
A Distributed QoS Scheduler for Smoothing

Output Traffic of Input Buffered Switches

Man-Ting Choy and Tony T. Lee

Department of Information Engineering,
The Chinese University of Hong Kong
{mtchoy1, ttlee}@ie.cuhk.edu.hk

http://bblab.ie.cuhk.edu.hk/index.html ?

Abstract. To provide stringent service guarantees such as latency and
backlog bounds for input-buffered switches, a set of scheduling algorithm
and admission control strategy is proposed. This set of traffic control
strategy is primarily based on a single-server scheduling algorithm called
Smoothed Round Robin (SRR). SRR possesses a number of advantages
which are very attractive to the implementation of input buffered switch.
SRR is on order O(1) which requires minimal computational complexity.
Secondly, SRR gives good delay bounds and fairness performance for
each session. Thirdly, SRR can decompose a sequence into fixed size
groups. In this way, by maintaining a SRR scheduler in each output
port, scheduling can be performed in a distributed manner which largely
reduces the complexity of the algorithm.

1 Introduction

The development of multirate interconnection networks comes from the necessity
of developing a new generation of switches for broadband services which require
stringent Quality of Services (QoS) guarantees, such as end-to-end delay, jitter
and minimum bandwidth requirements. The nonblocking conditions for multi-
rate traffic with different types of networks and comparisons on their complexity
are established in [1]. Related researches [2] [3] [4] [5] [6] [7] have been carried out
but these studies do not give us a complete set of traffic scheduling and routing
algorithm to guarantee the QoS requirement.

A novel routing scheme for large-scale packet switches called path switching
was proposed in [8]. This scheme provides end-to-end QoS guarantees in Clos
network. Path switching is a compromise of static routing and dynamic routing
schemes. The basic idea of this scheme is to use a set of predetermined connection
patterns of central switching modules, and these connection patterns are used
repeatedly in a periodical manner. The capacity requirement on each session can
be satisfied in the long run, and the computation of route assignment on-the-fly
can be avoided.
? The work described in this paper was substantially supported by grants from the

Research Grants Council of the Hong Kong Special Administrative Region. (Project
no. CUHK4380/02E and Direct Grant 2005/06 2050360).

2 Man-Ting Choy, Tony T. Lee

However, the output traffic of this scheme may become bursty. In path switch-
ing, a token is considered as a middle module in a particular time slot through
which packets can transverse from a particular input module to a particular
output module. In this case, tokens are assigned to each input module to satisfy
all their capacity requirement. While this assignment problem can be solved by
edge-coloring of bipartite graph, this easy solution cannot guarantee an uniform
distribution of tokens, which is necessary to achieving smooth output traffic and
tight delay bounds for each session.

Recently, the traffic matrix decomposition approach of path switching [8]
was adopted by Chang et al [9] [10], in which a scheduling algorithm for QoS
guarantees of input queued switches was developed. Their algorithm consists
of two parts: an offline part that breaks down the rate matrix into a set of
permutation matrices, and an online part that schedules these matrices using
Weighted Fair Queueing (WFQ). However, the time complexity of this algorithm
is quite large (the offline part is of O(N4.5) and the online part is of O(logN)
for a N ×N switch). The number of permutation matrices that results from this
decomposition is in the order of N2. Moreover, the worst case delay can be very
large since the decomposition is done randomly and the resulting permutation
matrices would not be able to provide smooth output traffic for every session.
The load balanced approach in [10], although is much simpler, would give out-of-
order packets problem. Therefore, this algorithm is not quite practical for large
scale packet switch.

In this paper, a set of scheduling algorithm and admission control strategy
is provided in order to guarantee smoother output traffic while maintaining low
operational complexity. This set of traffic control algorithm is based on a fair
scheduling algorithm called Smoothed Round Robin (SRR) [11]. In Section 2,
the basic concept of SRR will be explained. In Section 3, we will explain the
methodology of implementing SRR in input-buffered switch and also the admis-
sion control strategy needed. In Section 4, the performance of the scheduler will
be discussed. By applying network calculus, the deterministic QoS guarantees
are derived in Section 5. At last, we will conclude our work in Section 6.

