
Analysis and Performance Evaluation of a
Multicast File Transfer Solution for Congested

Asymmetric Networks

Pilar Manzanares-Lopez, Juan Carlos Sanchez-Aarnoutse, Josemaria
Malgosa-Sanahuja, Joan Garcia-Haro

Department of Information Technologies and Communications, Antiguo Cuartel de
Antigones, E-30202, Cartagena, Spain

{pilar.manzanares, juanc.sanchez, josem.malgosa, joang.haro}@upct.es

Abstract. In this paper, we propose and analyze a multicast application
called SOMA (SynchrOnous Multicast Application) which offers multi-
cast file transfer service in an asymmetric intra-campus environment.
For efficient bandwidth utilization, SOMA uses IP multicasting. We also
propose a complete multicast transport protocol involving both, the flow
and error correction algorithms. The protocol adapts the window size and
the overall application transfer bitrate to the minimum network capac-
ity, allowing synchronism and reacting quickly when congestion arises at
any network router. The application behavior has been intensively tested
by simulation and experimentally in a lab, using a mixture of wired and
wireless intra-campus networks. In addition, we develop a mathemati-
cal model to validate analytically some of the most important protocol
parameters. The methodology employed to define, analyze and evaluate
this multicast protocol is, indeed, another contribution of the work and
can be easily extended to other multicast protocols.

Keywords: Multicast, flow and congestion control, transport protocol.

1 Introduction and related work

The use of multicasting within a network has many strengths. Multicast mini-
mizes the link bandwidth consumption because no multiple unicast connections
are needed to send the information. In addition, it also reduces the sender and
router processing and the delivery delay. On the other hand, IP multicasting may
be used to add anonymity to a communication, because there is not a univocal
relationship between an IP multicast address and a host.

In this paper we propose, analyze, implement and test a SynchrOnous Mul-
ticast Application called SOMA to synchronously transfer a large amount of
data from a server to a group of clients. It is specially featured to operate in an
intra-campus environment (several interconnected LANs through few routers).

Multicast transport protocol requirements (flow and congestion control, error
correction, etc.) are more complex than in a point-to-point one. Since TCP is a
unicast oriented protocol, it cannot be directly used in a multicast environment.

Therefore, the choice of an adequate transport protocol is the key issue in the
multicast application development.

The extreme complexity associated to the definition of a global multicast
transport protocol that meets the requirements of all types of multicast applica-
tions leads the designers to several approaches for the transport protocol. The
most widespread solution consists of the definition and codification of a specific
multicast transport protocol which fits the requirements of an application.

Several multicast transport protocols were proposed to meet the require-
ments of delay-sensitive, real-time interactive applications, such as RTP/RTCP
[1] to support multi-party multimedia conferencing tools, SRM [2] and TRM [3]
to support distributed whiteboard tools, etc. These applications can tolerate a
certain degree of data loss, but they are sensitive to packet delay variance.

On the other hand, other protocols were proposed to meet the requirements
of reliable data distribution services, such as multipoint file transfer. These ap-
plications are not delay-sensitive, but require that the information is entirely
received, or else the transfer fails. The Muse protocol [4] (which was developed
to multicast news articles on the MBone), MDP [5] (the evolution of a protocol
used in disseminating satellite images over MBone) and MFTP [6], RMTP [7]
and TMTP [8] (other protocols for reliable one-to-many data transmission) are
examples of this kind of protocols. Most of them are designed to work in the
MBone when the number of receivers is too large (thousands of receivers). To
reach scalability and, therefore, to solve the feedback implosion problem, some
of them define complex hierarchical topologies and they even introduce some
non-layer 3 functionality into the network devices.

In recent years, the IETF Reliable Multicast Transport (RMT) group [9]
has taken a different approach to design a set of multicast protocols to suit
the variety of applications and service requirements for one-to-many and many-
to-many communications. Instead of defining and standardizing multiple proto-
cols, they are defining “building blocks” and two “protocol instantations” [10].
Building blocks are modular components that solve a particular functionality
common to multiple protocols. They include, among others, forward error cor-
rection schemes, two congestion control algorithms (PGMCC and TFMCC) and
generic mechanisms for router assistance. Protocol instantations define how to
combine one or more building blocks to create a working protocol. The first one
is the Negative-Acknowledgment Oriented Reliable Multicast (NORM), which
describes the framework and common components relevant to multicast proto-
cols based primarily on NACK operation for reliable transport. The second one is
the Asynchronous Layered Coding (ALC) protocol, which describes a massively
scalable reliable content delivery protocol. ALC uses a multiple rate congestion
control building block that is feedback free. A sender sends packets in the session
to several channels at potentially different rates and receivers just adjust their
reception rates individually by joining and leaving channels associated with the
session. ALC uses the FEC building block to provide reliability.

