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Abstract. There is significant interest in the network management community 
about the need to improve existing techniques for clustering multi-variate 
network traffic flow records so that we can quickly infer underlying traffic 
patterns. In this paper we investigate the use of clustering techniques to identify 
interesting traffic patterns in an efficient manner. We develop a framework to 
deal with mixed type attributes including numerical, categorical and 
hierarchical attributes for a one-pass hierarchical clustering algorithm. We 
demonstrate the improved accuracy and efficiency of our approach in 
comparison to previous work on clustering network traffic. 

1 Introduction 
There is a growing need for efficient algorithms to detect important trends and 
anomalies in network traffic data. In this paper, we present a hierarchical clustering 
technique for identifying significant traffic flow patterns. In particular, we present a 
novel way of exploiting the hierarchical structure of traffic attributes, such as IP 
addresses, in combination with categorical and numerical attributes. This algorithm 
addresses the scalability problems in previous approaches [5-9] of network traffic 
analysis as it is a one-pass, fixed memory algorithm.  

A key challenge in clustering multi-dimensional network traffic data is the need to 
deal with various types of attributes: numerical attributes with real values, categorical 
attributes with unranked nominal values and attributes with hierarchical structure. For 
example, byte counts are numerical, protocols are categorical and IP addresses have 
hierarchical structure. We have proposed a hierarchical approach to clustering that 
exploits the hierarchical structure present in network traffic data. In network traffic a 
hierarchical relation between two IP addresses can reflect traffic flow to or from a 
common sub-network. We propose a common framework to incorporate such 
hierarchical attributes in the distance function of our clustering algorithm. 

The second contribution of this paper is the use of a single-pass hierarchical 
clustering technique to address the problems suffered by existing algorithms in terms 
of their need to make multiple passes through the dataset. In order to keep the size of 
the reports small we present a number of summarization techniques over the cluster 
tree. 

In the next section we briefly summarize existing research on identifying trends in 
network traffic. In Section 3 we present our clustering and summarization algorithm 
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called Echidna. We demonstrate the effectiveness of our approach using an empirical 
evaluation in Section 4. 

2 Related Work 
The problem of identifying network trends has been studied by [5-9]. In [2], the 

authors address the problem of finding patterns in network traffic by proposing a 
frequent itemset mining algorithm. Their tool, called AutoFocus [1] identifies 
significant patterns in traffic flows by using frequent itemset mining. It first creates a 
report based on unidimensional clusters of network flows and then combines these 
unidimensional clusters in a lattice to create a traffic report based on 
multidimensional clusters. AutoFocus requires multiple passes through the network 
traffic dataset in order to generate significant multidimensional clusters. To address 
this inefficiency, we consider the use of a hierarchical clustering algorithm. 

Our approach to finding multidimensional clusters of network data builds on the 
BIRCH framework [3], which is a clustering algorithm that uses a Cluster Feature 
(CF) to represent a cluster of records in the form of a vector <n, LS, SS>, where n is 
the number of records in the cluster, LS is the linear sum and SS is the square sum of 
the attributes of the records. Clusters are built using a hierarchical tree called a 
Cluster Feature Tree (CF-Tree) to summarize the input records.  

The tree is built in an agglomerative hierarchical manner (see Fig. 1). Each leaf 
node consists of l clusters, where each cluster is represented by its CF record. These 
CF records can themselves be clustered at the non-leaf nodes. Figure 1 shows a CF-
Tree in fixed memory M with branching factor B and leaf node capacity L. If P 
denotes the size of a node in the tree, then it takes only O(B* (1+logB M/P)) 
comparisons to find the closest leaf node in the tree for a given record [3].  
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Fig. 1. A Cluster Feature Tree 

An open issue for using the BIRCH approach to cluster network traffic records is 
how to cope with numerical, categorical and hierarchical attributes which are used to 
describe the network traffic. We also require a method for extracting significant 
clusters from the CF-tree in order to generate a concise and informative report on the 
given network traffic data. In the next section we propose several modifications to the 
BIRCH clustering approach to address these problems. 
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3 Our Approach to Clustering Network Traffic: Echidna 
The input data is extracted from network traffic as 6-tuple records <SrcIP, DstIP, 
Protocol, SrcPort, DstPort, bytes>, where SrcIP, DstIP are hierarchical attributes, 
bytes is numerical and the rest are categorical attributes. Our algorithm takes each 
record and iteratively builds a hierarchical tree of clusters called a CF-Tree. We now 
describe the distance functions used for each attribute type. 
Distance functions: When clustering network traffic records we need to consider 
three kinds of attributes: numerical, categorical and hierarchical.  
a) Numerical Attributes: A numerical attribute is represented by a scalar x[i] R∈ . 