2 The Smoothed Round Robin

Smoothed Round Robin is a simple scheduling algorithm which has the major
advantage of its O(1) time computational complexity. Two key data structures
of the scheduler are the Weight Spread Sequence (WSS) and the Weight Matrix
(WM). The WSSs are defined as follows:

1) The first WSS S1 = 1.
2) The kth WSS is

Sk = Sk−1, k, Sk−1 (1)

where k > 1 and 1 ≤ i ≤ 2k − 1.
For the Weight Matrix, each flow is assigned with a weight in proportion to

its reserved rate and the set of weights is assumed to be {1, 2, 3, ..., 2k -1}. Then

A Scheduler for Input Buffered Switches 3

the weight of flowf can be coded in binary as

wf =

k−1
∑

n=0

af,n2n, where af,n = {0, 1}.

The Weight Vector of flowf is defined as

WVf = {af,(k−1), af,(k−2), ..., af,0}. (2)

Then the Weight Matrix is defined as

WM =

WV1

WV2

WV3

...
WVN

(3)

for N input flows. The columns of the Weight Matrix are named as columnk−1,
columnk−2, . . . , column0 from left to right respectively. Notice that k is the
number of columns in the WM. To schedule packets, SRR scans the WSS se-
quence term by term. When the value of the term is i, the columnk−i of the WM
is chosen. In this column, the scheduler will scan the terms from top to bottom.
When the term is not 0, the scheduler will serve the corresponding flow.

For example, given there are three flows with weights wa = 2, wb = 3, wc = 5,
the Weight Matrix and Weighted Spread Sequence are

WM =

WVa

WVb

WVc

 =

0 1 0
0 1 1
1 0 1

 and WSS = 1, 2, 1, 3, 1, 2, 1

In this way, the first column would be served first, which only contains flow
C. Then the second column get served, which contains flows A and B. The
overall result, CABCBCCABC, would be generated when the whole WSS was
processed.

3 Scheduling in Input Buffered Switch by Applying the

Concept of SRR

The concept of path switching is adopted here, where the time axis is divided
into frames of time-slots and tokens (port-to-port path) are assigned to input
flows to fulfill their capacity requirements. To provide input buffered switch
with smooth output traffic and deterministic QoS guarantees, tokens have to
be assigned uniformly. This can be achieved by incorporating SRR into input
buffered switch. Notice that SRR is originally designed to support variable size
packets by means of deficit counter. It can be easily adopted in the switching
environment which requires fixed-sized packets.

4 Man-Ting Choy, Tony T. Lee

3.1 Admission Control

To begin with, a set of traffic admission control has to be set up. A weight matrix
is maintained at each input/output port such that the weight of an incoming
flow is recorded in the WMs of input port as well as its destined output port.
However, the column sum of these WMs are predefined such that an incoming
request is rejected if the inclusion of its weight into the WMs would violate the
column sum restriction, either at the input or the output port. All the WMs are
having the same set of column sum restriction.

3.2 Token Assignment

To assign tokens, SRR would be performed in each output port. However, tokens
cannot be assigned simply according to the result of SRR since different output
port may reserve token for the same input port but each input port can only
process one packet. In this way, permutation matrix cannot be formed in that
particular time-slot. This is the reason why token assignment algorithm has to be
centralized as it has to cooperate with both the input and output port. However,
with the restrictions in the WMs, we can have an easier solution. The restriction
in the output port has allowed a simple partitioning of tokens into groups and
the restriction in the input port has allowed a simple small-scale rescheduling
within each group to form the permutation matrices.

