b−t and therefore:

MB(t) = eλT ( b
b−t−1) (6)

At the end of each aggregation period there may be a residual number of bytes
r which are not transmitted in a burst because of the condition that a burst has
to be at least greater than Bmin. We have found empirically that if Bmin <<<
Bmax, then the residual number of bytes is typically zero. On the other hand, if
Bmin is close to Bmax, then we have observed that the residual number of bytes
is uniformly distributed within [0, Bmin). For instance, if Bmin = 16 Kbytes
and Bmax = 112 Kbytes, then there is a high probability that the last burst will
be larger than 16 Kbytes, which means that the residual number of bytes will
be zero. However, if we set Bmin = 85Kbytes then there is a high probability
that the last burst will not be greater than Bmin, which means that it will not
be transmitted out. This remainder can be safely assumed that it is uniformly
distributed within [0, Bmin).

In view of the above empirical observations, we distinguished two cases. If
Bmin <<< Bmax, then we assume that there is zero left over bytes from the
previous aggregation period, in which case the pdf of fB(x) and its MGF MB(t)
are given by expressions (4) and (8). If Bmin is close to Bmax, then the pdf
fX(x) of the number of bytes at the end of an aggregation period is given by
the convolution of fB(x) and fr(x). We have: fX(x) = fB(x) ∗ fr(x). Therefore,
the MGF of fX(x), MX(t) is given by ([9]):

MX(t) = MB(t)Mr(t) or MX(t) =

{
eλT ( b

b−t−1) etBmin−1
tBmin

if t > 0
eλT ( b

b−t−1) if t = 0
(7)
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We can now calculate the moments of the distribution of the number of bytes
available in an aggregation period for both models. In the first model, where we
do not include the residual number of bytes , we have:

m1 = M ′
B(0) =

λT

b
, (8)

m2 = M ′′
B(0) =

λT

b2
(2 + λT ) (9)

m3 = M
(3)
B (0) =

λT

b3
[(2 + λT )(3 + λT ) + λT ] (10)

In the second model, where we include the residual of the number of bytes, we
have:

m1 = M ′
X(0) =

λT

b
+

Bmin

2
, (11)

m2 = M ′′
X(0) =

λT

b2
(2 + λT ) +

B2
min

3
+

λTBmin

b
(12)

m3 = M
(3)
X (0) =

λT

b3
[(2+λT )(3+λT )+λT ]+

B3
min

4
+

3λTBmin

b

[ 1
2b

(2+λT )+
Bmin

3

]
(13)

From the first three moments of these different models, we see that the number
of bytes that arrive within a period T and the residual from the previous period
are independent. This is because of the way we calculated the total number of
bytes available at the end of period T .

Using the three moments, we can now approximate the pdf fB(x) or fX(x) of
the total number of bursts in the packet queue at the end of a period T by a two-
stage Coxian, C2 [10]. For this we set the first three moments, m1,m2,m3 equal
to the first three moments of C2 with parameters (µ1, µ2, α). The three moment
fit, can be used if 3m2

2 > 2m1m3 and c2 > 1, where c2 is the squared coefficient
of variation. Alternatively a two moment fit can be used if the condition 3m2

2 >
2m1m3 does not hold or 0.5 < c2 < 1. The pdf of a C2 is given by the expression:

fY (y) = (1− α)µ1e
−µ1y + α

( µ1µ2

µ2 − µ1
e−µ1y +

µ1µ2

µ1 − µ2
e−µ2y

)
(14)

where in the case of the three-moment fit: µ1 = L+(L2−4K)1/2

2 , µ2 = L −
µ1 and α = ((µ1m1) − 1), K = 6m1−3(m2/m1)

((6m2
2)/(4m1)−m3

, L = 1/m1 + m2K
2m1

and in

the case of the two-moment fit: µ1 = 2
µ1

, µ2 = 1
µ1c2 and α = 1

2c2 . Using the C2

pdf we can easily calculate the cumulative distribution FX(x) and from there
the probability of creating k bursts at the end of each period T (see equations
3, 4).

