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Abstract. In this paper we solve the maximum lifetime routing (MLR) problem for a sensor
network by joint optimizing routing and data aggregation. We present a smoothing method to
overcome the nondifferentiability of the objective function. By exploiting the special structure
of the network, we derive the necessary and sufficient conditions to achieve the optimality.
Based on these conditions, a gradient descent algorithm is designed for its solution. The
proposed algorithm is shown to converge to the optimal value efficiently under all network
configurations. The incorporation of optimal routing and data aggregation is shown via many
examples to provide significant improvement of the network lifetime.

1 Introduction

Energy-efficient routing [1–3] has long been studied in the context of wireless ad-hoc networks and
sensor networks. Its basic idea is to route the packets through the minimum energy pathes so as to
reduce the end-to-end energy consumption. But this tends to overload the minimum energy path,
causing the nodes on this path quickly run out of battery energy and disconnecting a vital link. This
is undesirable in particular for sensor network where sensor nodes are collaborating for common
work.

To cope with this problem, many researchers have proposed to study the maximum lifetime
problem based on the linear programming formulation [4–7]. Here, instead of trying to minimize the
path energy consumption, the objective is to select the route and the corresponding power levels to
maximize the network lifetime. According to the criticality of a specific mission, the network lifetime
may have different definitions, such as given by [8]. The key problem that these schemes try to
address is how to find the route and the corresponding flow rates without centralized computations.

The above schemes are applicable for both wireless ad-hoc networks and sensor networks. But
for sensor networks, an important feature was not considered in these schemes. It is well-known that
data collected in the sensor network is spatially correlated, that is, there exists redundancy in the
data collected by the neighboring nodes. It is therefore possible to reduce transmission overhead by
aggregating the data at the intermediate nodes. Some research efforts have been made to exploit
the data correlation feature to improve the performance of various communication protocols [9–
14]. These work illustrated that data aggregation can greatly improve the performance of various
communication protocols(channel coding, routing, MAC, etc.).

In this paper, we present a model to incorporate the routing and data aggregation into the
maximum lifetime problem. By taking the data correlation into the consideration, the network
lifetime can be extended from two dimensions. One is to aggregate the data at the intermediate nodes
so as to reduce the transmission overhead of the nodes near the sink node, the other is to do maximum
lifetime routing as done by [5–7]. However, these two should be considered simultaneously. In our
model, we adopt the geometric routing [15] whereby the routing is determined solely according to the
node positions, and each node is associated with a set of routing variables denoted as the fraction
of traffic towards its downstream neighbors. We formulate the maximum lifetime routing(MLR)
problem as an optimal routing problem where the objective is to find the optimal set of variables for
each node to maximize the network lifetime. The contribution of this paper includes: (i) Our model
allows different data correlation models such as that proposed in [11] to be incorporated without



intervening the underlying routing scheme. (ii) We propose a smoothing method to overcome the
non-differentiability of the MLR problem, with which we can design a localized algorithm for each
node to compute its routing variables without significant message exchanges. The first feature is
desirable because data correlation model depends highly on the specific application, so our model
allows different correlation models to work with the underlying routing seamlessly, while the second
feature is a must for practical implementation of the algorithm in a sensor network with large number
of nodes.

In the following, we first present the system models and define the maximum lifetime routing
problem in Section 2. In Section 3, we propose a smoothing function for the maximum lifetime
routing problem and provide the analytic results on the optimality conditions. Simulation results
are presented in Section 4 and finally we conclude this work in Section 5.

2 System Model

We can model the topology of a wireless sensor network as a undirected graph G(N, A), where N
is the set of nodes, A is the set of undirected links. A special node t ∈ N is called the sink node
who is the destination of all other nodes. To capture the characteristic of the network, we need to
specify, in addition, the routing model, the data correlation and aggregation model and the power
consumption model.

2.1 Geometric Routing Model

The routing algorithm suitable for use belongs to the class of geometric routing algorithms [16].
Every sensor node is assumed to know its own position as well as that of its neighbors. Each node
can forward packets to its neighbor nodes within its transmission range that are closer to the sink
node than itself. In essence, using geometric routing, node makes routing decisions with only the
position information of the involved nodes. It is therefore a localized algorithm and particularly
suitable for large sensor networks.

