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Abstract. We propose a variable step fluid model for communication
network in this paper. Our main goal in this research is simulation
speedup of a packet-level simulator while maintaining the accuracy. The
variable step fluid model not only reduces complexity but also accurately
estimates simulation details such as round trip time, queue sizes, TCP
windows, and packet drops. In addition, the variable step fluid model
reduces event explosions, ripple effects, which have been observed in the
traditional fluid models. We validate our model against ns-2 simulation
with a mixture of TCP and UDP flows under various background traffic
scenarios. Our model achieves significant speedup compared to packet-
level simulators. For example, the speedup of our fluid model for 20 Mb
bottleneck is 40 to 70 against ns-2.

1 Introduction

Packet-level simulators have been widely used for performance evaluation of com-
munication network because of their accuracy. However, packet-level simulators
do not scale to large network or high bandwidth because they track every event
in the system. Simulation of network traffic in a packet-level simulator such
as ns-2[1] considers arrivals and departures of each packet at all routers and
queues between a source and a destination. As the topology of the network be-
comes complicated and as the size of network connections increases, packet-level
simulators show significant performance degrade.

Many methods have been proposed to speed up packet-level simulators. One
method to overcome such an event explosion in a packet-level simulation is to
use fluid models[2–7], which abstract discrete packets with a continuous fluid
flow. These fluid models average out small variations in packet-level assuming
that a network traffic can be considered as a continuous flow rather than discrete
packets.

While traditional fluid models [3, 5] reduce complexity of packet-level simu-
lators, they have several drawbacks. Since packet events are discrete in nature,

⋆ This research is supported by the MIC, under the ITRC support program supervised
by the IITA.



a fluid model may lose accuracy against packet model, especially if we compare
short term behaviors. Secondly, when several flows go through a network con-
nection link, a traditional fluid model [3] often increases complexity because of
the event explosion called ”ripple effect”. A ripple effect has been introduced in
[3]. Liu et. al in [3] assume flow rates are held constant between some events,
but if these events occur too frequently, performance of a fluid model is worse
than that of packet models due to event explosions.

In this paper, we propose a variable step fluid model for faster simulation
of communication networks. The variable step fluid model provides accurate
estimation of interest measures such as size of TCP congestion window, queue
sizes, the round-trip time, and the throughput. Also, our fluid model reduces the
ripple effect significantly by allowing variable step size integration.

A method to reduce ripple effects with fixed step size integration has been
introduced in [8], but our approach improves accuracy and performance further
by varying the step size. We conduct simulation experiments on TCP congestion
control to validate our model. ns-2 packet-level simulator is chosen to vali-
date our model. In these experiments we observe our model achieves significant
speedup while maintaining little error against ns-2. For example, the speedup
of our fluid model for 20 Mb bottleneck is 40 to 70 against the ns-2.

The rest of the paper is organized as follows. In Sect. 2, related work is
presented. In Sect. 3, we introduce the variable step fluid model algorithm. We
show experimental results in Sect. 4, and conclude in Sect. 5.

2 Related works

There has been much research on the network simulation based on fluid models
[3, 4, 9, 8]. Liu et al. [3] compare packet-level simulations and fluid models in
terms of relative efficiency. They have observed ripple effects in detail and shown
that fluid models perform worse than packet models when ripple effects start to
occur. However, the accuracy of fluid models has not been fully analyzed.

[4] also studies trade off between packet-level and fluid models. The change
of event rates in fluid and packet-level simulations with respect to the number
of nodes or the number of flows are compared. However, they do not consider
the accuracy of fluid models against packet models.

A scalable model of a network of AQM routers is presented in [9], and the
transient behavior of the average queue length, packet loss probabilities, and
average end-to-end latencies have been observed. It is shown that their fluid
model is accurate and requires substantially less time to solve, especially when
workloads and bandwidths are high. It is also shown that the computational
complexity grows linearly with the size of the network, whereas the growth of
the complexity for discrete event simulators is super-linear. However, this model
is based on the expected values of variables and the accuracy of results only
applies when there exist large number of flows. A fluid model introduced in [9]
also captures average window and queue sizes, but these statistics are not very
accurate compared to the statistics of packet-level simulations.



[8] introduces a time-driven fluid simulation model for high speed networks.
Time is partitioned into fixed-length intervals. [8] observes only single class fluid
and it does not simulate background flows. The propagation delays between any
two nodes are assumed to be zero or multiples of the discretization interval length
in [8], while the delay in reality depends on the traffic conditions. [8] concerns
only how much traffic is generated by each source, not the exact event arrival
time. In addition, computations are performed on a very simplified scenario and
backlogged fluid depends on arrived fluid only.