Our objective is to define a synchronous multicast transport protocol to be
used by our SOMA application in an asymmetric intra-campus environment.

Building blocks proposed by the RMT group are too complex since they cover
a general multicast transport scenario. Therefore, we have recovered the first
protocol design approach. We propose a complete, compact, and also simple
SOMA transport protocol to be used by our SOMA application.

Obviously, our solution requires multicast routing facilities, but this is not
a problem since involved routers are located into our administrative domain.
In spite of its simplicity, our proposed protocol provides the main tasks of a
transport protocol: Efficient and simple flow control, congestion control and error
correction algorithms.

SOMA protocol simplicity makes possible an easy codification and a feasible
mathematical analysis of the main key features which enables the optimization
of some parameter values. It has been written in C language using standard
Linux kernel routines.

The paper is organized as follows. Section 2 describes the protocol. Section
3 analytically obtains the key protocol parameters. Section 4 presents our test
results in a mixed wired and wireless LAN. Finally, section 5 concludes the paper.

2 SOMA description

SOMA is a multicast application designed for transmitting synchronously large
files and hard disk partitions to a set of clients. This protocol is an extension and
enhancement of a previous work [11] to cover asymmetric intra-campus networks.
SOMA introduces a transmission window to improve the obtained throughput.
We also implement an improved flow control mechanism that allows SOMA to
be used when unequal capacity networks are interconnected (asymmetric net-
works). This is a frequent situation when wireless and wired network coexist.
Moreover, in wireless networks (whose proliferation has not doubt, nowadays),
the available throughput does not only depend on the number of applications
which share the network. In fact, it changes depending on the network capac-
ity, which depends on the signal to noise ratio and other physical parameters.
Therefore, it is important to design an adequate flow control mechanism that
quickly reacts when congestion arrises.

The application employs IP multicast addressing and implements its own
transport protocol over UDP. Thereby, port multiplexing and error checking fa-
cilities are automatically resolved by the kernel. However, due to the UDP sim-
plicity, the flow control and error recovery mechanisms have to be implemented
to fit the transport layer requirements of our application. For this reason, we
alternatively refer to SOMA as an application or as a transport protocol.

2.1 Overall protocol description

SOMA splits the transmission process into two phases. In the first one, the
server multicasts a set of data packets (a transmission window) to all clients.
The clients store the payload and contend to confirm the received packets by an
ACK. Although in this phase the server never retransmits any data packet, a

client issues a NACK packet when packet losses are detected and it also saves
an error mark instead of the packet payload. The feedback information (ACK
and NACK packets) received at the server are used to resize the transmission
window. The above procedure is repeated until the file is completely transferred.

The second phase, which is focused on error correction, starts when the
entire file has been transmitted. Each receiver re-scans its file looking for er-
ror marks. If one error is found, the client delivers a unicast Repair-Request
packet towards the server. The server answers the client sending a unicast Repair-
Response packet.

Error correction tasks are relegated to a final phase since current network
technologies offer low error rates. This assumption avoids a complex protocol
design, solving infrequent packet losses during the transmission.

One of the main SOMA protocol features is synchronicity. The proposed
flow control algorithm, which is explained and tested below, adapts the server
transmission rate to the slowest bitrate of a participant network. Therefore, all
the clients receive the information at the same time.

SOMA is mainly used to replicate a large amount of information. In this
scenario, the reduction of packet flows to only one multicast flow is the objective,
and synchronicity is thus, a consequence but not the main concern. However,
disabling the error correction phase, the synchronicity feature converts SOMA
into a useful and simple multicast transport protocol also for on-line applications.

2.2 Proposed header

The SOMA packet header consists of 4 fields. The Sequence Number (SN, 4
bytes long) used mainly for packet loss detection. The Type Of Packet (TOP, 1
byte), which distinguishes a DATA, an ACK, a NACK, a Repair Request or a
Repair Response packet. The Payload Length (PL, 2 bytes) indicates the total
packet length in bytes. The Last Window Sequence Number (LWSN, 4 bytes)
is used to indicate the last packet of a given window and then to implement
a effective feedback reduction scheme. The header is followed by the payload,
which transports 512 information bytes.

