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Abstract. Many users require IP networks with the capacity to guaran-
tee a minimum throughput even during periods of congestion. Further-
more, it is also desirable to share the excess unsubscribed bandwidth
among active users if aggregate demand does not exceed network capac-
ity. This kind of service, named assured service, can be provided through
the Assured Forwarding (AF) Per Hop Behavior (PHB) defined in the
DiffServ architecture. DiffServ mechanisms require special networking
support at both the edge and the core nodes to guarantee the differen-
tiated service. In this paper we propose the Ping Trunking scheme as a
suitable mechanism to provide assured services to network users with-
out the need for modifying core nodes. Ping Trunking is an edge-to-edge
management technique that completely addresses the regulation of ag-
gregate traffic streams at the edge of the network. In addition, it also
overcomes some unfairness issues found in AF when sharing the available
bandwidth among heterogeneous aggregates. Simulation results have val-
idated the effectiveness of our proposal.
Keywords: DiffServ, assured services, aggregated traffic, congestion con-
trol.

1 Introduction

The Internet best effort model with no service guarantee is no longer acceptable
in view of the proliferation of interactive applications such as Internet telephony,
video conferencing or networked games. The growing importance of these re-
cent applications with stringent constraints behooves the research community
to develop a new range of network services able to accommodate heterogeneous
application requirements and user expectations.

Among the new services demanded, assured services are one of the most
popular. Assured services must provide different levels of forwarding assurances
for IP packets. For instance, many users just require a guarantee that IP packets
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are forwarded with high probability as long as their aggregate traffic streams do
not exceed their committed information rate. In addition, it is also desirable that
users may exceed their subscribed profiles with the understanding that the excess
traffic is not forwarded with as high probability as the traffic that is within the
profile. This kind of services can be provided through the Assured Forwarding
(AF) [1] Per Hop Behavior (PHB) defined in the DiffServ architecture [2]. The
differentiated service is obtained through traffic conditioning and packet marking
at the edge of the network along with differentiated forwarding mechanisms at
the core. Consequently, every node in a DiffServ network must be adapted to
provide the required differentiation.

In [8] we proposed a new edge-to-edge management scheme named Ping Trunk-
ing able to provide some service guarantees to aggregate traffic streams. Our pro-
posal establishes a Vegas-like control connection between the ingress and egress
node of each aggregate. This connection regulates the flow of the aggregate traffic
stream into the core of the network enforcing congestion control for the managed
aggregate at its ingress node. In this paper, we argue that Ping Trunking can
be used to offer assured services without requiring any special support at the
core. Our proposal addresses all control tasks at the edges of the network so
that the core nodes do not need to support any particular function for service
differentiation. This feature makes our proposal easily deployable and improves
its interest considerably.

In addition, Ping Trunking also overcomes some unfairness issues found in AF
when sharing the available bandwidth. Several studies have shown that the num-
ber of flows in aggregates, the round trip time, the mean packet size and the
TCP/UDP interaction are key factors in the throughput obtained by competing
aggregates [3, 4]. With the help of some simulation experiments, we show how
our proposal is able to distribute the available bandwidth among heterogeneous
aggregates in a fair manner.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of AF PHB. In Sect. 3, we illustrate the Ping Trunking mechanism. Section 4 de-
scribes the simulation configuration used for the evaluation of both techniques.
In Sect. 5, we present the results obtained from the simulation experiments. Sec-
tion 6 briefly describes other approaches proposed to improve fairness require-
ments for assured services. We end this paper with some concluding remarks and
future lines in Sect. 7.

2 Assured Forwarding PHB

AF distinguishes four classes of delivery for IP packets and three levels of drop
precedence per class. Each AF class has a certain amount of buffer space and
bandwidth reserved in each node. Within each class, IP packets are marked
based on conformance to their target throughputs. The Time Sliding Window
Three Color Marker (TSWTCM) is one of the most interesting packet marking
algorithms proposed to work with AF [5]. In this algorithm, two target rates
are defined: the Committed Information Rate (CIR) and the Peak Information



Rate (PIR). Under TSWTCM, the aggregated traffic is monitored and when
the measured traffic is below its CIR, packets are marked with the lowest drop
precedence, AFx1. If the measured traffic exceeds its CIR but falls below its PIR,
packets are marked with a higher drop precedence, AFx2. Finally, when traffic
exceeds its PIR, packets are marked with the highest drop precedence, AFx3.