3 Algorithm of variable step size fluid model

3.1 Motivation

Although fixed constant time step [8] may reduce the ripple effect, simulation
time and accuracy can be improved further if we use variable time step fluid
model. For example, suppose that the round-trip time is τ ms and the congestion
window size of TCP is α. Then α packets are emitted for τ ms. Assume that
TCP sends α packets within τ/2 ms and no packet is sent out for the remaining
τ/2 ms as in Fig. 1. If the fixed time step is smaller than the round-trip time,
for example, τ/2 ms, the TCP flow rate is 2α/τ during the first half of RTT and
0 during the second half of RTT. This introduces unnecessary rate changes. On
the other hand, if constant time step is much bigger than the round-trip time,
for example, multiples of τ ms, it may not accurately capture interest measures
such as congestion window size of TCP because TCP varies congestion window
size every RTT (τ ms).

Fig. 1. Timestep

The variable step fluid model discretizes time using the round-trip time
(RTT) as an interval. Since the RTT varies with the traffic condition, the mo-
ments when network variables change their values cannot be captured by a fixed
time-step model if fixed-step is bigger than RTT. For example, when the network
is congested (i.e. RTT is large), integration step can be large in the variable step
size model. On the other hand, when the network is not congested (i.e. RTT
is short), integration step need to be short to accurately capture TCP window
size. The discretization in variable step fluid model also enables us to reduce
the ripple effect. Ripple effects occur if flow rate is computed whenever the rate



changes. For example, flows in [3] trigger an event, even though the input amount
is smaller than the size of a single packet. Since our fluid model computes the
flux and other variables every round-trip time, an event explosion such as ripple
effect due to frequent rate change does not occur.

3.2 Algorithm

This section describes the algorithm of our variable step size fluid model. We
begin with a simple case with a router, one TCP and one UDP flow. The al-
gorithm can be easily extended to multiple routers with many TCP and UDP
flows. Our fluid model algorithm is summarized in Fig. 2.

Fig. 2. Algorithm



The algorithm first defines the network topology, background and foreground
flows. For example, let b(t) denote the available bandwidth at time t. Then
b(t) is initialized to (bandwidth × RTT). Then the algorithm replaces packets
during RTT as a continuous flow. Our fluid model computes UDP traffic and
allocates network resources for UDP first because they do not reduce the sending
rates even when packets are lost in the middle of transfer. We vary portion of
background UDP flows throughput the simulation. Thus, the first step is to
compute followings for UDP flows. Let uU (t) and vU (t) denote the amount of
inflow and outflow of UDP flow at t, respectively. Then

uU (t) = (inflow rate) × RTT

vU (t) = min{qU (t) + uU (t), b(t)}

b(t) = b(t) − vU (t)

where qU (t) is the amount of UDP flow in the queue at t. Then the remaining
resources will be shared by TCP flows. Let uT (t) and vT (t) denote the amount
of inflow and outflow of TCP flow at t, respectively. Then,

uT (t) = cwnd(t) × (packet size)

vT (t) = min{qT (t) + uT (t), b(t)}

b(t) = b(t) − vT (t)

where cwnd(t) is the congestion window size for TCP at t and qT (t) is the amount
of TCP flow in the queue at t. The next step computes net flows between inflows
and outflows for UDP and TCP flows:

ni(t) = ui(t) − vi(t), i = U, T

Let q∞
U

and q∞
T

be queue sizes when it is temporarily assumed there are no queue
limits. Then,

q∞
i

(t) = qi(t) + ni(t), i = U, T

Let q∞(t) = q∞
U

(t)+ q∞
T

(t). Let us denote relative inflow rates of UDP and TCP
by ri(t) = ui(t)/u(t), i = U, T, where u(t) = uU (t) + uT (t). When there are
not sufficient resources for TCP, TCP flows will compete for limited resources
and reduce sending rates accordingly if flow loss occurs. Flow loss (for UDP or
TCP) occurs when the queue exceeds its maximum size, denoted by qmax. The
increase or decrease of the queue depends on net flows and there are four cases:

Case I. (nU > 0 and nT > 0)
If q∞(t) > qmax, define

q0

i
= qi(t) + (qmax − q(t))ri(t), i = U, T

where q(t) is the queue size at t. Otherwise, define

q0

i
(t) = q∞

i
(t), i = U, T



q0

U
and q0

T
are queue lengths for UDP and TCP flows at (t + new RTT).

