
Entropy based flow aggregation

Yan Hu, Dah-Ming Chiu, and John C. S. Lui

The Chinese University of Hong Kong
yhu4@ie.cuhk.edu.hk, dmchiu@ie.cuhk.edu.hk, cslui@cse.cuhk.edu.hk

Abstract. Flow measurement evolved into the primary method for mea-
suring the composition of Internet traffic. Cisco’s NetFlow is a widely
deployed flow measurement solution that uses a configurable static sam-
pling rate to control processor and memory usage on the router and the
amount of reporting flow records generated. But during flooding attacks
the memory and network bandwidth consumed by flow records can in-
crease beyond what is available. In this paper, we propose an entropy
based flow aggregation algorithm, which not only alleviates the problem
in memory and export bandwidth, but also maximizes the accuracy of
legitimate flows. Relying on information-theoretic techniques, the algo-
rithm efficiently identifies the clusters of attack flows in real time and
aggregates those large number of short attack flows to a few metaflows.
Finally, we evaluate our system using real trace files from the Internet.

1 Introduction

Traffic measurement and monitoring are crucial to operating IP networks. Espe-
cially, flow-level measurement, such as done in Cisco’s NetFlow [1], is widely used
for applications such as network planing, traffic profiling, usage-based account-
ing and security analysis. The ever increasing speeds of transmission links and
high volume of traffic present great challenges for flow measurement. For high
speed interfaces, the processor and the flow memory of the router can not keep
up with the high packet rate. Another problem is that the volume of complete
measurements of all traffic requires too much resource, both in the bandwidth
required to transmit the flow records to the collector, and the resource needed
to store and process the records at the collector.

A standard solution to these problems is to perform packet sampling. Cisco’s
sampled NetFlow uses a static sampling rate set manually according to the
normal traffic volume. But when there is an anomaly such as flooding attacks
in the network, the large number of small flows generated may overwhelm the
router memory and the export bandwidth to the collector. One countermeasure
to this problem is performing adaptive sampling, as is done in Adaptive Net-
Flow [2]. This algorithm guarantees a stable flow cache and export bandwidth
even under severe DoS attacks. But its sampling rate could decrease to a very
low level, resulting in poor overall accuracy in per flow counting including legit-
imate flows. Besides sampling, another method of data reduction is to do flow
aggregation. Cisco implements router-based flow aggregation, which summarizes
NetFlow data on the router before the data is exported to the collector.



Adaptive flow aggregation [3] has recently been proposed to allow the flow
monitoring systems to cope with sudden increases in the number of flows caused
by security attacks. Flows of security attacks usually have some common pat-
terns and form conspicuous traffic clusters. The algorithm identifies these traffic
clusters in real-time and aggregates these large number of short flows into a few
metaflows. Compared to adaptive sampling, this solution not only alleviates the
problem in memory and export bandwidth, but also guarantees the accuracy of
other legitimate flows. Without any predefined schemes or rules, identifying ap-
propriate clusters and performing aggregation in real-time are not simple tasks.
In this paper, we propose an entropy based flow aggregation algorithm. Based on
the concept of entropy from information theory, we use the parameter of APP to
indicate the priority of clusters to be aggregated. An efficient algorithm is used
to identify those clusters as well as pick out some large normal flows belonging
to the identified clusters.

2 Entropy based flow aggregation algorithm

We first provide a short description of our flow monitoring system, and more
details can be found in [3]. The system collects network traffic data or just reads
trace file and emits it as NetFlow flow records towards the specified collector,
just as Cisco’s NetFlow does. When the memory usage reaches a maximum value
that the system allows, the system will perform flow aggregation. Using a new
data structure called two-dimensional hash table, all flows with the same srcIP or
dstIP will be put in one list. We also maintain a top list for srcIP and dstIP, which
records the IP addresses with the most number of flows. The objectives of the
old adaptive flow aggregation algorithm in [3] are, first, flow entries freed during
aggregating these clusters can satisfy the memory’s requirement, second, the
level of these identified clusters should be as high as possible. After the algorithm
identifies the desired clusters, the system merges all flows in one cluster to one
metaflow. In the rest part of this section, we will describe the newly proposed
entropy based flow aggregation algorithm.

2.1 Aggregation Priority Parameter (APP )

We define a cluster as a set of flows with the same values in one or several of the
four keys, srcIP, dstIP, srcPort (plus protocol), dstPort (plus protocol), which
are typically used to define a flow. We focus on clusters with a fixed srcIP/dstIP
because almost all abnormal traffic has either a fixed source or destination IP
address. For example, packets of DoS attacks often have the same dstIP, while
packets of worm spreading usually have the same srcIP. In addition, some attacks
have other fixed keys. For example, in Figure 1, all flows from one host form
cluster A, while worm spreading flows from this host form cluster B. We define
the biggest cluster which only has the fixed srcIP/destIP L1 (level 1) cluster such
as cluster A, define the clusters which have fixed value in two (three) dimensions
L2 (L3) cluster such as cluster B (D). If we choose the higher level cluster B



instead of cluster A to do aggregation, we can keep more information (srcIP and
dstPort).