When c2 < 0.5, we can fit an Erlang distribution or a generalized Erlang
distribution (see [10]). However we observed empirically, that the number of bytes
in the packet queue at the end of an aggregation period has a small variability.
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In view of this, we have found that it is sufficient to evaluate fB(x), given by
equation 2, for only a small range of values of n. That is, we limit the sum to:

fB(x) =
avgNumPacks+10σ∑

n=avgNumPacks−10σ

e−λT (λT )nb(bx)n−1e−bx

n!(n− 1)!
(15)

where avgNumPacks = λT , is the average number of packets that arrive during
a period T , and σ =

√
λT is the variance of the number of packets that arrive

during T . From 15 we can then numerically compute the cumulative distribution
of the pdf fB(x) or fX(x) and subsequently the probability of having k bursts,
where k ≥ 0 (see equations 3, 4).

Due to the limited variability of the number of bytes in T , we have also found
that the following approximation gives good results:

P [k bursts] =
m1/Bmax

dm1/Bmaxe
, P [(k − 1) bursts] = 1− P [k bursts] (16)

where k = m1/Bmax.

3 The case of IPP Arrivals

The IPP is a modified Poisson process. It is similar to a Markov Modulated
Poisson Process with two states (MMPP2). The main difference between IPP
and MMPP2 is that the arrival rate in the second state of the MMPP2 is zero,
which means there are no arrivals in this state [11]. An IPP is an ON/OFF pro-
cess, where the ON and OFF periods are exponentially distributed with rates σ1

and σ2 respectively. We also define the vector π: π = (π1, π2) = 1
σ1+σ2

(σ2, σ1)
which gives the average duration of the ON and OFF periods. During the ON
period there are Poisson arrivals with rate λ, and during the OFF period there
are no arrivals. This is a very useful model for data/voice and video trans-
fers over the Internet, where bursty arrivals of packets occur for a period of
time followed by an idle interval. We assume that the packet sizes are expo-
nentially distributed with an average size 1/b bytes. The IPP process is also
characterized by the squared coefficient of variation, c2

IPP , of the packet inter-
arrival time, that measures the burstiness of the arrival process, given by the
expression: c2

IPP = 1 + 2λσ1
(σ1+σ2)2

. From this equation we can observe that the
value of c2

IPP is affected by the duration of the ON and OFF periods. We also
define the quantity: average transmission rate = transmissionSpeed σ2

σ1+σ2
The average transmission rate depends on the transmission speed, it is in fact
the transmission speed within the ON period. In our implementation, we set
1/λ = average packet size

transmissionSpeed = 1/b
10Gbps , where 1/b = 500 bytes. Thus, 1/λ is the time

needed to transmit one packet during the ON period. Given the c2
IPP and the

average transmission rate we calculate the ON and OFF periods : 1
σ1

and 1
σ2

respectively.
In this section we calculate the pdf of the number of bursts during an aggre-

gation period assuming that packets arrive in IPP fashion. We follow the same
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approach as in the case of Poisson arrivals. We first calculate the MGF of the
number of bytes that arrive during a period T . Similarly to the Poisson arrival
case, we have a random sum of packets whose size is exponentially distributed,
and therefore we use equation 5: MB(t) = MN (ln(MS(t))) where MB(t) is the
MGF of the number of bytes during interval ((i − 1)T, iT ], MN (t) is the MGF
of the number of packets N , and MS(t) the MGF of the packet size. The MGF
of the number of packets that arrive during a period T is obtained as follows.

Let: Pij = Prob{Nt = n, Jt = j|N0 = 0, J0 = i} be the probability that Nt

arrivals occur during (0, t] given that at time 0 there were 0 arrivals and the IPP
was in state J0 = i and at time t the IPP was in state Jt = j. The z-transform
of Pij [11] is: P ∗(z, t) = e(Q−(1−z)Λ)t where Q is the infenitesimal generator of
the IPP and Λ the matrix of arrival rates, i.e.