Since new RTT is not known yet, q0

U
and q0

T
are used temporarily now and

stored to qU (t+new RTT) and qT (t+new RTT) when new RTT is obtained.

Case II. (nU < 0 and nT < 0)
Define

q0

i
(t) = max{0, qi(t) + ni(t)}, i = U, T

Case III. (nU > 0 and nT < 0)
Define q0

T
(t) = max{0, q∞

T
(t)}. If q∞

U
(t) + q0

T
(t) > qmax, define

q0

U
(t) = qmax − q0

T
(t)

Otherwise, define

q0

U
(t) = q∞

U
(t)

Case IV. (nU < 0 and nT > 0)
Define q0

U
(t) = max{0, q∞

U
(t)}. If q∞

T
(t) + q0

U
(t) > qmax, define

q0

T
(t) = qmax − q0

U
(t)

Otherwise, define

q0

T
(t) = q∞

T
(t)

Then, RTT is updated with the sum of the transmission delay, the queueing
delay and the propagation delay. If TCP flow loss occurs in Case I or IV, the
inflow rate is reduced by halving cwnd(t) and threshold, h(t). When TCP flow
loss does not occur, cwnd(t) and h(t) increase exponentially up to the receiver
window in the slow-start phase and linearly after that. If the window size reaches
the receiver window, the slow-start phase changes to the congestion avoidance
phase. After setting qU (t+RTT) = q0

U
(t), qT (t+RTT) = q0

T
(t) and q(t+RTT) =

qU (t + RTT) + qT (t + RTT), t can be updated to t + RTT. Note also that there
is no trade-off of adjusting the step size every RTT because RTT itself is the
step size.

4 Simulation Experiments

In order to validate our model, we use the parking-lot topology in Fig. 3. This
topology has multiple bottleneck links, one between nodes R2 and R4, and an-
other between nodes R6 and R8. Foreground flows are sent from R1 to R10.



Then, the first set of background traffic is sent from R3 to R5. The second set
of background traffic is sent from R7 to R9. A similar type of topology was also
considered in [9].

We consider several network scenarios by assigning different bandwidths from
5 Mb to 20 Mb to these bottlenecks. Drop Tail Queues (FIFO) are used for
each router. Different types of queues such as AQM can be easily considered
and are postponed for future work. We simulated extensive scenarios on this
network topology, but we will show two example scenarios in this paper. Mainly,
we simulate three types of flows on this topology, which are foreground TCP,
foreground UDP and background UDP flows. TCP flows go from node R1 to
node R10 via nodes R2, R4, R6 and R8. Foreground UDP flows use the same
path as TCP flows. Background UDP flows propagate from node R3 to node
R5 passing through nodes R2 and R4, and from node R7 to node R9 passing
through nodes R6 and R8. Background UDP flows represent background traffic
on the network which is composed of short lived TCP flows, whereas foreground
UDP assumes UDP packets are generated by protocols such as RTP[10].
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Fig. 3. Parking Lot Topology

4.1 TCP flows without background traffic

We first consider a flow generated by a single TCP connection without any
background traffic. TCP starts at 0.5 second and is observed for 20 seconds.
Once a TCP connection is established, a source sends a file of size 50 MB to
the destination. We run the same scenario on ns-2 to compare results between
our model against packet-level simulations. For packet simulations in ns-2, the
packet size is set to 1500 bytes, and the queue may hold up to 50 packets. The
initial threshold of the congestion window is set to infinite. Fig. 4 shows that
RTT, congestion window size, queue size, and throughput of our variable step
size model captures those statistics of ns-2 with little error when the bottleneck
bandwidth is 20 Mb. As RTT increases, the congestion window size increases
exponentially and the queue becomes filled up with the surplus from the inflow.
When the queue becomes full, flow loss occurs and this leads to the halving of



the congestion window size. Correct estimation of RTT change in the variable
step fluid model allows us to detect the change of the congestion window size
and the queue precisely as shown in Fig. 4. The throughput of our model also
captures the result of ns-2.
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Fig. 4. Round-trip time (top left), congestion window size (top right), Queue size (bot-
tom left) and throughput (bottom right) from 1 TCP flow when bottleneck bandwidth
is 20 Mb