2.3 Flow control algorithm

After a data packet is sent by the server, it starts a timer called timeout and
immediately it waits until an ACK packet for each participating LAN (not for
each client) acknowledges the window or until the timer expires. If the timer
expires before the ACKs are received, its value is increased multiplying it by a
factor of α (α > 1). But if the window is confirmed in time, the timer value is
decreased as denoted by expression (1)

Tout = max{Tout

β
, default Tout} (1)

Where β > α > 1 and default Tout is the bottom threshold value. The server
repeats this operation until the file is completely transferred.

A window is only confirmed when the server receives one ACK for each
participating LAN, ensuring synchronism among all multicast clients. Therefore,
if one of the networks suffers congestion, the timeout value is increased and
therefore, the data transmission rate decreases. When congestion disappears,
the timer redefinition allows to increase the transfer rate again.

To improve the flow control reaction, it is convenient that not only the timer
but also the window size changes appropriately. To accomplish this, just before
sending the next data window, the server modifies the window size as follows:

– If the expected ACKs associated to this window have been received before
the timer expires, the server increases the window size in one unit.

– If the timeout expires, the server decreases the window size in one unit.
– For each NACK that indicates a different packet loss (only the first NACK

indicating a particular packet loss is considered), the server decrements the
window size in one unit.

On the other hand, the clients are waiting for data packets. When a packet
arrives, each client extracts the SN and compares it with the expected value:

– If SN is the expected one, the client stores the payload and updates the
sequence number.

– If SN is greater, the client detects packet losses and sends a NACK with the
sequence number of the received data packet. Simultaneously, it finds out
the number of lost packets and it stores an error mark for each one. Finally,
it also stores the data contained in the received packet.

– If SN is smaller, the data packet is discarded.

In addition, if the SN matches with the LWSN value, the client competes
for sending an ACK to confirm the entire window issued by the server (see the
feedback implosion reduction below).

2.4 Feedback implosion reduction

To reduce the amount of ACK feedback packets in the network, a client must
wait a random period called ARTP (ACK Random Time Period) before sending
an ACK and simultaneously, it listens if another client belonging to its LAN is
transmitting the same ACK. If the ARTP expires and the ACK has not been
received, the client generates and multicasts its own ACK. The rest of clients
will receive the ACK but only the clients at the ACK sender side (belonging to
the same subnetwork) will disable its own ACK transmission. The ARTP value
is obtained from a uniform probability distribution function ranging between
zero and ARTPmax. Thereby, only one ACK for each participant LAN is sent
to the server, independently of the number of clients.

The effective ACK generation time is a random variable defined as: ARTP =
min(ARTP1, · · · , ARTPn), where n is the number of clients. Therefore, the mean
ARTP value is [11]

ARTP =
(

1− n

n + 1

)
·ARTPmax (2)

It is clearly decreasing with the number of clients.
Figure 1 briefly summarizes the usual protocol operation. The server sends

a set of data packets, each time increasing the window size until W size is
reached. At this point, the timer expires just before all ACKs are received,
probably because at some network point congestion arises. The server reacts
quickly increasing the timer value and decreasing the window size. It is clear
that for protocol consistency, the timeout must be greater than the mean ARTP
value (ARTP).

Fig. 1. Window size evolution in an asymmetric network environment

3 Protocol characterization

The protocol behavior is strongly correlated with the flow control performance.
In particular, the maximum window size, the steady state window size and the
maximum throughput values are the three most important protocol parameters.

3.1 Maximum window size

The transmission rate is determined by the network capacity, the timeout timer
and the window size. The proposed flow control algorithm modifies the last two
parameters to reach an optimum transfer rate.

If there is no congestion, the server increases the window size up to its maxi-
mum value (supposing also an error-free transmission channel). To simplify, but
without loss of generality, it is supposed that there is only one LAN with ca-
pacity C bps. Let us also suppose that the file size is large enough to assume
that the transmission is performed by the maximum window size. Under these
conditions, the total transfer time can be calculated as

T =
FileS

PayloadS
· DataPS

C
+

FileS

PayloadS ·W
(

ARTP +
AckPS

C

)
(3)

Where FileS is the file size, PayloadS is the data packet payload size, DataPS
and AckPS are the data and ACK packet sizes respectively, and W is the max-
imum window size.