Q =
(
−σ1 σ1

σ2 −σ2

)
, Λ =

(
λ 0
0 0

)
Now we can use this z-transform to form the generating function of the number
of packets. We know that the MGF of a discrete random variable x, is its z-
transform when z = es . Therefore, MX(s, t) = P ∗(es, t), where P ∗(z, t) the
z-transform of function P (n, t). Thus, the MGF of the number of packets that
arrive during (0, t] is: MN (s, t) = e(Q−(1−es)Λ)t. Substituting s with ln(MS(−s)),
where MS(s) = b

b+s , is the Laplace transform of the exponentially distributed
packet size, we obtain:

MB(s, t) = e(Q−(1− b
b−s )Λ)t (17)

We can now calculate the first two moments m1,IPP and m2,IPP of the
number of bytes that arrive during a period T , by setting t = T . We have:

m1,IPP = eT µ(s) = eT M ′(T )e (18)

where: M ′(T ) =
[

∂
∂sMB(s, T )

]
s=0

and e is a column vector of 1’s and eT a row
vector of 1’s. In order to differentiate the MGF we use the eigenvalue decomposi-
tion of the matrix exponential given in 17. The eigenvalue decomposition always
exists for this MGF. We have: eAt = PeDtP−1 where A = (Q − (1 − b

b−s )Λ)t
D is the diagonal matrix of the eigenvalues of A, P is the matrix composed of
eigenvectors and P−1 the inverse matrix of P . After differentiating and using
the chain rule we get:

M ′(T ) =
∂eAT

∂s
=

∂P

∂s
eDT P−1 + PeDT ∂P−1

∂s
+ TPeDT ∂D

∂s
P−1 (19)

Substituting the above in equation 18 we have:

m1,IPP = π1
λT

b
(20)

The above expression is intuitively obvious, as it is the mean duration of the ON
period π1 multiplied by the mean number of bytes that arrive during this period
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λT
b . The second moment is given by:

m2,IPP = eT µ2(s) = eT M (2)(T )e (21)

where the second derivative M (2)(T ) =
[

∂2

∂sMB(s, T )
]

s=0
is obtained by applying

the chain rule to equation 19. We have:

M (2)(T ) =
∂2P

∂s
eDT P−1 + 2T

∂P

∂s
eDT ∂D

∂s
P−1 + 2

∂P

∂s
eDT ∂P−1

∂s

+2TPeDT ∂D

∂s

∂P−1

∂s
+ PeDT ∂2P−1

∂s
+ T 2PeDT

(∂D

∂s

)2

P−1

+TPeDT ∂2D

∂s
P−1

Now we can use the two moments to approximate the pdf fB(x) of the number
of bytes that arrive during a period T , with a C2 distribution as in the previous
section.

If c2 < 0.5 then we used the generalized Erlang k approximation, where:
1
k ≤ c2 ≤ 1

k−1 In the generalized Erlang k with probability a, after the first
exponential phase the service continues for the rest of the k− 1 stages or it ends
with probability 1− a. Probability a is given by [10]:

1− a =
2kc2 + k − 2−

√
k2 + 4− 4kc2

2(c2 + 1)(k − 1)
(22)

and service rate: µ = 1+(k−1)a
m1

The probability of having k bursts at the end of an aggregation period T is:

P [k bursts] =
∫ kBmax−1

(k−1)Bmax

fY (y), k >= 1

where fY (y) is the pdf of the C2 or the generalized Erlang pdf as above. Notice
that Bmin = 0 in this model, since there are no residual bytes included. The
case of Bmin > 0 can be modelled as in the previous section.

Finally, we note that the number of bytes that arrive during each interval T
is approximated by the number of bytes that arrive in (0, t]. In reality, the IPP
state at the beginning of each interval T is the state at the end of the previous
period T . In our model, we approximate this by assuming that the IPP is at
state i at the beginning of the interval T and then uncondition on this event.

4 Numerical Results

In this section we compare our approximate analytic results to simulation data
for both Poisson and IPP arrivals. A simulation program was writen in C to sim-
ulate the behavior of the burst aggregation algorithm under study, with Poisson
and IPP arrivals. 95% confidence intervals were computed using the method of
batch means. The number of batches was fixed to 30 and each batch consisted
of 100,000 aggregation periods T . The confidence intervals were extremely small
and they are not discernible in the figures.
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Fig. 1. Probability distribution of the number of bursts. Poisson Arrivals, no
residual, Bmin = 0
4.1 Poisson Arrivals

Figures 1, 2 and 3 give approximation and simulation results of the probability
distribution of the number of bursts for the case where c2 > 0.5. In this case the
probability distribution is computed using the fitted C2 distribution. Figures 1
(a) and 1 (b) give results for T = 6.6667 and T = 2.6667 respectively. Bmin = 0,
which means that the probability of having zero bursts is 0, Bmax = 112 Kbytes.
The arrival rate λ was 2.5 packets/µsec and 0.5 packets/µsec for 1 (a) and 1
(b) respectively. The average packet size 1/b is obtained from the expression:
1/λ = 8(1/b) (bits)

transmission speed (Gbps) , where the transmission speed is 10 Gbps. We
observe that the results are quite accurate. In the case where Bmin = 16 Kbytes,
we have observed that our approximation is slightly affected by the residual
bytes. This is because in the case where Bmin = 16 Kbytes we may have residual
bytes but this model does not include them since they are very few and usually
0. This is why we have a variation from the simulation results.