For example, given the following capacity requirement matrix

R =

7 5 2 2
0 6 7 3
3 3 6 4
6 2 1 7

,

which tells us the weight requirement from each input port to each output port,
the Weight Matrices for output ports (columns of R) are

1 1 1
0 0 0
0 1 1
1 1 0

1 0 1
1 1 0
0 1 1
0 1 0

0 1 0
1 1 1
1 1 0
0 0 1

0 1 0
0 1 1
1 0 0
1 1 1

Notice that the column sums of these WMs are identical (2, 3, 2). This
satisfies the output port restriction. On the other hand, for the input ports
(rows in R), the WMs are

1 1 1
1 0 1
0 1 0
0 1 0

0 0 0
1 1 0
1 1 1
0 1 1

0 1 1
0 1 1
1 1 0
1 0 0

1 1 0
0 1 0
0 0 1
1 1 1

A Scheduler for Input Buffered Switches 5

Again, the column sums here are also identical. This satisfies the input port
restriction. By performing SRR at each output port of the switch, we have

A D A C D A D A C A D A C D A D
A B B C D A B A C A B B C D A B
B C A B C B C B D B C A B C B C
C D A B D C D B D C D A B D C D

where A, B, C and D represent the tokens for the four input ports. Notice that
permutation matrices cannot be formed in each time-slot. However the tokens are
partitioned in the same format and by shuffling the tokens inside each partition
(for example, by edge coloring of bipartitle graph [8]), we have

A D A C D A D A C A D A C D A D
B A C D B B A C A B A C D B B A
C B B A C C B B D C B B A C C B
D C D B A D C D B D C D B A D C

In this way, the tokens are distributed uniformly and thus output traffic is
smoother. Since the number of elements in each group should be small and
the rescheduling within group can be done in parallel fashion, complexity of this
algorithm should also be small.

4 Performance Analysis

In this section, we would first discuss the relative fairness of the SRR, which is
essential in obtaining deterministic QoS guarantees, which will be discussed in
the next section. The scheduling delay bound of the proposed scheduler would
also be discussed here.

4.1 Relative Fairness of Smoothed Round Robin

To analyze the fairness of scheduling algorithm, Golestani [12] proposed to find
the maximum difference between the normalized service received by two back-
logged flows over any time interval as a fairness index, which can be expressed
as

RF = max

(
∣

∣

∣

∣

Vf (τ, t)

wf

−
Vg(τ, t)

wg

∣

∣

∣

∣

)

where V (τ, t) represents the amount of service received by a session in any time
interval τ to t and w as the weight of that session. Given k is the order of the
current WSS used by SRR, the author has showed in [11] that

∣

∣

∣

∣

Vf (0, t)

wf

−
Vg(0, t)

wg

∣

∣

∣

∣

≤
k

2 min(wf , wg)
, (4)

which does not represent the real relative fairness index. This is because in (4),
it is assumed that the backlog would always start from the beginning of WSS,

6 Man-Ting Choy, Tony T. Lee

which is not true. For example, when wf = 3 and wg = 2, the output is F, G,
F, F, G and

Vf (0, t)

wf

−
Vg(0, t)

wg

=

{

1

3
,−

1

6
,
1

6
,
1

2
, 0

}

for t={1, 2, 3, 4, 5}. If the backlog start at t = 2, the output sequence becomes
F, F, G, F, G and then

Vf (2, t)

wf

−
Vg(2, t)

wg

=

{

1

3
,
2

3
,
1

6
,
1

2
, 0

}

for t = {3, 4, 5, 6, 7}. In this case, the value 2
3 is larger than the bound 1

2 in (4).
While we cannot obtain the value of RF directly from (4), we are not far

from the solution. As shown in Fig. 1, the value of RF is the sum of LRF and
SRF, which represent the larger and smaller parts of RF away from the x-axis
respectively. Now, as LRF is actually given in (4), we only have to find the value
of SRF, which turns out to be having a smaller bound than LRF.

LRF

SRF

RF

Vf

wf
−

Vg

wg

time

Fig. 1. Relative Fairness - Definition of LRF and SRF

Theorem 1. For any pair of backlogged flows f and g in SRR, at any time

instance t, we have

SRF ≤
(k − 1)max(wf , wg) + 2

2wfwg

(5)

where k is the order of the current WSS used by SRR.