The first addend is the time needed for the server to transfer the file and the
second one is the average time required by the clients to issue the ACKs. It is
obvious that a high maximum window value enables a faster transmission rate,

but at the same time the protocol has fewer opportunities to react to network
congestion.

By simply operating in (3), the transfer time reduction due to the use of a
window size W2 instead of W1 (W2 > W1) is equal to

FileS

PayloadS

(
ARTP +

AckPS

C

)
· W2 −W1

W1W2
(4)

If an appropriate window size W1 is selected, an alternative window size W2

(where W2 >> W1) does not provide a remarkable transfer time reduction since

lim
W2→∞

W2 −W1

W2W1
=

1
W1

(5)

According to (4) and (5) we choose a maximum window size of 100 data packets
(rule of thumb) since it achieves a fast data transmission rate, a quick response
when congestion arises, and it avoids protocol starvation (that is, it enables to
fairly share the network capacity with other flows).

3.2 Window Size Convergence

The window size during the transmission reaches a steady state value, which is
strongly correlated with the throughput. In this section we derive a mathematical
expression to this parameter.

In our analytical model, we must assume some simplifications to reduce the
extremely complex general situation, which, however, does not invalidate the
generality of our analysis. We assume that the intra-campus network consists of
unequal capacity LAN networks (some of them working at C1 and the others
at C2, where C1 >> C2) connected through multicast routers. We also assume
that there are no other applications using the network and that the server is
reasonably situated at one of the fastest LANs.

Congestion may arise in routers interconnecting LANs with different capac-
ities. Those routers can be modeled as a pair of buffers serving packets at C1

and C2 Mbps respectively.
Supposing an initial window size of one (see figure 1), the server sends only

one data packet to the network and it waits for ACKs (one from each LAN). The
last ACK received at the server is the ACK going through the path formed by
the highest number of C2 networks (it is composed by NC1 LANs at C1 Mbps
networks and by NC2 LANs at C2 Mbps). When all ACKs have arrived, the
window size is increased by one unit and the next data window is issued. For a
W window size, the server will receive the last ACK approximately at

W ·DataPS

C2
+ (NC2 − 1)

DataPS

C2
+ NC1

DataPS

C1
+ ARTP + NC1

AckPS

C1
+

+NC2
AckPS

C2
≈ W ·DataPS

C2
+ (NC2 − 1)

DataPS

C2
+ ARTP (6)

where LAN2 to LAN1 buffer delay can be neglected because the service rate
at the other side is very high (C1 Mbps).

The window size just before congestion is detected (WT) can be obtained
when (6) slightly matches with default Tout :

WT =
⌊(

default Tout−ARTP
)

DataPS
· C2 − (NC2 − 1)

⌋
(7)

It can be noticed that for each C2 network added to the critical path, the
WT value is decremented in one unit.

At this time, the server increases the window size again and it sends the next
data block. Now, congestion is declared since the timer expires before the last
ACK packet arrives. Therefore, the flow control multiplies the timer by α and
decreases the window in one unit. In this new situation, it can be guaranteed
that the server assumes the congestion has disappeared, since α > 1. Once again,
the window is increased and the timer is divided by β. But since β > α > 1,
the timer value reaches its default value again and then congestion comes back.
This behavior is continuously repeated. Therefore, the window size reaches a
steady-state value slightly oscillating around WT .

3.3 Maximum throughput

SOMA obtains the maximum throughput and the maximum window size (Wmax)
when it is the only running application and there is no congestion. In that
situation, the time interval between two consecutive data windows is restricted by
the ARTP mean value (2) and not by the timer (default Tout >> ARTPmax).
Therefore, in this case the maximum throughput is bounded by

Wmax ·DataPS
Wmax ·DataPS

C
+ ARTP

(8)

Where C is the network capacity in bps at the server side.
However, if congestion arises at some network point, the timeout timer re-

stricts the time between data blocks and the window size reaches its steady-state
value. Therefore, the maximum throughput is bounded by

(WT + 1) ·DataPS

(WT + 1) ·DataPS

C
+ default Tout

(9)

4 Test results discussion

In this section, we evaluate SOMA in a real situation. It should be noticed that
our analytical study is focused on a transport layer but test experiments are ob-
viously the result of all OSI layers integration, from the physical layer up to the
transport one. Particularly, in section 3 we have not taken into consideration the

MAC, LLC, IP and UDP protocols and sub-layers. Moreover, SOMA runs over
a multi-task OS, which has non real-time facilities (Linux kernel 2.4). Therefore,
although we try to minimize the computational load in each computer (unnec-
essary processes, like cron, are killed), sometimes the kernel may give priority to
other processes instead of SOMA. Both effects, the OSI layers integration and
the multi-task OS may cause that the test results reveal some smaller differences
with the analytical ones.

The intra-campus environment is formed by two LANs of extremely unequal
capacities, a wired Ethernet LAN at 100 Mbps and a wireless LAN 802.11b at 2
Mbps, both connected through a wireless access-point router. The access-point
router is a Linksys WRT54G, co-sponsored by Cisco Systems. We changed its
firmware by a stable and configurable Linux OS called OpenWrt [12].

To verify that the analytical results obtained in section 3 fit well enough
with the test results, the same intra-campus environment is used: the clients are
situated in both LANs and the server is situated in the wired network.

Our test intra-campus network forces congestion since the wireless LAN ca-
pacity (2 Mbps) is fifty times lower than the wired network capacity (100 Mbps).

 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 5000 10000 15000 20000

W
in

d
o
w

 s
iz

e

data packet sequence number (SN)

default_Tout 80 ms

defautt_Tout 120 ms

Fig. 2. Window size evolution for different default Tout values: 80, 90, 100, 110 and
120 ms

Figure 2 shows the evolution of the window size for different default Tout
values: 80, 90, 100, 110 and 120 ms. According to expression (7), the window
size should oscillate around 29, 32, 36, 39 and 43 packets respectively. To obtain
these values it is assumed that: (a) The ARTP is 120 µs, which is calculated
using (2) when n=4 and the ARTPmax is 600 µs. (b) The effective wireless LAN
capacity at the transport layer is around 1.55 Mbps instead of the theoretical 2
Mbps due to the OSI layers integration.

As it can be observed, the analytical values fit well enough with the experi-
mental ones and the window size always remains around its steady state value
(WT). Sometimes the window size slightly decreases due to sporadic packet losses
at the wireless LAN side and also because of background control applications
packets, such as BPDU spanning-tree, which overload the access point buffer
capacity.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000

T
hr

ou
gh

pu
t (

M
bp

s)

Default Timeout 80 ms
 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000

data packet sequence number (SN)

Default Timeout 100 ms
 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000

Default Timeout 120 ms

Fig. 3. Instantaneous throughput evolution for different default Tout values: 80, 100
and 120 ms

Additionally, we have validated our window size convergence study in more
complex scenarios using the Opnet simulator. Each possible scenario is formed
by several C1 and C2 networks so that the last ACK packet received at the server
goes through a path formed by NC1 and NC2 networks. Table 1 presents the WT

value obtained by simulation and theoretically (7) when the value NC2 varies
among 1 and 4.

Table 1. WT values obtained theoretically and by simulation (in parenthesis), suppos-
ing a wireless LAN capacity C2 of 1.55 Mbps and ARTP=120 µs

default Tout

NC2 80 ms 90 ms 100 ms 110 ms 120 ms

1 29 (29) 33 (33) 37 (37) 40 (40) 44 (44)
2 28 (28) 32 (32) 36 (36) 39 (39) 43 (43)
3 27 (27) 31 (31) 35 (35) 38 (38) 42 (42)
4 26 (26) 30 (30) 34 (33) 37 (37) 41 (41)

It can be observed that simulated results validate the analytical study. In ad-
dition, the case NC2 = 1 (the scenario studied experimentally) fits good enough
with the experimental results showed in figure 2.

Returning to test experiments, figure 3 represents the instantaneous through-
put. Irrespective of the default Tout value, the server throughput slightly oscil-
lates around 1.55 Mbps. Therefore, the proposed flow control algorithm is able
to adapt the server transmission rate to the slowest network capacity using a
unique flow, maintaining synchronism among all clients and avoiding congestion.