Figures 2 (a) and 2 (b) give the analytical and simulation results of the
probability distribution of the number of bursts when Bmin is close to Bmax. In
this case, we include the residual bytes from the previous aggregation period in
our calculation. Bmax = 200 Kbytes,Bmin = 150 Kbytes, the average packet size
1/b = 125 Kbytes and transmissionSpeed = 1 Tbps. These parameters could
be meaningful in very high speed networks with dedicated connections where
large file transfers may occur, such as in a Grid environment. In Figure 2 (a)
and in Figure 2 (b) T = 2.05549 µsec and T = 2.91172 µsec. Our approximation
is very accurate in this case, only a slight variation is observed for a low number
of bursts that could be justified since the assumption that the residual bytes are
uniformly distributed in [0, Bmin) is not always accurate. This assumption is
more accurate when Bmin is higher (180 Kbytes) and therefore the difference
Bmax −Bmin is smaller, as can be viewed in Figures 3 (a) and 3 (b).

Figure 4 gives results for a case where c2 < 0.5. As mentioned above, we
analyze this case, either by computing equation 2 for a limited range of values,
or using the approximation given in (18). In this case the approximate results
match the simulation data. The latter approach is very fast but it does not give
accurate results in all cases. The former method is much slower, but gives very
accurate results.
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Fig. 2. Probability distribution of the number of bursts. Poisson Arrivals, with
residual, Bmin = 150 Kbytes

Fig. 3. Probability distribution of the number of bursts. Poisson Arrivals, with
residual, Bmin = 180 Kbytes

Figures 4 (a), 4 (b), 4 (c) and 4 (d) give the analytic results obtained using
both methods and the simulation results for T = 128, 256, 512 and 1024 µsec
respectively. No residual is included and Bmin = 16 Kbytes. The transmission
speed was 10 Gbps, the average packet size, based on IP packets, was 500 bytes.
In the case where T = 128, 256, 512 µsec both analytic methods give accurate
results. When T = 1024 µsec the aggregation period is high and the variability
in the number of bursts increases. Thus in this case the approximation method
is not accurate. If the residual bytes are included then we have observed that
both our analytic models give almost the same results as the simulation model
for a variable aggregation period T . We note that when c2 < 0.5 the distribution
of the available number of bytes at the end of each aggregation period is almost
constant. This explains why the probability distribution of the number of bursts
is almost constant. The result can prove useful in traffic engineering as it may
simplify the architecture.

4.2 IPP arrivals

The results that are given in Figure 5 were obtained under the following assump-
tions: transmission speed = 10 Gbps, average transmission rate = 1 Gbps,
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Fig. 4. Probability distribution of the number of bursts. Poisson Arrivals, no
residual, Bmin = 16 Kbytes
c2
IPP = 5, Bmin = 0, Bmax = 16 or 112 Kbytes. average packet size 1/b = 500

bytes, and arrival rate during ON period: λ = 2.5 packets/µsec. In this case,
c2 > 0.5 and we use the C2 fit.

Figures 5 (a) and 5 (b) show the probability of having k bursts Bmax =
16 Kbytes and the aggregation period is T = 16, 32 µsec respectively. In Figures
5 (c) and 5 (d) we increase the Bmax to 112 Kbytes. There is almost no difference
between the simulation results and the numerical results.

5 Conclusions

The burst aggregation process defines to a large extent the burst arrival process
to the OBS network. This burst arrival process has not as yet been adequately
studied. However, it is important that it is well characterized if we are to under-
stand better the performance of the OBS network. In this paper, we have ob-
tained analytically the probability distribution of the number of bursts created
by an aggregation algorithm that uses a timer and a minimum and maximum
burst size. The analytical results are approximate but they seem to have good
accuracy.
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