Let Ni denote the set of neighbors of a node i and Ni = {j| dij ≤ R, j ∈ N}, where dij is the
Euclidean distance of node i and node j, and R is the radius of the transmission range. According to
the geometric routing rule, only those neighbors that are closer to the sink node t can serve as the
downstream nodes. Let us denote this set of downstream neighbors as Si = {k| dkt < dit, k ∈ Ni}.
Symmetrically, the set of upstream neighbors is denoted as Ai. Each link between node i and its
downstream neighbor k ∈ Si has a routing variable φik to denote the fraction of the aggregated
traffic of node i that will be routed through node k. Clearly, the flow conservation law requires∑

k∈Si
φik = 1.

2.2 Data Correlation and Aggregation Model

The aggregated traffic λi of a node i is a superposition of two parts: local traffic generated by the
node itself when sensing the surrounding environments, and the transit traffic from upstream nodes.
In other words,

λi = ri +
∑
j∈Ai

λjφji, i = 1, 2, · · · , N. (1)

In sensor networks, data collected at neighboring nodes are often spatially correlated. It is benefit
to remove the redundant information collected at upstream nodes to reduce traffic overhead at the
downstream nodes. To capture this feature, we adopt a data correlation model similar to that
studied in [11]. Specially, if no side information is available from other nodes, the raw data Xj

at a node j is originally entropy coded with H(Xj) = Y bits. However, it can be reduced to
H(Xj |Xi1, · · · , Xik) = y ≤ Y bits at a downstream node i, where {Xi1, · · · , Xik} is the set of side
information available at node i. We define the correlation coefficient qji for a node j and node i as



qji = 1 −H(Xj |Xi1, · · · , Xik)/H(Xj), and obviously 0 ≤ qji ≤ 1. Then the aggregated traffic after
considering the correlation is

λi = ri +
∑
j∈Ai

λjφji(1 − qji), i = 1, 2, · · · , N. (2)

2.3 Power Consumption Model

A sensor node consumes power when it is sensing and generating data, receiving, transmitting, or
even simply standby. The power eg for generating one bit of data is assumed to be the same for all
nodes. The standby power consumed by a node, again assumed to be the same for all nodes and
independent of traffic, is denoted by es. For power used in receiving and transmitting, we adopt the
first order radio model described in [1]. Specially, a node needs εelec = 50nJ to run the circuitry and
εamp = 100pJ/bit/m2 for the transmitting amplifier. So the power consumed by a node in receiving
a unit of data is given by

er = εelec (3)

and the power consumed in transmitting a unit of data packet to neighbor node j is given by

eij = εelec + εamp · dn
ij (4)

Here we consider the path loss of exponent n, which is usually 2 ≤ n ≤ 4 for the free-space and
short-to-medium-range radio communication. The mean power consumption of node i, denoted as
wi, is therefore

wi = es + egri + er

∑
j∈Ai

λjφji + λi

∑
k∈Si

eikφik (5)

Where the first term is the standby power consumption, the second term is the power for sensing,
the third term is the power for receiving and the fourth term is the power for transmitting.

2.4 Maximum Lifetime Problem

Assume each node i has an initial battery energy Ei, the lifetime Ti of node i is defined as the
expected time for the battery energy Ei to be exhausted, that is, Ti = Ei/wi where wi is given by
(5). Similar to [5, 6], we define the network lifetime Tnet as the time that the first node that runs
out of energy, that is

Tnet = min
i∈N

Ti (6)

The power consumption wi is a function of r, λ and φ. However, the set of aggregated traffic λ
can be obtained from r and φ from (2). Therefore, Tnet depends only on r, φ and the initial battery
energy E. If r and E are given, the network lifetime is solely determined by the set of routing
variables φ. We therefore state the maximum lifetime routing(MLR) problem as follows:

MLR: Given the traffic generating rate r = {ri} ,the initial battery energy E = {Ei} and the data
correlation coefficient q = {qij}, finding a set of routing variable φ = {φij} for a sensor network
G(N, A’) such that the network lifetime Tnet is maximized.

Let w̃i denote the normalized power consumption, that is, w̃i = wi/Ei. It is obvious that maximiz-
ing the network lifetime Tnet is equivalent to minimize the maximum normalized power consumption
w̃i for all i ∈ N . We therefore rewrite the MLR problem formally as

minimize max
i∈N

w̃i (7)

subject to φij ≥ 0,
∑
j∈Si

φij = 1, ∀i.