This test result can be corroborated analytically by introducing the value
of WT (7) in (9) when NC2 = 1. Always assuming that mean ARTP value is
negligible, the throughput can be approximated by

default Tout · C2 + DataPS

default Tout · C2 + DataPS

C1
+ default Tout

≈ C2. (10)

Where C2 << C1 and DataPS << default Tout · C2

In the next experiment, our protocol is evaluated in a single congestionless
wired LAN. In this scenario the window size reaches its maximum value limited
by the protocol (W=100) and the maximum experimental throughput is around
97 Mbps, which approximately matches the theoretical result (97.4 Mbps, from
equation 8). Again, the flow control is able to adapt the transmission to the
maximum network capacity.

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

W
in

do
w

 s
iz

e

data packet sequence number (SN)

Default Timeout=120 ms

Fig. 4. Window size evolution in a mixed wired and wireless intra-campus. The wireless
LAN terminals join the file transfer approximately in the middle of the transfer

Finally, figure 4 illustrates the window size evolution in a different experi-
ment. At the beginning only wired clients participate in the file replication pro-
cess. As it can be seen, the window size reaches its maximum value (W=100).
But approximately in the middle of the transfer, the wireless terminals join the
file transfer. As it can be appreciated, the SOMA flow control is able to quickly
adapt to the new situation by resizing the window (and also the timer, although it
is not shown) synchronizing both networks and avoiding congestion. If the router
buffer is not high enough, some data packets could be lost during the transition
period, which will be recovered in the error correction phase. To minimize this
effect, the response time of our proposed protocol is an important factor since
the wireless channel capacity is strongly dependent on physical parameters.

5 Conclusions

SOMA is a multicast application for fast file replication. One of its most re-
markable aspects is its own transport protocol definition focused mainly on flow
control which is designed to work fine in an asymmetric intra-campus scenario.
The proposed flow control algorithm is able to quickly react under congestion, re-
sizing adequately the window size and the time between data blocks to maximize
the throughput.

Some of the main protocol parameters have also been characterized analyt-
ically under certain constrains. In addition, the mathematical study has been
validated with real traces in a test lab network.

Although the proposed transport protocol is used in SOMA for file transfer,
its synchronicity and simplicity makes it interesting for other type of applica-
tions, like on-line applications.

Acknowledgments

This work has been supported by the Spanish Research Council under project
ARPaq (TEC2004-05622-C04-02/TCM).

References

1. Schulzrinne, H. et al.: RTP. A Transport Protocol for Real-Time Applications.
RFC 3550, Internet Engineering Task Force, July 2003.

2. Floyd, S., Jacobson, V., Liu, C., McCanne, S., Zhang, L.: A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing. IEEE/ACM
Transactions on Networking, Vol. 5, No. 6, pp. 784-803, December 1997.

3. Sabata, B., Brown, M. J., Denny, B. A., Heo, C.: Transport protocol for reliable
multicast: TRM. In Proc. of IASTED International Conference on Networks, pp.
143-145, January 1996, Orlando, Florida.

4. Lind, K. et al.: Drinking from the Firehose: Multicast USENET News. In Proc.
of the Winter 1994 USENIX Conference, pp. 33-45, 1994, San Francisco, CA.

5. Macker, J.: The Multicast Dissemination Protocol (MDP) Toolkit. In Proc. of
IEEE MILCOM, Vol. 1, pp. 626-630, 1999.

6. Miller, K. et al.: StarBurst Multicast File Transfer Protocol (MFTP) Specifica-
tion. IETF Internet Draft, draft-miller-mftp-spec-03.txt, April 1998.

7. Lin, J.C., Paul, S.: RMTP. A Reliable Multicast Transport Protocol, In Proc. of
Infocom96, pp. 1414-1424, March 1996, San Francisco, CA.

8. Yavatkar, R. et al.: A reliable dissemination protocol for interactive collaborative
applications. In Proc. of the ACM Multimedia’95, pp. 333-344, 1995.

9. http://www.ietf.org/html.charters/rmt-charter.html
10. Kermode, R., Vicisano, L.: Author Guidelines for RMT Building Blocks and

Protocol Instantiation documents. IETF Internet Draft, draft-ietf-rmt-author-
guidelines-03.txt, January 2002.

11. Manzanares-Lopez P., Sanchez-Aarnoutse J.C., Malgosa-Sanahuja J., Garcia-
Haro J.: Empirical and Analytical Study of a Multicast Synchronous Transport
Protocol for Intra-Campus Replications Services. In Proc. of the International
Conference on Communications (ICC’04), June 2004, Paris, France.

12. http://openwrt.org