Proof. The proof is shown in the Appendix. �

Theorem 2. For any pair of backlogged flows f and g in SRR, where the backlog

started at time τ and at any time instance t, we have the relative fairness index

RF = max

(
∣

∣

∣

∣

Vf (τ, t)

wf

−
Vg(τ, t)

wg

∣

∣

∣

∣

)

≤
(2k − 1)max(wf , wg) + 2

2wfwg

(6)

where k is the order of the current WSS used by SRR.

A Scheduler for Input Buffered Switches 7

Proof.

RF ≤ LRF + SRF

≤
k

2 min(wf , wg)
+

(k − 1)max(wf , wg) + 2

2wfwg

=
(2k − 1)max(wf , wg) + 2

2wfwg

Therefore Theorem 2 is proved. �

4.2 Delay Bound of the Proposing Scheduling Algorithm

In this section, we will show the single packet delay bound of this scheduler,
which represents the time for a head of line packet to be completely transmitted
over the switch. This bound is valid without any input traffic constraint, such
as traffic envelope.

Theorem 3. Suppose the weight assigned to flowf is wf , the delay encountered

by this flow in the input buffered switch using SRR is bounded by

dSRR ≤
2(wf + wG)

wf

+ 2Nb (7)

where wG is the weight of flows other than flowf and Nb is the maximum column

sum in WM.

Proof. A flow is visited when one of its coefficients is visited by SRR. There-
fore, the delay bound of a flow is the maximum value of the intervals between
two adjacent visits by SRR. By assuming 2i ≤ wf ≤ 2i+1 − 1, the chain with
the maximum length between two adjacent occurrences of element (k − i) is
Sk−i−1, (k − y), Sk−i−1 for y < i and af,y = 0. In [11], the author has shown
that the delay (Vcnt) as mapped by Sk−i−1, (k − y), Sk−i−1 and columni is

Vcnt ≤
1

2i

(

wf + wG −
i−1
∑

n=0

2n

N
∑

m=1

am,n

)

+
N
∑

m=1

am,y (8)

When applied in a switch, the extra delay resulted is the number of elements in
columni, thus

dSRR ≤
1

2i

(

wf + wG −

i−1
∑

n=0

2n

N
∑

m=1

am,n

)

+

N
∑

m=1

am,y +

N
∑

m=1

am,i (9)

≤
1

2i
(wf + wG) +

N
∑

m=1

am,y +
N
∑

m=1

am,i (10)

≤
2 (wf + wG)

wf

+ Nb + Nb (11)

Hence, Theorem 3 is proved. �

8 Man-Ting Choy, Tony T. Lee

5 Deterministic QoS Guarantees

A model to study the deterministic QoS guarantees for each session is devel-
oped. Using this model, upper bounds on delay and backlog can be established,
assuming each input traffic stream is under leaky-bucket rate control and there
is no packet loss due to buffer overflow and delay bound violation.

5.1 Network Calculus

To model the service received by each session, we can use the concept of service
curve [13], which represents the least amount of service provided by the network
element to a data session during its busy period. Fig. 2 shows an arrival curve
A() together with a service curve S(). The service curve is a straight line with the
slope representing the service rate reserved for a particular session at the network
element. In this way, the delay and backlog bounds can be easily calculated as
shown in the figure.

As discussed in our previous work [14], given an arrival curve with burstiness
constraint (σ, ρ, C), where σ is the bucket size, ρ is the arrival rate and C is the
maximum rate of tokens flowing out from the bucket, the delay of a packet is
bounded by

D = v +
σ

C − ρ

(

C

g − 1

)

(12)

while the backlog bound is

B =

vg + C−g
C−ρ

σ if v < σ
C−ρ

and C > g

vC if v < σ
C−ρ

and C ≤ g

vρ + σ otherwise

(13)

where g denotes the reserved rate of the session and v is a parameter related to
the service curve as shown in Fig. 2 and will be discussed in the next subsection.