4.2 Foreground TCP and UDP flows with background UDP flows

Now suppose that there are 3 foreground TCP, 20 foreground UDP and 50
background UDP flows. The simulation is performed for 50 seconds, and three
TCP connections share the same bottleneck. Each TCP connection is initiated
at 0.5 second and transfers a file of size 50 MB. In this scenario 10 foreground
UDP flows are sent from R3 to R5 and R7 to R9 at 10 seconds. Each UDP
flow sends out 240 Kb of data per second. At 20 seconds in simulation time,
10 more foreground UDP flows are sent from R3 to R5 and R7 to R9 with
240Kb each. In 30 seconds, the entire foreground UDP flows are disconnected.
Since each UDP source sends 12Kb of packet for every 0.05 second, UDP flows
occupy about 2.4 Mb of the bottleneck bandwidth for 10 seconds, and 4.8 Mb



of the bottleneck bandwidth for the next 10 seconds. In addition, background
UDP traffic is injected for the last 10 seconds. The sending rate of background
UDP traffic is 48 Kb and its on and off time is 500 ms, respectively. Thus each
background On-Off source generates 24 Kb per second on average.

A traditional fluid model may consider fluid chunks using packets averaged
out during on-time. Our fluid model introduces larger scale to define a single
UDP flow. Since a packet is of size 12 Kb, the number of packets sent by each
UDP flow follows the exponential distribution with mean 2. Thus 50 background
UDP flows generate about 1.2 Mb per second on average in ns-2. Similarly, the
background UDP flow in our fluid model sends out a flow at a constant rate of
1.2 Mb every second from its source to the destination. TCP flows merge with
one UDP flow between nodes R2 and R4 and merge with another UDP flow from
node R6 through node R8 to node R9.

Fig. 5 shows the results from ns-2 and the fluid model when bottleneck
bandwidth is 20 Mb. Round-trip time, congestion window size, and throughput
are all captured with little error. The adjustment of the congestion window size
due to dynamic injection of UDP flows are matched closely between ns-2 and
the fluid model. Fig. 5 also shows that our model captures RTT and throughput
computed from ns-2.
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Fig. 5. RTT (top left), congestion window size (top right), Queue size (bottom left)
and throughput (bottom right) from 3 TCP, 20 UDP and 50 background UDP flows
when bottleneck bandwidth is 20 Mb



Now we consider the speedup of variable step fluid model compared to ns-2

packet-level simulation. Left of Fig. 6 compares computation times between ns-2

and our fluid model simulations, the case study in Sect. 4.1, when the bandwidth
of bottlenecks changes. Note that the CPU time is plotted in log-scale. This
shows that our fluid model reduces the computational cost significantly. In this
comparison, the fluid model takes about 0.2 second to run. ns-2, on the other
hand, takes about 2.8 up to 8.4 second depending on the bandwidth. When the
bottleneck bandwidth is 20 Mb, Running time in ns-2 is 42 times more than
that of the fluid model. As the bandwidth increases, more packets are generated
in the packet level simulator, thus ns-2 would require more computation time.
Right of Fig. 6 compares the CPU time in the second scenario in Sect. 4.2,
where 3 TCP, 20 UDP and 50 background UDP flows exist. In this scenario,
the CPU time for the fluid model is about 0.4 second, whereas ns-2 takes 13.3
to 28.2 seconds depending on the bandwidths of the bottleneck link. When the
bottleneck bandwidth is 20 Mb, the speed up of fluid model over ns-2 is around
70. Thus, our variable step fluid model achieves significant speedup if we compare
CPU time against that of packet-level simulations.
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Fig. 6. CPU time for 1 TCP flow(left), CPU time for 3 TCP, 20 UDP and 50 back-
ground UDP flows(right)

5 Conclusion

In this paper, a variable step fluid model has been introduced to simulate network
traffic in the communication network. Our model replaces discrete packet-level
events with a propagation of continuous fluid flow. The variable step fluid model
estimates the variation of queues accurately and captures the round-trip time,
the congestion window size, and the throughput of TCP connections. With the
compensation of negligible error, the variable step fluid model reduces the com-
putational load. To validate our fluid model against ns-2, two network traffic
scenarios are considered. When single TCP flow is simulated, we showed that



our fluid model saves up to 97.5% of CPU time compared to ns-2 packet-level
simulator. If there are 3 TCP flows, 20 foreground UDP flows, and 50 back-
ground UDP flows, we save up to 99% of CPU time. We consider general TCP
and UDP model in this paper. Modeling of different TCP implementations such
as Reno, NewReno, SACK, etc or modeling of flows other than TCP or UDP
such as TERC flows can be implemented into the current fluid model as a traffic
source module. The current fluid model assumes identical pair of a source and a
destination for each TCP flow. When there are multiple pairs of TCP flows, the
computation time increases linearly and it is reserved for future research.
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