3 Distributed Solution for the MLR Problem

The max function (7) in the MLR problem is nondifferentiable, so some simple solutions based on
the gradient descent methods are not directly applicable. There are many different approaches that
have been studied to overcome this difficulty. One is to transform the min−max problem to an
equivalent optimization problem (e.g. [7]), such that subgradient algorithms can be used to solve
the transformed problem. There is also a family of regularization approaches to obtain the smooth
approximation for the max function in literature, for example, the entropy type approximation
[17, 18], the two dimensional approximation [19], etc.. All these approaches are known as a special
case of the so-called smoothing method, an overview of these approaches can be found in [20]. In
this section, we propose a smoothing function to approximate the max function in MLR problem (7)
by exploiting the special structure of the network. We derive the necessary and sufficient conditions
that are required to achieve the optimality of the smoothed problem.

3.1 Problem Transformation

Note after applying the geometric routing, the original undirected network G(N, A) is reduced to a
directed acyclic graph(DAG) G(N, A′), where A′ is the set of directed links, and sink node t is the
root of the DAG. For any such DAG, we can find a separation s = (NA|NB|NC) to partition the
node set N into three subsets NA, NB and NC , where NB is the cut set, NA and NB are two disjoint
node sets. Without loss of generality, let the sink node be located in subset NC .

Normally we can find many such separations given a directed acyclic graph. For a specific sep-
aration, we can find a set of routing variables φ(s) for the nodes in NA and NB to minimize the
maximum energy consumption rate of the subset NB, which we denote as w̃(s) = min max{w̃l, l ∈
NB}. Since there exists multiple separations, we can always find the worst separation s∗ which
has the largest minimax energy consumption rate w̃(s) among all possible separations, i.e., s∗ =
arg max{w̃(s1), w̃(s2), · · · }. We call the corresponding cutset N∗

B as the bottleneck set since this is
the node set that limits the lifetime of the network. The problem is therefore to find a set of routing
variables for the bottleneck nodes to achieve the minimax energy consumption w̃(s∗). Formally, we
have

minimize max
l∈N∗

B

w̃l (8)

subject to φij ≥ 0,
∑
j∈Si

φij = 1, ∀i.

Note that (8) is similar to (7) except on the following two points:

– First, the size of the problem for (8) is reduced from |N | to |N∗
B|, where |N | and |N∗

B| are the
size of the set N and N∗

B respectively.
– Second, the values w̃l, l ∈ N∗

B tend to have a small difference between them because they belong
to the same cutset.

The max function in (8) is still not differentiable, however, we can approximate it using the smoothing
methods taking advantage of the above two points. We define μ =

∑
l∈NB

w̃l/|N∗
B| as the mean power

consumption of the bottleneck set, and introduce the following smoothing function

U = μ2 +
c

|N∗
B|
∑

l∈N∗
B

(w̃l − μ)2 (9)

where c is a positive nondecreasing sequence. The smoothing function is a penalty function consisting
of two terms. The physical interpretation of the first term of U is to minimize the mean power
consumption of bottleneck nodes. This is achieved by aggregating the data at upstream as much as
possible so as to reduce the overall traffic across the bottleneck nodes. The second term of U can
be understood as a penalty to the total variability of w̃ls, which is achieved by optimal routing to
equalize the power consumption of the set of bottleneck nodes.
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as ε(1 − qik)φik∂w̃l/∂rk. Since this analysis is applicable for all next-hop neighbors, summing
up over all k ∈ Si gives

∂w̃l

∂ri
=
∑
k∈Si

(1− qik)φik
∂w̃l

∂rk
(11)

Now suppose that the traffic λi is fixed, an increment ε to the routing variable φik will cause an
increment ε(1 − qik)λi to node k, which is equivalent to an increment of ελi(1 − qik) to input
rate rk. Applying the similar analysis as above, we find

∂w̃l

∂φik
= λi(1− qik)

∂w̃l

∂rk
(12)

For example, in Fig. 1(a), node 1 is the source node and node 4 is the bottleneck node. An
increment ε of the input rate of node 1 leads to an increment εφ12 to the traffic of node 2,
which is equivalent to an increment of ε(1− q12)φ12 to the input rate of node 2. Similar analysis
is applicable for node 3. So the overall increment of power consumption of node 4 due to the
increment of r1 is given by ε∂w̃4/∂r1 = ε[(1−q12)φ12∂w̃4/∂r2 +(1−q13)φ13∂w̃4/∂r3]. Canceling
out ε gives the result as (11). Similarly, an increment ε to the routing variable φ12 gives rise to an
equivalent increment of ελ1(1−q12) to r2, so the corresponding increment of power consumption
of node 4 is expressed by ∂w̃4/∂φ12 = λ1(1− q12)∂w̃4/∂r2.

(b) Adjacent source node
If the source node i is adjacent to the bottleneck node l, in this case, the increment of power
consumption of node l due to the increment of the input rate ri consists of two parts. One is for
receiving the increased traffic εφil, which is given by εφil(er/El). The other is for transmitting
the traffic ε(1 − qil)φil, which is given by ε(1 − qil)∂w̃l/∂rl following the similar analysis as
above. Taking into account the indirect increment from other neighbor k �= l, which can derived
as above, we obtain

∂w̃l

∂ri
=

∑
k∈Si,k �=l

(1− qik)φik
∂w̃l

∂rk
+ φil

(
er

El
+ (1− qil)

∂w̃l

∂rl

)

=
∑
k∈Si

(1− qik)φik
∂w̃l

∂rk
+

φiler

El
(13)

Similarly, an increment ε to φik leads to an increment of ελi to node k, therefore

∂w̃l

∂φik
= λi

(
er

El
+ (1− qil)

∂w̃l

∂rl

)
(14)

An example is illustrated in Fig. 1(b) where node 2 is the source node and node 4 is the bottleneck
node. The increment ε of the input rate r2 leads to an increment of εφ24 to node 4. The increment
of the power consumption of node 4 is therefore given by εφ24er/E4 plus ε(1− q24)φ24∂w̃4/∂r4.
Taking into account the increment from other downstream links gives rise to the result of (13).
Similarly, the increment of power consumption of node 4 due to the increment ε of the routing
variable φ24 is given by ∂w̃4/∂φ24 = λ2(er/E4 + (1− qil)∂w̃4/∂r2).

(c) Co-located source node
If the source node i is also a bottleneck node, note that ri is a dummy variable, so we do not
consider the power consumption for generating traffic ε. Taking the derivative directly from (5)
we have

∂w̃i

∂ri
=
∑
k∈Si

eikφik

Ei
(15)

∂w̃i

∂φik
=

λieik

Ei
(16)

The corresponding example is illustrated in Fig. 1(c) where source node 4 is also bottleneck
node. The analysis is simple and we will not elaborate here.



Another possible case is for i ∈ NC and l ∈ NB. However, this case is not necessary to discuss
because both ∂w̃l/∂ri and ∂w̃l/∂φik are zeros as w̃l has no relation with ri.

We can now combine the above results to derive ∂U/∂φik of (10) by considering the following
four cases:

– If i, k ∈ NA, then none of the bottleneck nodes are adjacent to node i, so we can obtain ∂wl/∂φik

from (12) for all l ∈ NB. Substituting these into (10) we have

∂U

∂φik
=

2λi(1− qik)
|NB|

∑
l∈NB

[cw̃l − (c− 1)μ]
∂w̃l

∂rk
(17)

– If i ∈ NA, k ∈ NB, then node k is a bottleneck node adjacent to node i. Therefore, ∂wk/∂φik is
given by (14), while for other bottleneck nodes l �= k, ∂wl/∂φik is given by (12). Substituting
these into (10), we have

∂U

∂φik
=

2λi

|NB|
(

(1− qik)
∑

l∈NB

[cw̃l − (c− 1)μ]
∂w̃l

∂rk
+

er

Ek
[cw̃k − (c− 1)μ]

)
(18)

– If i, k ∈ NB, then node i and k are adjacent bottleneck nodes, so ∂wi/∂φik and ∂wk/∂φik are
given by (16) and (14) respectively. Therefore

∂U

∂φik
=

2λi

|NB|
(

(1 − qik)
∑

l∈NB

[cw̃l − (c− 1)μ]
∂w̃l

∂rk
+

eik

Ei
[cw̃i − (c− 1)μ] +

er

Ek
[cw̃k − (c− 1)μ]

)
(19)

– If i ∈ NB, k ∈ NC , the source node i is also a bottleneck node, so ∂wi/∂φik is given by (16),
therefore

∂U

∂φik
=

2λi

|NB|
(

(1− qik)
∑

l∈NB

[cw̃l − (c− 1)μ]
∂w̃l

∂rk
+

eik

Ei
[cw̃i − (c− 1)μ]

)
(20)

Now all that are required is to find a stationary point for the routing variable φ to minimize U .
We summarize it as the necessary condition in the following theorem.

Theorem 1. (Necessary Condition) Let ∂U/∂φik given by (17)-(20), the necessary condition for a
minimum of U with respect to φ∗ for all i ∈ NA ∪NB, k ∈ Si is

∂U

∂φ∗
ik

=
{

= νi, φ∗
ik > 0;

≥ νi, φ∗
ik = 0.

(21)

Proof. Let us define the following Lagrange function

U(φ, ν, μ) = U +
∑
i∈N

νi

(
1−

∑
k∈Si

φik

)
−

∑
i∈N,k∈Si

μikφik (22)

Where ν = (ν1, · · · , νN ) and μ = {μik} are the Lagrange multipliers. According to Kuhn-Tucker
theorem, the necessary condition for a φ∗ to be a local minimum for U(φ, ν, μ) is that there exist
Lagrange multipliers ν∗

i , i ∈ N and μ∗
ik, i ∈ N, k ∈ Si such that

∂U

∂φ∗
ik

− ν∗
i − μ∗

ik = 0 (23)

μ∗
ik = 0 , if φ∗

ik > 0, ∀i, k; (24)
μ∗

ik > 0 , if φ∗
ik = 0, ∀i, k. (25)

Rearranging (23) to ∂U/∂φ∗
ik = ν∗

i + μ∗
ik , and taking into accounts of (24) and (25) will complete

the proof of (21).



The necessary condition (21) states that all links (i, k) for which φik > 0 must have the same value
of ∂U/∂φik, and this value must be less than or equal to the value of ∂U/∂φik for the links on
which φik = 0. However, as illustrated in [21], the condition (21) is not sufficient to minimize U
because it is automatically satisfied if the traffic rate λi is zero, even though the routing can still be
improved. To overcome this problem, we prove next that after removing the factor λi from (17)-(20),
the sufficient condition to minimize U with respect to φ for all i ∈ NA ∪NB, k ∈ Si is given by the
following theorem.

Theorem 2. (Sufficient Condition) Let ∂U/∂φik given by (17)-(20), and define ∂U/∂rk =
∑

l∈NB
[cw̃l−

(c − 1)μ]∂w̃l/∂rk, it is sufficient for a φ∗ to be a minimizer of U if for all i ∈ NA ∪ NB, k ∈ Si,
there is

(1− qik)
∂U

∂rk
≥ ∂U

∂ri
(26a)

(1− qik)
∂U

∂rk
+

er

Ek
[cw̃k − (c− 1)μ] ≥ ∂U

∂ri
(26b)

(1 − qik)
∂U

∂rk
+

eik

Ei
[cw̃i − (c− 1)μ]

+
er

Ek
(cw̃k − (c− 1)μ) ≥ ∂U

∂ri
(26c)

(1 − qik)
∂U

∂rk
+

eik

Ei
[cw̃i − (c− 1)μ] ≥ ∂U

∂ri
(26d)

where (26a)-(26d) correspond to the four cases given by (17)-(20) respectively.

Proof. Suppose that there is a set of routing variables φ∗ satisfying (26), the corresponding node
flows are λ∗ and link flows are f∗, where fik = λiφik, i ∈ N, k ∈ Si. Let φ be any other set of
routing variables with the corresponding node flows λ and link flows f . Define f(θ) as the convex
combination of f∗ and f with respect to a variable θ, that is,

fik(θ) = (1− θ)f∗
ik + θfik (27)

Therefore, each w̃l, l ∈ NB can be represented by the link flow f , which in turn is a function of θ,
so U is also a function of θ. We rewrite the smoothing function (9) as

U(θ) =
c

|NB|
∑

l∈NB

w̃2
l (θ) −

(c− 1)
|NB|2

(∑
l∈NB

w̃l(θ)

)2

(28)

Since each wl(θ) is a convex function of the node flow f , therefore U(θ) is also a convex function
with respect to θ, so it is obvious

dU(θ)
dθ

∣∣∣∣
θ=0

≤ U(φ)− U(φ∗) (29)

Since φ is an arbitrary set of routing variable, it will complete the proof by proving that dU(θ)/dθ ≥ 0
at θ = 0.

From (5) and (27), it is straightforward to express w̃l as a function of the link flow f(θ) as

w̃l(θ) =
1
El

(
es + egrl +

∑
i∈Al

fil(θ)er +
∑
k∈Sl

flk(θ)elk

)
(30)

Differentiating w̃l directly from (27) and (30), we get

∂w̃l

∂θ
=
∑
i∈Al

er

El
(fil − f∗

il) +
∑
k∈Sl

elk

El
(flk − f∗

lk) (31)



We can calculate dU(θ)/dθ directly using (28) and (31)

dU(θ)
dθ

∣∣∣∣
θ=0

=
2c

|NB|
∑

l∈NB

w̃l
∂w̃l

∂θ
− 2(c− 1)
|NB|2

∑
l∈NB

w̃l

∑
l∈NB

∂w̃l

∂θ

=
2
|NB|

∑
l∈NB

[
cw̃l − (c− 1)

|NB|
∑

l∈NB

w̃l

]
· ∂w̃l

∂θ

=
2
|NB|

∑
l∈NB

[cw̃l − (c− 1)μ] ·
(∑

i∈Al

er

El
(fil − f∗

il) +
∑
k∈Sl

elk

El
(flk − f∗

lk)
)

We then first prove that

∑
l∈NB

[cw̃l − (c− 1)μ] ·
(∑

i∈Al

erfil

El
+
∑
k∈Sl

elkflk

El

)
≥

∑
i∈NA∪NB

ri
∂U

∂ri
(32)

Note that from (26a)-(26d), multiplying both sides of these equations with λi and φik, summing
over all i ∈ NA ∪ NB and k ∈ Si, and using the fact that λi = ri +

∑
j∈Ai

λjφji(1 − qji), we can
obtain the result for the left-hand side as

LHS =
∑

i∈NA∪NB

∑
k∈Si

λiφik(1− qik)
∂U

∂rk
(33)

+
∑

i∈NA

∑
k∈Si,k∈NB

(
λiφiker

Ek
[cw̃k − (c− 1)μ]

)

+
∑

i∈NB

∑
k∈Si,k∈NB

(
λiφikeik

Ei
[cw̃i − (c− 1)μ] +

λiφiker

Ek
[cw̃k − (c− 1)μ]

)

+
∑

i∈NB

∑
k∈Si,k∈NC

(
λiφikeik

Ei
[cw̃i − (c− 1)μ]

)

and the right-hand side as

RHS =
∑

i∈NA∪NB

ri
∂U

∂ri
+

∑
i∈NA∪NB

∑
j∈Ai

λjφji(1− qji)
∂U

∂ri
(34)

Now let look at the first term of LHS in (33), which sums over all links directed from nodes i ∈ NA∪
NB. Similarly, the second term of RHS in (34) sums over all in links directed to nodes i ∈ NA ∪NB.
Recalling that the network is directed acyclic, canceling the common part of these two terms, the
remaining part of the first term of (33) is the sum over all links (i, k), i ∈ NB, k ∈ NC , which is zero
because ∂w̃i/∂rk are zero for these links. In other words, we can totally cancel out the first term of
(33) and the second term of (34).

Re-arranging the summation of the second, third and the fourth terms of lefthand side in (33),
and recalling the inequality between (33) and (34) , we obtain

∑
l∈NB

[cw̃l − (c− 1)μ]
(∑

i∈Al

er

El
λiφil +

∑
k∈Sl

elk

El
λlφlk

)
≥

∑
i∈NA∪NA

ri
∂U

∂ri
(35)

Note that fil = λiφil, substituting this into (35) we can obtain (32).
Following the same derivation procedure, if λ∗ and φ∗ are substituted for λ and φ, this becomes

an equality from the equations for ∂U/∂ri in (26). That is,

∑
l∈NB

[cw̃l − (c− 1)μ]

(∑
i∈Al

erf
∗
il

El
+
∑
k∈Sl

elkf∗
lk

El

)
=

∑
i∈NA∪NA

ri
∂U

∂ri
(36)

Substituting (32) and (36) into (32), we see that dW (θ)/dθ ≥ 0 at θ = 0, which complete the proof.



3.3 Algorithm

Let us define two indicator functions Ii and Ik, where Ii is 1 if i ∈ NB and 0 otherwise, and Ik is 1
if k ∈ NB and 0 otherwise. Let Zik = Iieik[cw̃i − (c− 1)μ]/Ei + Iker[cw̃k − (c − 1)μ]/Ek, then the
sufficient condition stated in (26) can be simplified as

(1 − qik)
∂U

∂rk
+ Zik ≥ ∂U

∂ri
(37)

for all i ∈ NA∪NB, k ∈ Si, where equality is achieved for k whose routing variable φik is greater than
0. That is, when the optimality is achieved, only those links with the smallest (1− qik)∂U/∂rk +Zik

have nonzero traffic.
Based on the sufficient conditions, we design a gradient descent algorithm for each node to

locally update its routing variables according to the received information from downstream neighbors.
Instead of presenting the whole algorithm, we just present the routing variable update procedure
here and refer the readers to standard textbooks such as [22] [23] for implantation details. Firstly,
(1 − qik)∂U/∂rk + Zik is computed for every neighbor k ∈ Si. The best neighbor kmin with the
smallest (1− qik)∂U/∂rk +Zik will have its routing variable increased while that of other neighbors’
will be decreased accordingly. The next step is to compute the amount of reduction Δik to each
φik(k �= kmin). Let aik be the gradient difference between each neighbor k and neighbor kmin, that
is

aik = (1− qik)
∂U

∂rk
+ Zik − min

k∈Si

{
(1− qik)

∂U

∂rk
+ Zik

}
, k ∈ Si (38)

Then the amount of traffic reduction Δik is proportional to aik with the constraint that the routing
variable φik cannot be negative. That is, for each k ∈ Si, k �= kmin,

Δik = min
{

φik,
ηφikaik

maxk∈Si aik

}
(39)

and
φik ← φik −Δik (40)

where η is a positive scalar. Finally, the total amounts of reduction are added to φikmin as

φikmin ← φikmin +
∑

k∈Si,k �=kmin

Δik (41)

Using this algorithm, each node i gradually decreases the routing variables for which the value
(1− qik)∂U/∂rk +Zik is large, and increases those for which it is small until the sufficient condition
(37) is satisfied.

4 Performance Evaluation

We simulate the MLR algorithm over a set of sensor networks with the number of nodes varying from
50 to 100. Each network has its nodes randomly distributed over a square of 100 units by 100 units.
All the nodes are assumed to have equal initial battery energy and equal traffic generating rate.
For data correlation settings, we adopt the gaussian random field model [11] where the correlation
coefficient qik decreases exponentially with the distance between nodes, or qik = exp(−αd2

ik). Here α
is the correlation exponent and varies from α = 0.001(high correlation) to α = 0.01(low correlation)
in the simulations. Also, a decreasing sequence of step size η and an increasing sequence of c are
used in the simulations.

Fig. 2 shows three traces of the network lifetime for three network topologies with 50 nodes. The
network lifetime is computed at each iteration and normalized with respect to the optimal value
obtained by the centralized solution to the MLR problem. We can see that the distributed algorithm
can converge efficiently. For the same three sets of experiments, Fig. 3 shows the aggregated data
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Fig. 2. Normalized network lifetime as a function of
the number of iteration(N = 50, α = 0.005)
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Fig. 3. Normalized data rate at sink node as a function
of the number of iterations (N = 50, α = 0.005)

rate at the sink node normalized to the total raw data rate of all source nodes. We observe that
the traffic rate converges to a stable value in about 25 iterations, but from Fig. 2, we see that the
network lifetime continue to increase after that. This is clearly due to the route optimization of the
algorithm.

5 Conclusion

In this paper we have exploited the data correlation and optima routing to maximize the lifetime
of a sensor network with a single sink node. We have proposed a smoothing function to overcome
the nondifferentiability of the max function so that a distributed solution is possible. The optimality
conditions are derived and a gradient decent algorithm is developed for every node to locally compute
the routing variables. Simulation results show that the algorithm can converge to the optimal value
efficiently and is scalable to the network size. Extension of our work for multiple sink nodes and for
nodes with sleeping mode would be of interest, but these are beyond the scope of this paper.
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