The centroid ][ ic  of a numerical attribute i in cluster C having N points is given by 

the mean of the N points. We calculate the distance dn between the centroids of two 
clusters C1 and C2 by using the Euclidean distance metric. 

b) Categorical Attributes: In the case of a categorical attribute, x[i] is a vector cZ∈ , 
where c is the number of possible values that the categorical attribute i can take. For 
a d-dimensional categorical attribute vector X, let the ith attribute x[i] be represented 
as x[i] ={ a1, a2,…,ac}. The centroid ][ ic of a categorical attribute i in cluster C 

having N points is represented by a histogram of the frequencies of the attribute 
values. The distance between clusters C1 and C2 in terms of a single categorical 
attribute is given by the Euclidean distance between the frequency vectors of each 
attribute. 

c) Hierarchical Attributes: A hierarchical attribute represents a generalization 
hierarchy in the form of an L-level tree applied to a domain of values at the leaves 
of the tree. A non-leaf node in the hierarchy is a generalization of the leaf nodes in 
the subtree rooted at that node. 

In a cluster C, the centroid for a hierarchical attribute that corresponds to an IP 
address is represented by an IP prefix pPI / , which is an aggregate of the IP addresses 

[10] in that cluster. We calculate the distance between two clusters C1 and C2 with 
centroids 

11 / pPI and
22 / pPI as dh(C1 , C2) = 32 - p if p > 8, or 24 if p ≤ 8,                

where p = CommonPrefix )/,/( 2211 pPIpPI . The definitions of CommonPrefix and IP 

aggregation can be found in [10]. 
Intuitively, dh corresponds to the hierarchical distance from the leaf level of the 

tree to the most specific generalization of the two centroids. In the case of IP 
addresses, this corresponds to the size in logarithm (base 2) of the smallest subset that 
would be required to contain these two clusters. For example, the distance between 
128.0.0.252/32 and 128.0.0.254/31 is 2. The distance between two centroids is the 
squared sum of the distances of each attribute using the appropriate distance function. 
Note that each attribute is scaled into the range [0,1] so that no single attribute 
dominates. 
Radius Calculation: In order to control the variance of data records within a cluster, 
we need some measure of the radius of a cluster. The radius for numerical and 
categorical attributes can be represented in a straightforward manner as the standard 
deviation of the attribute values of the records in the cluster. In the case of 
hierarchical attributes, we propose that the radius is proportional to the size of the 
subtree in the generalization hierarchy covering the values that appear in the cluster. 
Consider the case of IP addresses. We keep two variables minIP and the maxIP, 
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which correspond to the smallest and the largest IP values present in the cluster. Let 
C[i]. range=(minIP, maxIP) denote the range of IP addresses present in attribute i of 
cluster C. We can measure this radius in terms of the height of the smallest subtree in 
the generalization hierarchy that covers minIP and maxIP, which can be calculated 
using CommonPrefix as Rh = (32-CommonPrefix(minIP, maxIP))/32. The final radius 
value of the cluster is simply a linear combination of the individual radius values of 
different attributes types.  
Cluster Formation: Following the general approach of BIRCH [3], each cluster Cl is 
represented by a cluster feature vector that contains sufficient statistics to calculate 

the centroid lc  and radius Rl of the cluster. Each data record X, corresponding to a 6-

tuple traffic flow record, is inserted by comparing X to the closest cluster starting 
from the root along a path P to a leaf node. At the leaf node, the data record X is 
inserted into the closest Cl and the radius Rl of the updated cluster is calculated. If Rl > 
T, where T is a threshold value in the range [0,1], and if the number of CF entries in 
the node is less than a minimum m, then X is inserted into the node as a new cluster. If 
a node has no more space for a new CF entry, then the node is split to create a new 
node and the path to the root is updated recursively. 
Summarization: The clusters at each level represent a generalized set of traffic flows, 
which can be used to describe the traffic flows in the network. Since there is 
redundant information between different levels, the summary report should contain 
only those nodes of any level having significant additional information compared to 
their descendant levels. We define significant nodes in terms of number of records, 
Average Intra-Cluster distance and Maximum Intra-cluster distance measures that 
intuitively pick those nodes that contain a heterogeneous set of clusters. 