Besides fixed values in one or several keys, other properties of the clusters
containing attack traffic include: first, the number of flows in the clusters is
usually large enough to become a flooding attack; second, the size of the flows
(number of packets or bytes) is often much smaller than normal flows; third,
some keys other than the fixed value, such as srcIP in DoS attack traffic, dstIP
in worm spreading traffic and dstPort in port scan traffic, are often randomly or
uniformly distributed. In addition, if there are several big flows in the identified
cluster, we would pick them out from the identified cluster and do aggregation
on the rest flows, because the big flows may be normal flows mixed with attack
flows. Then now the concept of the cluster is extended to the remaining flows
in the original cluster. For example, in Figure 1, large flow C and L3 cluster D
are picked out from L2 cluster B, the remaining flows in cluster B can also be
considered as a cluster F := B − C −D.

Cluster A
srcIP = 137.8.6.5

N = 100
Cluster B
N = 80

Cluster E
N = 10

Flow CCluster D
N = 10srcIP = 137.8.6.5

dstIP = 138.0.0.2
dstPort = 1434

srcIP = 137.8.6.5
dstPort = 80

srcIP = 137.8.6.5
dstPort = 1434

Fig. 1. examples of clusters

We call those dimensions which have more than one value (e.g. dstIP and
srcPort of cluster B) as random dimensions, and those dimensions which have
one fixed value (e.g. srcIP and dstPort of cluster B) as fixed dimensions. When
all flows in a cluster are merged to one metaflow, the information of its fixed
dimensions will be kept, while the information of its random dimensions will
be lost. Intuitively, among all clusters in Figure 1, we should choose cluster B
to do aggregation for the following reasons. First, cluster B contains enough
flows compared with cluster D. Second, the degree of randomness of its random
dimensions is large compared with cluster A. Third, cluster B contains one more
dimension of information (dstPort) than cluster A. After picking out the big flow
C and L3 cluster D from cluster B, the one we finally choose to do aggregation
is cluster F. To characterize those properties of cluster F, we propose a metric
named Aggregation Priority Parameter (APP ) based on the concept of entropy.

Let random variable X be one of the four dimensions (srcIP, dstIP, srcPort
and dstPort). The probability distribution on X is given by p (xi) = mi/m,
where m is the total number of traffic observed, and mi is the number of traffic
that take the value xi. We calculate number of traffic in terms of bytes instead of
flows because we need to differentiate between big flows and small flows. Entropy
of one dimension is a good indicator of its degree of uncertainty or randomness.



It tells us if there are some significant values that stand out from others or all
values are uniformly distributed.

APP of a cluster is defined as the minimum of the entropy of its random
dimensions. The larger the APP of a cluster, the higher priority this cluster
would be aggregated because it characterizes those properties we want. Firstly,
high APP means the number of flows in this cluster is large. Secondly, APP
being large means none of those random dimensions has any significant value. In
Figure 1, APP of cluster A is small than cluster B because it has a significant
value 1434 in the dimension of dstPort. Third, the cluster has no flow much larger
than other flows because we compute entropy in terms of number of bytes.

2.2 Algorithm description

Using the data structure and top list in our flow monitoring system, now we
have some big L1 clusters with fixed srcIP or dstIP. What our entropy based
flow aggregation algorithm should do is that, for every L1 cluster, find out its
sub-clusters which have the largest APP . These identified sub-clusters could not
be subordinative to or overlap with each other. Among them, the cluster whose
APP is the largest will be chosen. However, if several sub-clusters do not contain
or overlap with each other (we call them distinct cluster) and have similar APP ,
they would all be identified.

Algorithm 1 finding out sub-clusters
Input: Cluster C; random dimensions: RD
Output: sub-clusters of high APP : CList
FindSubCluster(C, RD) {
1. for every dimension d in RD
2. Cm[d] = GetMaxEntropySubset (dimension d of cluster C);
3. end for
4. CP = MaxAPPCluster (C, Cm[d]);
5. for every dimension d in RD
6. for every Si whose number of flows greater than fr

7. CList[d] = CList[d] + FindSubCluster(Si, RD-d);
8. end for
9. end for
10. CList = MaxAPPDistinctCluster (CP , CList[d]);
11. return CList;
}

We use Algorithm 1 to get the sub-clusters with the largest APP . The input
to the function is a cluster C with random dimensions RD. The output of the
function is a list of its sub-clusters with the largest APP . First, for each random
dimension d of cluster C, the function finds out its maximum entropy subset
Cm[d]. Maximum entropy subset is a subset of a cluster with the maximum



entropy among all subsets of this cluster. For example, we assume all flows in
cluster B have the same size except flow C, whose size is 10 times of that of
other flows. Cluster D has 10 flows with the same dstIP. Then for the dimension
of dstIP, the entropy of cluster B is 5.73, while the entropy of cluster F is 6.11,
which is the maximum entropy of all subsets of cluster B. We use an efficient
algorithm to find the maximum entropy subset of dimension d of a cluster C.
For more details, please refer to technical report version of this paper [4].

Cluster C and Cm[d] are not distinct clusters, the one with the largest APP
(CP ) is chosen as a candidate for the desired sub-clusters. The fact is there
may be some sub-clusters other than those maximum entropy subsets that have
larger APP . They may be picked out because their sizes are large enough, or
their sizes may be so small that they are subsumed in the maximum entropy
subsets. So we need to recheck those sub-clusters (Si) whose number of flows is
large enough to have a large APP , as described in line 5 to 9 in the function.
The last step as stated in line 10 is to choose several distinct sub-clusters from
these candidates including CP and CList[d].

After the algorithm identifies the desired clusters, the system merges all
flows in one cluster to one metaflow. The number of packets/bytes is the sum of
packets/bytes of all aggregated flows. When new incoming packets do not belong
to any active flow but belong to one metaflow, the number of packets/bytes of
this metaflow will be updated. So we can get accurate packet and byte counts for
the metaflow. The number of flows of the metaflow can not be counted directly.
We use the multiresolution bitmap algorithm proposed in [5] to estimate it.

3 Experimental evaluation

In this section, we use experiments to evaluate our entropy based flow aggrega-
tion algorithm, and compare its performance with adaptive flow aggregation al-
gorithm in [3] and adaptive NetFlow in [2]. Under normal conditions, our system
works just as basic NetFlow does. When the memory usage exceeds a predefined
maximum memory, our system will perform flow aggregation, while adaptive
NetFlow will decrease the sampling rate. Without memory constraint, basic Net-
flow can get accurate result for any flow aggregate. We use basic Netflow as the
benchmark, and compare the performance of the three solutions. The data set
we use is a 5 minute trace of the traffic on an OC48 IP backbone link, provided
by Caida. We artificially generate a ”DDoS” data set which simulates a DDoS
attack on a single victim, and mix it with the OC48 data set.

The comparison on memory usage, export bandwidth, CPU run time and
more details about the experiment can be found in [4]. Here we give out some
examples of the relative error of these three schemes, as shown in Table 1. These
hosts are chosen from the top dstIPs, and the top 1 is the victim of the DDoS at-
tack. For the number of bytes, both adaptive flow aggregation and entropy based
flow aggregation give out accurate results for all these hosts, while adaptive Net-
Flow affects the accuracy inevitably. Some hosts also have accurate results for
the number of flows, which are not affected by the flow aggregation because they



do not belong to the identified clusters. The new entropy-based flow aggrega-
tion algorithm accurately identifies the cluster of DDoS attack, so only the flow
counter to the victim host is affected. However, the old algorithm identifies and
aggregates some other clusters (eg. web traffic to host 241.46.185.161), so flow
errors of those hosts do not equal to 0.

Table 1. Relative error (%) of destination IP address breakdown

% adaptive NetFlow flow aggregation entropy-based
dstIP of total byte Err. flow Err. byte Err. flow Err. byte Err. flow Err.

162.131.189.129 30.7 0.83 81.14 0.00 12.88 0.00 12.99
162.131.199.254 12.4 0.41 41.53 0.00 0.00 0.00 0.00
162.131.175.235 9.5 0.66 56.18 0.00 0.00 0.00 0.00
241.46.185.161 3.2 0.57 37.23 0.00 0.78 0.00 0.00
241.46.188.127 2.6 0.49 46.65 0.00 0.16 0.00 0.00

0.3.117.37 2.1 2.02 48.17 0.00 0.15 0.00 0.00

4 Conclusion

To overcome NetFlow’s problem of overrunning available memory for flow records
during abnormal situations, this paper proposes an entropy based flow aggre-
gation algorithm. Based on the concept of entropy from information theory, we
use the parameter of APP to indicate the priority of clusters to be aggregated.
The algorithm can efficiently identify the clusters containing attack flows as well
as pick out some large normal flows belonging to the identified clusters. After
identifying these clusters, the system merges flows in the clusters to metaflows,
and updates information of the metaflows from new incoming flows belonging
to these clusters. The measurements for bytes and packets for the metaflows are
completely accurate, and measurements for flows are nearly accurate using the
bitmap algorithm. We use experiments on real trace file to evaluate our system
and compare it with adaptive NetFlow and adaptive flow aggregation. The results
show that our solution provides better accuracy.

References

1. http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml.
2. Estan, C., Keys, K., Moore, D., Varghese, G.: Building a better netflow. In:

Proc. SIGCOMM ’04. (2004)
3. Hu, Y., Chiu, D.M., Lui, J.: Adaptive flow aggregation - a new solution for robust

flow monitoring under security attacks. In: Proc. NOMS ’06. (2006)
4. Hu, Y., Chiu, D.M., Lui, J.: Entropy based flow aggregation: Tech. report (2006)

http://personal.ie.cuhk.edu.hk/∼yhu4/paper/entropy tech.pdf.
5. Estan, C., Varghese, G., Fisk, M.: Bitmap algorithms for counting active flows on

high speed links. In: Proc. IMC ’03. (2003)