At the core of the network, the different drop probabilities can be achieved
using the RIO (RED with In/Out) scheme [6], an active queue management tech-
nique that extends RED gateways [7] to provide service differentiation. RIO is
configured with three different sets of RED parameters, one for each of the drop
precedence markings. These different RED parameters cause packets marked
with a higher drop precedence to be discarded more frequently during periods
of congestion than packets marked with a lower drop precedence.

3 Ping Trunking

Ping Trunking [8] is an edge-to-edge management technique that provides some
service guarantees to aggregate traffic streams. Our proposal is based on a tech-
nique named TCP Trunking [9, 10], but we have extended and improved the
original scheme to manage aggregates in a simpler and smoother way.

A ping trunk is an aggregate traffic stream where data packets are transmit-
ted at a rate dynamically determined by a preventive congestion control algo-
rithm. Each trunk carries a varying number of user flows for common treatment
between two nodes of the network (the ingress and the egress nodes). The flow
of the aggregated traffic is regulated by a single control connection established
between the two edges of the trunk. This control connection injects control pack-
ets into the network to probe its congestion level. The introduction of control
packets is not conditioned by the user data protocols, but it is only determined
by the control connection itself. In addition, a trunk will not retransmit user
packets if they are lost. If it is required, retransmissions should be handled by
user applications on the end hosts.

Figure 1 provides greater detail on the operation of this mechanism. Incom-
ing user packets at the ingress node are classified as belonging to a particular
trunk and queued in the corresponding trunk buffer. User packets can only be
forwarded when credit for their trunk is available. The credit value represents
the amount of user data allowed to be forwarded. When a user packet is sent, the
credit is decremented by the size of the packet. When a control packet is sent,
the credit is incremented by the size of the control congestion window (cwnd).
Therefore, the transmission of user data is regulated by both the forwarding of
control packets and the cwnd value.

It is important to point out that both user and control packets must follow
the same path between the edges of the trunk to ensure that control connections
are probing the proper available bandwidth. This assumption can be absolutely
guaranteed if trunks are run on top of ATM virtual circuits or MPLS label-
switched paths [11].
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Fig. 1. Block diagram. This figure includes several simplifications. In fact, each trunk
has its own buffer, credit bucket and control connection.

3.1 Operations of the Control Connection

The control connection is in charge of measuring the round-trip time (RTT)
between the edges of the trunk accurately. Then, a Vegas-like congestion con-
trol mechanism will employ this RTT estimate when adapting the transmission
rate of the trunk. Let us start by giving a brief description of the operations
accomplished by this connection.

When the first user packet arrives to the ingress node of the trunk, a control
packet is generated and sent. For each control packet that reaches the egress
node of the trunk, its corresponding acknowledgment (ack) is generated. The
arrival of an ack back at the ingress node triggers the transmission of a new
control packet. Therefore, the control connection only sends control packets on
reception of acks, i.e., once per RTT.

To avoid the starvation of control connections, a waiting time-out timer is
needed. This timer is started every time a control packet is sent. If the ack of
the last control packet sent does not arrive to the ingress node before the timer
expires, the connection will consider that the packet has been lost and it will
send a new control packet.1

Control connections use a method similar to that used in the TCP estima-
tion of RTT. To carry out this task, they timestamp with its local time every
control packet and this timestamp is echoed in the acks. The value of the last
RTT sample observed is computed as the difference between the current time
and the timestamp field in the ack packet. The RTT is eventually estimated
using an exponential moving average taken over RTT samples.

3.2 Vegas-Like Congestion Control Mechanism

The transmission rate of each trunk should be able to update dynamically ac-
cording to current network conditions. We propose the use of a Vegas-like con-
gestion control mechanism to discover the available bandwidth that each trunk
should obtain. TCP Vegas [12] is an implementation of TCP that employs proac-
tive techniques to increase throughput and decrease packet losses. The congestion

1 The control connections employed behave like the ping command used to send ICMP
ECHO REQUEST/REPLY packets to network hosts. Hence the name of our pro-
posal.



control mechanism introduced by Vegas gives TCP the ability to detect incip-
ient congestion before losses are likely to occur, so we have devised a similar
mechanism adapted to trunks.

Upon receiving each ack, control connections calculate the expected through-
put and the current actual throughput as in TCP Vegas. If it is assumed that
trunks are not overflowing the path, the expected throughput can be calculated
as cwnd/d, where d is the round-trip propagation delay and can be estimated as
the minimum of all measured RTTs. On the other hand, the actual throughput is
given by cwnd/D, where D is the RTT estimation. These throughputs are com-
pared and then, control connections adjust their congestion windows accordingly.
Let Diff be the difference between the expected and the actual throughput:

Diff = Expected − Actual =

(

cwnd

d
−

cwnd

D

)

d . (1)

The Diff value has been scaled with the minimum RTT so that Diff can be seen
as the amount of user data in transit.

There are two thresholds defined: α, β, with α ≤ β. When Diff < α, the
trunk is allowed to increment its amount of user data in transit, and therefore,
the control connection can increase its congestion window linearly. If Diff > β,
the trunk is forced to decrease its congestion window linearly. In any other case,
the congestion window remains unchanged.

This mechanism stabilizes the value of the congestion window and reduces
packet drops. If a control packet loss is detected, the available bandwidth is
halved, but this should happen sporadically.

3.3 Setting of Vegas Parameters

We should determine the suitable values of Vegas parameters that must be as-
signed to each trunk so that they can obtain their fair share of the available
bandwidth. Consider a bottleneck shared by a set of trunks indexed by i. Let C
denote the bottleneck capacity. Each trunk i has associated a subscribed target
rate ri. The overall demand R is the sum of the subscribed target rates for all ac-
tive trunks. If R < C, the excess unsubscribed bandwidth should be distributed
among trunks in proportion to the contracted target rates. Therefore, the fair
bandwidth f that should be ideally allocated to each trunk i is obtained as

fi = ri + (C − R)
ri

R
=

riC

R
, (2)

where R =
∑

i
ri.

According to one interpretation of Vegas [13], congestion windows of control
connections must satisfy the following equation in the equilibrium (we assume
for simplicity that αi = βi):

(

cwndi

di

−
cwndi

Di

)

di = αi . (3)



On the other hand, the transmission rate x of a given trunk is determined
by the cwnd value of its corresponding control connection (cwnd = xD).
Substituting this in (3), we have

(

xiDi

di

−
xiDi

Di

)

di = αi , (4)

and, from (4), it follows that

xi =
αi

Di − di

. (5)

The RTT can be calculated as the sum of two delays: the round-trip prop-
agation delay (d) and the queueing delay (B/C), where B denotes the total
backlog buffered in the network. Then, from (5), and using Di = di + B/C,
the transmission rate of each trunk can be expressed as

xi =
αiC

B
. (6)

Finally, equating (2) and (6) yields the suitable value of α threshold that
permits to allocate to each trunk its desired share of bandwidth:

αi =
riB

R
. (7)

Therefore, to compute the α threshold, each trunk must know both B and
R parameters. The B parameter should have a fixed low value set by the net-
work manager to encounter small queues at the core. However, the necessity of
determining the overall aggregated demand in all edge nodes may complicate
our proposal substantially.

Fortunately, we can demonstrate that it is not required to know the value
of the overall demand very accurately. Assume R′ 6= R, R′ > 0, was used as
the aggregated demand. The total backlog B ′ actually buffered in the network
is obtained as the sum of the α thresholds of all competing trunks. Then,

B′ =
∑

i

αi =
∑

i

riB

R′
=

B

R′

∑

i

ri =
BR

R′
. (8)

From (6), and using B′R′ = BR derived from (8), we can conclude that the
fairness condition is still satisfied although the R′ value employed is false:

xi =
αiC

B′
=

riBC

R′B′
=

riC

R
. (9)

Taking into account this analysis, we propose to assign to each trunk the
following value of α:

αi =
riB

C
. (10)

Computing α thresholds in this manner gives to each trunk its proportional share
of the available bandwidth as desired but, in addition, this value is completely
independent of the changing number and features of competing trunks.
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Fig. 2. Network topology. Every link has a 100 Mbps capacity and a propagation delay
of 1 ms.

4 Simulation Configuration

We have implemented Ping Trunking in the ns-2 simulator [14]. Figure 2 shows
the network topology employed. It consists of three edge nodes and one core
node belonging to a particular domain. The edge nodes E1 and E2 are con-
nected to several TCP traffic sources whereas TCP sinks are connected to the
edge node E3. We consider two competing aggregates: aggregate 1 comprises all
the traffic that flows from E1 to E3, and aggregate 2 comprises all the traffic
between E2 and E3. Therefore, both aggregates pass through a single bottleneck
(link C-E3). Each aggregate consists of 50 TCP flows. All TCP connections es-
tablished are modeled as eager FTP flows that always have data to send and last
for the entire simulation time. We use the TCP New Reno implementation [15]
and the size of data packets is set to 1 000 bytes.

We consider two different scenarios. The first one represents a DiffServ do-
main with the two competing aggregates belonging to the same AF class. The
marking scheme used in the edge routers is TSWTCM. The core node imple-
ments the RIO scheme: three sets of RED thresholds are maintained, one for
each drop precedence. For the configuration of RIO parameters, the staggered
setting [16] has been selected. The drop threshold values are shown in Fig. 3.
The physical queue is limited to 150 packets and wq equals 0.002.

In the second scenario, instead of DiffServ facilities, we employ Ping Trunking
to regulate user data transmission. In this case, a trunk is used to manage each
aggregate traffic stream. Each trunk buffer is a simple FIFO queue with capacity
for 25 packets. The core queue is also a FIFO buffer limited to 150 packets.
Control connections send 48-byte packets.2 The maximum total backlog B is
fixed to 50 packets.

Simulations run for 50 seconds. Each simulation experiment is repeated
10 times changing slightly the initial transmission time of each TCP flow and
then, an average of the measured parameter and a 95% confidence interval for
the mean value are taken over all runs. In any case, confidence intervals will not
be represented in the graphs because they are lower than ±1 %.

2 Control connections do not actually transmit any real data, so control packets only
consist of the TCP/IP header plus the overhead of the timestamp option required
to estimate RTTs.
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5 Experimental Results

5.1 Bandwidth Distribution

In this experiment, we evaluate the effectiveness of both mechanisms when shar-
ing the network bandwidth. We consider that aggregate 1 contracts a fixed
throughput of 10 Mbps while the subscribed target rate of aggregate 2 varies
from 10 to 90 Mbps. In the DiffServ scenario, the CIR value of each aggregate is
set to its corresponding subscribed rate and the PIR value is set to the CIR value
plus 10 Mbps. Figure 4 shows the throughput obtained by each aggregate with
both techniques. The proportional share of bandwidth that should be assigned
to each aggregate is also shown. With AF, there is an even distribution of excess
bandwidth irrespective of the subscribed rates. In contrast, Ping Trunking di-
vides the excess bandwidth in proportion to the subscribed rates. Though both
solutions are acceptable, we consider it is more desirable that users with higher
target rates obtain higher shares of excess bandwidth since target rates depend
on the price that users pay.
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Fig. 4. Bandwidth distribution experiment results.



5.2 Fairness Evaluation

In the previous simulations, both AF and Ping Trunking mechanisms have dealt
with homogeneous aggregates, but, unfortunately, this is not always the usual
scenario. Aggregates can be composed of different numbers of flows, can send
packets of different sizes and can have different RTTs. In addition, aggregates
can carry UDP flows, which are not congestion aware. In this section, we have
conducted several simulations to verify that our proposal can be used to share the
bandwidth among heterogeneous aggregates in a fair manner. We consider that
the two competing aggregates have contracted the same target rate (10 Mbps).

The first key factor studied has been the number of flows in the competing
aggregates. In this experiment, we consider that aggregate 2 contains a different
number of TCP flows, varying from 25 to 75. Figure 5(a) shows the obtained
results. In the AF case, the aggregate with a larger number of TCP flows obtains
a greater share of the available bandwidth. However, with our proposal, each
aggregate obtains an equal amount.

Fairness is also desired between aggregates carrying packets of different sizes.
We have simulated a second experiment where aggregate 2 packet size increases
from 500 to 1500 bytes. The results are shown in Fig. 5(b). Through AF, the
aggregate that is sending larger packets consumes more of the available band-
width. Under Ping Trunking, the sharing of bandwidth can be made insensitive
to packet sizes.

Another important factor in the share of bandwidth is the RTT of the com-
peting aggregates. In order to compare the throughput obtained by aggregates
with different RTTs, we consider that the delay of the link that joins edge
node E2 with the core node has been changed from 1 to 10 ms. As showed
in Fig. 5(c), through AF, aggregates with different RTTs cannot achieve a fair
share of bandwidth and the shorter the RTT, the higher the obtained through-
put. In contrast, Ping Trunking is able to amend such unfairness giving to each
aggregate its fair share.

Finally, it is important to protect responsive TCP flows from non-responsive
UDP flows since this unresponsive traffic may impact the TCP traffic adversely.
In this last experiment, aggregate 1 contains 50 TCP flows, while aggregate 2 has
a single UDP flow with a sending rate increasing from 10 to 90 Mbps. Figure 5(d)
shows the obtained results. Under the AF case, as the UDP rate increases,
the amount of bandwidth obtained by the TCP aggregate decreases. With our
proposal, this unfairness problem is absent and the bandwidth can be shared in
a TCP-friendly manner.

6 Related Work

Many smart packet marking mechanisms have been proposed to overcome these
unfairness issues found in AF. Adaptive Packet Marking [17] is one of these
schemes able to provide soft bandwidth guarantees, but it has to be implemented
inside the TCP code itself and thus, requires varying all TCP agents. Intelligent
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Fig. 5. Fairness evaluation experiment results.

traffic conditioners proposed in [18] handle a subset of these fairness problems
using a simple TCP model when marking packets. However, these conditioners
require external inputs and cooperation among markers for different aggregates
complicating both implementation and deployment. Another marking algorithm
based on a more complex TCP model is Equation-Based Marking [19]. This
scheme solves the fairness problems associated with heterogeneous TCP flows
under diverse network conditions. Its behavior depends on the quality of the
estimation of the current loss rate seen by TCP flows. Unfortunately, the calcu-
lation of this estimate is not an easy problem and complicates the deployment of
the scheme extremely. In [20], an RTT-RTO aware conditioner is proposed, but
this scheme only mitigates RTT bias. The Counters-Based Modified traffic con-
ditioner [21] is able to cope with TCP flows with variable target rates and RTTs,
but it cannot oversee UDP traffic. In [22], an adaptive token bucket algorithm
able to provide each aggregate with its fair share of the available bandwidth in
proportion to the target rate is presented. This approach is based on edge-to-
edge feedback information conveyed in TCP acknowledgements, so it cannot be
used to manage aggregates just containing UDP flows exclusively.



A different approach addresses these problems by enhanced RIO queue man-
agement algorithms. Examples of this technique are DRIO [23] and DAIO [24]
schemes. Both techniques require maintaining state information of each indi-
vidual flow at core routers. Since there can be thousands of active flows, these
solutions need to store and manage a great amount of state information at the
core of the network and therefore, they are not scalable. Other enhanced RIO
algorithms such as EDRIO [25] and URIO [26] use proper buffer usage policing
at the aggregate level to avoid scalability issues, but the need to adjust all the
core routers still hinders their deployment.

7 Conclusions and Future Work

Both AF PHB and Ping Trunking mechanisms can be used to provide assured
services to network users. However, the edge-to-edge management carried out
by our proposal provides this service without the need for modifying core nodes.
This feature is very interesting because it facilitates the deployment of our pro-
posal substantially. In addition, our proposal guarantees the required fairness on
bandwidth sharing among heterogeneous aggregate traffic streams.

In future work we plan to take advantage of Ping Trunking features to prior-
itize user traffic strictly based on the application type. For example, users could
mark packets from highly interactive applications, such as Telnet or Web brows-
ing, with a high priority, and packets from less interactive applications, such
as FTP, with a lower one. Thus, if congestion occurs, low priority packets could
be dropped more frequently at the trunk buffer using a suitable active queue
mechanism. Following this approach, we will be in a position to fairly distribute
the network bandwidth among competing aggregates while protecting interactive
applications at the same time.
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