An index node is considered significant if one of its descendants is significant. A 
leaf node is significant if it has the following properties: 

a) The number of records in the leaf node C is above a certain threshold Tr. 

b) The Average Intra-cluster (AI) distance of the leaf node C is above a threshold 
Tai, where the AI distance of cluster C with respect to its l sub-clusters C1,…,Cl is  

AI(C) = 
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c) The Maximum Intra-cluster (MI) distance of the leaf node C is greater than or 
equal to the AI distance. The MI distance is given by MI(C) = max{ d(Ci, Cj)}, i=1,..,l 
and j=2,..,l 
Compression: We require a technique to further compress the number of significant 
clusters that are included in the final report. We consider a node to be significant if 
the number of traffic records it contains is greater than Tr. Lemma 1 then gives the 
upper and lower bound on the number of significant nodes in the tree. The proof of 
Lemma 1 can be found in [10]. 
Lemma 1: For a cluster tree of height h with τ traffic records and threshold Tr, the 

size of the report ρ is bounded by 2,2 ≥≥≥ h
TT

h
rr

τρτ  . 

Compression of cluster report: Let C = {C1, C2,…,Ch}  be the set of clusters in a path 
P from the root to a node in level h of the CF-tree. Since a cluster Ci is represented as 
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a node in the tree, then Ci consists of a set of l sub-clusters ( l CF entries) at the same 
level i of the tree Ci={C1,i,C2,i,..,Cl,i}. It follows that  

a) Ci is significant if there exists a Cj
 in the path P, such that Cj is significant, 

where i < j, i.e., Ci is an ancestor of Cj. 
b) Let τi and τj denote the traffic of Ci and Cj, then τ i ≥ τj, if i < j. In other words, 

the size of cluster Ci is greater than or equal to the size of cluster Cj. 
Let ρ be the compressed report, and Ci and Cj are significant clusters. Ci is included in 
ρ if τi - τj > Tr, where Tr is the threshold of records. Tr can be expressed as a 
proportion of the total traffic size,        Tr = rτ, where r = [0,1] and T is the total 
traffic. In other words, a higher level cluster is only included if it reports some traffic 
not mentioned by its more specific significant sub-clusters. 
Complexity: Since the total number of attributes and their range of values are fixed, 
we can consider that the cost of distance calculation between a record and a cluster is 
also constant. In a height-balanced CF-Tree with branching factor B and m nodes, 
logB m comparisons are required for each record to be inserted into the closest leaf 
cluster. For N records the insertion time is bounded by ))log1(*( mBNO B+ . 

4 Evaluation 
Our aim was to test the accuracy and scalability of our hierarchical traffic 
summarization algorithm. We have compared the accuracy and run-time performance 
of our algorithm to AutoFocus [2] using 1998 DARPA dataset [4]. Note that the 
attack/normal labels in this dataset are used for evaluation purposes only, and are not 
used as part of the cluster formation process.  

Detection Accuracy:  Our aim is to generate a summary traffic report that identifies 
important flows in network traffic. In this case, we use the DARPA traces (weeks 3-5) 
to test whether the reports generated by Echidna or AutoFocus identify specific 
attacks that appear in the traces. For each file, we identified the number and type of 
attacks, reported as clusters in the summary reports from Echidna and AutoFocus, and 
identified the total number of occurrences of these attack types in the traces (see 
Table 1).  

Echidna was able to detect 7 different types of attacks compared to 4 attack types 
detected by AutoFocus. Moreover, in the case of the ipsweep attack, Echidna detected 
3 instances compared to 1 instance detected by AutoFocus. In most cases, the attacks 
that were detected can be characterized by their influence on the network bandwidth 
during the time of the attack.  

Run-time performance: In order to test the scalability of our algorithm in 
comparison to AutoFocus, we measured the execution time required by Echidna and 
AutoFocus for different traffic samples on a time shared dual 2.8GHz Xeon processor 
machine with 4 GB RAM running SunOS 5.9 (see Fig. 2). 

As predicted by the complexity analysis in Section 3, the computational 
complexity of Echidna is linear with respect to the number of input traffic flow 
records. Furthermore, Echidna shows a significant reduction in computation time and 
variance in comparison to AutoFocus. 
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Fig.2. Comparison of Run-time Performances Table 1. Detection Accuracy 

Conclusion  
We have presented a clustering scheme called Echidna for generating summary 
reports of significant traffic flows in network traces. The key contributions of our 
scheme are the introduction of a new distance measure for hierarchically-structured 
attributes, such as IP addresses, and a set of heuristics to summarize and compress 
reports of significant traffic clusters from a hierarchical clustering algorithm. Using 
standard benchmark traffic traces, we have demonstrated that our clustering scheme 
achieves greater accuracy and efficiency in comparison to previous work. 
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 Number of Detected Attacks 

Attack   Total     AF Echidna 

ipsweep 5 1 3 
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Nmap 2 0 1 
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