5.2 Obtaining the Service Curve of the Proposing Scheduling

Algorithm

As shown in Fig. 3, by drawing all the possible schedulers output on the same
graph, a service curve, which is the lower bound of all the distributions can be
obtained. Denotes wf as the weight of the session we are interested in and wG as
the aggregated weights of other sessions sharing the same output port. Denotes
Vf (τ, t) as the packets served for the session of interest from the start of backlog
τ to time t and VG(τ, t) as the packets served for other sessions, then the value
of v, which denotes the minimum delay needed to guarantee a steady service of
reserved rate from the switch, can be obtained. According to Fig. 3, we have

Vf (τ, t)

Vf (τ, t) + VG(τ, t) − v
≥

wf

wf + wG

(14)

A Scheduler for Input Buffered Switches 9

S
()
,
sl
op

e
=

g

sl
op

e
=

C

A(), slop
e = ρ

σ
(C−ρ)

v

B
a
ck

lo
g

Delay

packets

time

Fig. 2. Arrival and Service Curves

which implies that

v ≥
VG(τ, t)wf − Vf (τ, t)wG

wf

(15)

Therefore, the smallest value of v can be obtained once we can find the maximum
value of VG(τ, t)wf − Vf (τ, t)wG.

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Vf + VG

Vf

packets

time

service curve,

slope =
wf

wf +wG

v

Fig. 3. Resultant Service Curve

Theorem 4. Given wf as the weight of the session we are interested in and

wgi
as the weights of other flows destined to the same output port as flowf , v

10 Man-Ting Choy, Tony T. Lee

is bounded by

v ≥
∑

i

(2ki + 1)max(wf , wgi
) + 2

2wf

where ki are the smallest integers that 2ki ≥ max(wf , wgi
).

Proof.

|VGwf − VfwG| ≤
∑

i

[|Vgi
wf − Vfwgi

| + max(wf , wgi
)] (16)

≤
∑

i

[

(2ki − 1)max(wf , wgi
) + 2

2
+ max(wf , wgi

)

]

(17)

≤
∑

i

(2ki + 1)max(wf , wgi
) + 2

2
(18)

The last term of (16) represents the extra delay resulted from the rescheduling
within each group. (6) was applied to give (17). Then from (15), we have

v ≥
VG(τ, t)wf − Vf (τ, t)wG

wf

(19)

≥
∑

i

(2ki + 1)max(wf , wgi
) + 2

2wf

(20)

Thus, Theorem 4 is proved. �

6 Conclusion

In this paper, we applied smoothed round robin to input buffered switches and
yielded desired result. SRR has short delay bounds and good fairness perfor-
mance, thus the application of SRR in input buffered switch will allow a less-
bursty output traffic. We have derived the relative fairness of SRR and the
deterministic QoS guarantees of the proposed scheduling algorithm by using the
concept of Network Calculus.

References

1. Melen, R., Turner, J.S.: Nonblocking networks for fast packet switching. In: IEEE
Infocom ’89. Volume 2. (1989) 548–557

2. Li, S., Ansari, N.: Input-queued switching with QoS guarantees. In: IEEE Info-
com’99. (1999) 1152–1159

3. Hung, A., Kesidis, G., Mckeown, N.: ATM input-buffered switches with
guaranteed-rate property. In: IEEE ISCC’98. (1998) 331–335

4. Liotopoulos, F., Chalasani, S.: Semi-rearrangeably nonblocking operation of Clos
networks in the multirate environment. IEEE Transactions on Networking. 4

(1996) 281–291

A Scheduler for Input Buffered Switches 11

5. Naraghi-Pour, M., Hegde, M., Suresh, S.: Scheduling multi-rate traffic in a time-
multiplex switch. In: Proceedings on Information Theory’94. (1994) 406

6. Valdimarsson, E.: Blocking in multirate interconnection networks. IEEE Transac-
tions on Networking. 42 (1994) 2028–2035

7. Favalli, L.: Rearrangeability conditions for multirate Benes networks. In: GLOBE-
COM’ 93. (1993) 734–738

8. Lee, T., Lam, C.: Path switching: A quasi-static routing scheme for large-scale
ATM packet switches. IEEE Journal on Selected Areas in Communications 15(5)
(1997) 914–924

9. Chang, C.S., Chen, W.J., Huang, H.Y.: Birkhoff-von Neumann input-buffered
crossbar switches for guaranteed-rate services. IEEE Trans. Commun. 49 (2001)
1145–1147

10. Chang, C.S., Chen, W.J., Huang, H.Y.: Providing guaranteed rate services in the
load balanced Birkhoff-von Neumann switches. In: IEEE Infocom 03. Volume 3.
(2003) 1622–1632

11. Guo, C.: SRR: An O(1) time-complexity packet scheduler for flows in multiservice
packet networks. IEEE Transactions on Networking. 12(6) (2004) 1144–1155

12. Golestani, S.: A self-clocked fair queueing scheme for broadband applications. In:
IEEE Infocom 94. (1994) 636–646

13. Cruz, R.L.: Quality of service guarantees in virtual circuit switched networks.
IEEE Journal on Selected Areas in Communications 13 (1995) 1048–1056

14. Chan, M.C., To, P., Lee, T.T.: Per-connection performance guarantees for cross-
path ATM packet switch. In: ATM Workshop 1999. (1999) 469–474

Appendix: Proof of Theorem 1

For easier presentation, we multiply both sides of (5) with wfwg, then we define

WSRF = (wfwg)SRF ≤
k − 1

2
max(wf , wg) + 1

This theorem is proved by induction as follows
1) It is true for k = 1 and 2,
2) Suppose that the inequality is correct using a kth WSS, i.e., for any pair

of wf and wg, we have

WSRF ≤
k − 1

2
max(wf , wg) + 1

Then for any pairs of f ′ and g′ using a (k + 1)th WSS, wf ′ and wg′ can be
expressed as

wf ′ = 2wf + af ′,0, wg′ = 2wg + ag′,0

where wf ′ > 1, wg′ > 1, af ′,0, ag′,0 = 1 or 0.

Therefore, the service sequence of flow f ′ and g′ can be expressed as

Sk+1(f ′, g′) = Sk(f, g), {af ′,0.f, ag′,0.g}, S
k(f, g).

12 Man-Ting Choy, Tony T. Lee

Here we just show the last case where wf ′ = 2wf+1 and wg′ = 2wg +1.
When Vf ′ = Vf and Vg′ = Vg,

WSRF = |(2wf + 1)Vg − (2wg + 1)Vf |

≤ |2wfVg − 2wgVf | + |Vg − Vf |

≤ [(k − 1)max(wf , wg) + 2] + [max(wf , wg)]

≤ k max(wf , wg) + 2

≤
k

2
max(2wf , 2wg) +

k

2
+ 1 (for k ≥ 2)

≤
k

2
max(wf ′ , wg′) + 1 (wf ′ = 2wf + 1)

When Vf ′ = wf + 1 and Vg′ = wg,

WSRF = |(2wf + 1)wg − (2wg + 1)(wf + 1)|

= |wg + wf + 1|

≤ 2 max(wf , wg) + 1

≤
k

2
max(wf ′ , wg′) + 1 (for k ≥ 2)

When Vf ′ = wf + 1 and Vg′ = wg + 1,

WSRF = |(2wf + 1)(wg + 1) − (2wg + 1)(wf + 1)|

= |wg − wf |

≤
k

2
max(wf ′ , wg′) + 1

When Vf ′ = wf + 1 + Vf and Vg′ = wg + 1 + Vg,

WSRF = |(2wf + 1)(wg + 1 + Vg) − (2wg + 1)(wf + 1 + Vf)|

≤ |2wgVf − 2wfVg | + |wg − Vg − wf + Vf |

≤ [(k − 1)max(wf , wg) + 2] + [max(wf , wg)] (since wf ≥ Vf)

≤ k max(wf , wg) + 2

≤
k

2
max(wf ′ , wg′) + 1

Hence, for different combinations of Vf ′ and Vg′ in the last case, we have

WSRF ≤
k

2
max(wf ′ , wg′) + 1

SRF ≤
k max(wf ′ , wg′) + 2

2wf ′wg′

Therefore, Theorem 1 follows by induction. �

