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Abstract. We compare and evaluate how well-known and novel network-
wide objective functions for Traffic Engineering (TE) algorithms fulfil TE
requirements. To compare the objective functions we model the TE prob-
lem as a linear program and solve it to optimality, thus finding for each
objective function the best possible target of any heuristic TE algorithm.
We show that all the objective functions are not equivalent and some are
far better than others. Considering the preferences a network operator
may have, we show which objective functions are adequate or not.

1 Introduction

We consider the traffic engineering routing problem. Given the topology of the
network to be engineered and an estimate of the traffic matrix to be routed on it,
the problem is to find a routing scheme that optimises the network, with the joint
goal of good user performance and efficient use of network resources. The way
classical algorithms fulfil this objective is not clear. Indeed, many algorithms try
to optimise their home-made objective functions which are said (but not proven)
to reflect traffic engineering objectives. The foundations of all these objective
functions are related, but could lead to quite different results, as we see in our
simulations.

Some in-depth reflection and comparison studies of traffic engineering objec-
tive functions are needed. In many research papers, the quality of a new traffic
engineering algorithm is evaluated regarding one specific objective function. If
the algorithm obtains a good score, it is considered as good. But this is only
meaningful if the objective function really reflects the traffic engineering goals.
Furthermore, when analysing published papers it is difficult to figure out if the
merits of a given TE method is due to its objective function or its heuristic algo-
rithm. To fill this gap, we provide an independent comparison of many objective
functions found in the literature.

To compare all the different objective functions, we will minimise (or max-
imise) each of these functions on the same topology and traffic matrix and analyse
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if the routing scheme we obtain really reflects general Traffic Engineering goals.
One important point is that we have used some real topologies and real traffic
matrices to run our tests, which is not the case of many research papers. The
use of real data provides a real case study and an objective basis for comparison.

Section 2 presents Traffic Engineering goals and requirements. Section 3 in-
troduces existing TE algorithms and related objective functions. We discuss the
foundation of these objective functions and why they were introduced. In section
4, we construct LP (Linear Programming) models of these objective functions.
These models are used to compare all the presented functions on different net-
works. Then we analyse the results of simulations, highlighting the merits and/or
shortcomings of each objective function. Finally, section 5 concludes the paper.

2 Traffic Engineering objectives

A network is modeled as a directed graph, G = (N, A) whose nodes and arcs
represent routers and links. Each arc has a capacity ca. Traffic on the network is
represented by a traffic matrix D that with every pair (s, t) of nodes associates
the value of the traffic demand, i.e. the traffic that flows from node s to node t.

Basically, the graph G and the traffic matrix D are the inputs of the problem.
A traffic engineering algorithm has to find good paths between each pair of source
and destination nodes to route corresponding traffic flow. The definition of good
paths is related to what we want to optimise on the network. Generally, a good
set of paths will be one that optimises a pre-defined objective function.

Once the paths are chosen, we can associate with each arc a load la, which is
the total load on the arc, i.e. the sum over all demands of the amount of traffic
sent over a. The utilisation of a link a is ua = la/ca. The available bandwidth
on link a is ABWa = ca − la.

Finally, we define θst as the maximum flow that can be sent from node s to
node t in the residual network, i.e. when the whole traffic matrix is routed on
the network.

2.1 Discussion on TE objectives

Typically, on-line algorithms have different objectives than off-line ones. On-
line schemes usually try to minimise the probability of blocking future requests,
while off-line ones try to minimise the load or the utilisation of the links, or try
to maximise available bandwidth. To some extent, minimising the link utilisation
(which is a relative measure) tends to maximise the available bandwidth (which
is an absolute measure) on the links, thus also reducing the blocking probability
of future requests. Clearly, these objectives are closely related, but no solid basis
exists to choose one among all.

We will consider TE metrics at three different levels, which are a link, an
OD pair1 and the network. We will present and justify the foundation of the TE

1 OD stands for Origin Destination.
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metrics at each level. We will differentiate metrics whose goal is to improve the
quality of the network given the present traffic (e.g. minimise the delay) from
metrics whose goal is to maximise the acceptance of future traffic on the residual
network (e.g. maximise residual max-flow).

At the link level, we should minimise delay and utilisation. We should also
maximise the available bandwidth on this link (which corresponds to the no-
tion of residual max-flow for a link). The delay of a link is composed of three
components: the propagation delay which is a constant value, the transmission
delay (inversely proportional to the link capacity) and the queueing delay which
increases with the link load. If we take the delay to be the average delay of an
M/M/1 queue, the mean queueing + transmission delay of link a is given by
Delaya = mean packet size

ca−la
. For a M/M/1 queue, all the percentiles/quantiles are

also proportional to this value. On high capacity links, this delay is significant
only if the link load is approaching the link capacity. Figure 1 summarizes the
relations between link parameters.
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Fig. 1. Link parameters

At the level of an OD pair of nodes, we should minimise the path delay, i.e.
the sum of the delays of all the links on the path. Minimising this delay can
increase the quality of service perceived by the users of the network. We should
also minimise the maximal link utilisation on the corresponding path. Indeed,
the maximal link utilisation has a particular meaning. For example a maximal
link utilisation (umax) of 50% means that we can double all the traffic before
having a link fully loaded (if we keep the same routing scheme), while a value
of 20% means that we can multiply all the traffic by 5. In fact this value ( 1

umax
)

is a lower bound because a change in the routing scheme may allow increasing
this value. Finally, the residual max-flow between an OD pair of nodes should
be maximised. Indeed, this value represents the maximal size of a future request
that can be routed on the network between these nodes.

We have now some ideas of TE metrics to be optimised for a link or for an OD
pair. But to be really useful in TE algorithms we have to generalise these concepts
to the whole network. There are many ways to proceed. For example, considering
link utilisations, one can minimise the maximal link utilisation (umax) as for the
OD level2. But the minimisation of the maximal link utilisation works poorly in
some cases. Indeed if there is a real bottleneck in the network, i.e. a link whose
utilisation cannot be decreased by changing the routing scheme, it is important

2 We can prove that the routing scheme that achieves the minimal value of maximum
link utilisation also provides the optimal value concerning the factor by which it
is possible to multiply the current traffic matrix. In this case, this factor can be
computed as 1

umax
.
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to minimise also the utilisation of other links. One way to proceed can be to
minimise the mean link utilisation. Considering the delay to be minimised on the
whole network, we can compute the mean link delay (each link being weighted
by its load or not) or the mean path delay (each path being weighted by its
corresponding traffic). The unweighted mean path delay seems less relevant to
us. The following demonstration shows that the weighted mean path delay is
equivalent to the weighted mean link delay. This demonstration highlights that
it is possible to compute the mean path delay without path information. This is
an important result from a computational point of view. Indeed it is less complex
to compute a sum over all links than a sum over all paths of all possible OD
pairs of nodes.

MeanDelay = 1∑
(s,t)

D(s,t)

∑
(s,t)

D(s, t)
∑

a∈P(s,t)
delaya

= 1
AllTr

∑
(s,t)

D(s, t)
∑

a∈P(s,t)
delaya

= 1
AllTr

∑
(s,t)

D(s, t)
∑

a∈A
δa∈P(s,t)delaya

= 1
AllTr

∑
a∈A

delaya(
∑

(s,t)
D(s, t)δa∈P(s,t))

= 1
AllTr

∑
a∈A

la × delaya

P(s, t) denotes the path from s to t3, δa∈P(s,t) is equal to one if link a belongs
to P(s, t) and 0 otherwise. AllT r denotes the sum of all traffics of the network
(
∑

(s,t) D(s, t)). It is a constant for a given problem.

Considering max-flows (θ), it is possible to maximise the minimal residual
max-flow. But as for the maximal link utilisation, the minimal max-flow can be
blocked by a set of bottleneck links. So we should also maximise the sum of all
max flows (instead of the min value). We could also associate with each max-flow
a weight related to its corresponding traffic demand.

As it could be interesting to maximise the sum of residual max-flows, it could
be interesting to maximise the sum of the available bandwidths over all the links
of the network. However, we can notice that it is equivalent to minimising the
sum of the loads over all the links of the network. Indeed, max

∑
a∈A ABWa =

max
∑

a∈A(ca − la) = max(
∑

a∈A ca −
∑

a∈A la) ≡ min
∑

a∈A la, as the sum of
all the capacities of the network is invariant.

Table 1 presents a summary of TE metrics introduced in this section.

Metric characterising Metric characterising
good current state likely good future

Link(a) Delaya ua, ABWa

Path(s,t)

∑
a∈P(s,t)

Delaya θst, maxa∈P(s,t)ua

Network

∑
a∈A

Delaya

|A|
, min(s,t)θst, maxa∈Aua∑

a∈A
la×Delaya

AllTr

∑
(s,t)

θst

Table 1. TE metrics summary

3 Here, we assume that there is only one path used from s to t, but the demonstration
can be easily generalised if there are multiple paths.
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2.2 How to measure the quality of a solution?

In this section we present the TE metrics we will use to evaluate the quality
of the routing solutions in the simulation section. As presented in the preceding
subsection, it is clear that the maximum link utilisation (umax) is a good TE met-
ric. In addition, the mean link utilisation (umean), the 10th percentile (uper10),
the minimal available bandwidth (ABWmin) and the mean load (lmean) will be
used. uper10 is defined so that 10% of the links have a utilisation over uper10.
We think that the weighted mean queueing + transmission delay of the network
(delaymean = 1

AllTraffic

∑
a∈A la× packet size

ca−la
) is also an important variable. We

will also consider the minimum max flow (θmin = Min(s,t)θst) and total max
flow (θtot =

∑
(s,t) θst) of the residual topology. The total max flow gives an idea

of the throughput, i.e. which amount of traffic can be accepted on the residual
network. This is not exactly the amount of bandwidth that can be routed on
the residual network because all max-flows are computed independently of each
other and thus all the flows are not in competition for the residual bandwidth.
But this can still give a good idea of the residual throughput4.

3 Presentation of different objective functions

3.1 Fortz

In [1], B. Fortz et al. try to find an optimal set of IGP weights such that classi-
cal shortest path first algorithms taking these modified metrics in consideration
lead to a good routing scheme. A cost is associated with each link of the net-
work. This cost (φa) is a convex piecewise linear function of the link load. The
objective function they try to minimise is the sum over all links of this cost
(φ =

∑
a∈A φa). We will later refer to this objective function as Fortz. We have

noticed that this function, though empirical, could be seen as a linear approxi-
mation of la

1−ua
. At low link utilisation, 1 − ua ≈ 1 and Fortz ≈ min

∑
a∈A la,

while at high utilisations, 1
1−ua

becomes significant, leading to a load balancing
policy (avoiding links with high utilisation). There is no OD pair consideration
in this objective function. Many papers have reused this objective function.

3.2 MIRA

In [2], Kodialam et al. introduce the concept of minimum interference routing.
They propose an objective function which is a weighted sum of the maxflows
over all possible source-destination pairs on the residual topology. Their online
algorithm, called MIRA, is a heuristic that tries to maximise this objective func-
tion. Formally, the objective function to be maximised is

∑
(s,t) αstθst, where

4 The amount of traffic that can be routed on the residual network is in fact the
sum over all links of the available bandwidth. Indeed one obvious (and degenerated)
solution to the max throughput problem is to associate traffic only with the pairs
of nodes that are located at the extremities of a link. We can associate with these
pairs the available bandwidth on the corresponding link.
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αst is a weight associated with the ingress-egress pair (s, t). The weights asso-
ciated with ingress-egress pairs are administrative weights that determine the
relative importance of the ingress-egress pairs to the network administrator. Be-
hind this objective function, the goal is to minimise the blocking probability
of a future new request, without information about it. The idea is that if the
maxflow between one source and one destination decreases, this means that the
maximum request that can be accepted between these two nodes decreases as
well. Thus, the MIRA objective function is characterising likely good future.
There is no embedded metric characterising good current state. We will see later
in the simulations the implications of this fact.

3.3 Blanchy

In [3], Blanchy et al. present an online heuristic traffic engineering algorithm
to optimise a load balancing objective function. The pure load balancing ob-
jective function is

∑
a∈A(ua − umean)2 with umean = 1

|A|

∑
a∈A ua, the mean

link utilisation in the network. This function is the variance on the link util-
isation and, as such, represents the deviation from the optimal load balancing
situation. To limit the length of the paths of a pure load balancing function,
they add a “shortest path” term and arrive at the following objective function:∑

a∈A(ua−umean)2+α
∑

a∈A(ua)2. It is interesting because the (weighted) com-
bination of both terms will give more importance to the load-balancing term if
the deviation is high enough to justify the detour, else it will let the “shortest
path” term minimise the resources used. The weighted factor α allows to give
more importance to one aspect or to the other. This objective function does not
directly include TE metrics we introduced in section 2.1. It does not include
a delay contribution and there is no consideration about OD pairs. The traffic
minimisation term tries to minimise the size of the paths.

3.4 Delay

In [4], Elwalid et al. associate a cost with each link. They try to minimise the
total cost which is the sum over all links of the link cost. The cost of a link is
a function of the link load. They assume that this function is convex. They say
that a natural choice for the link cost is the delay so that their network-wide cost
function is defined as MeanDelay =

∑
a∈A

1
ca−la

. In section 2.1 we called this
function the (unweighted) mean link delay, if we do not take the propagation
delay into account. We introduce a new delay objective function (referred to as
WMeanDelay) which is

∑
a∈A

la
ca−la

, the weighted mean delay. Note that this
objective function can also be formulated using only ua as WMeanDelay =∑

a∈A
ua

1−ua
. These objective functions are metrics characterising good current

state.

3.5 Degrande

In [5], Degrande et al. propose to maximise an objective function which is the sum
of four terms: F (airness), T (hroughput), B(alance) and (network) U(tilisation).



7

A coefficient (named CF , CT , CB or CU ) is associated to each term to give
more influence to one or another. Fairness and Throughput are traffic oriented
objectives while Balance and Utilisation are resource oriented objectives. Balance
is defined as: B = 1 − umax. Network utilisation is defined as U =

∑
a∈A ua.

We will not consider Fairness and Throughput in our formulation because it is
not possible to express these in our LP formulation. The balance is a metric
characterising likely good future. The utilisation term will minimise the size
of the paths. There is no OD pair consideration and no delay contribution in
this objective function. Some papers only try to minimise the maximum link
utilisation. This is equivalent to Degrande objective function where CB = 1 and
CU = 0. We will refer to this objective function as umax.

Degrande objective function where CB = 0 and CU = 1 is a function which
minimise U =

∑
a∈A ua. This objective is also minimised by a classical SPF

routing considering link weights equal to the inverse of their capacities. In fact,
inverse capacity routing (recommended by CISCO) gives the optimal value of
U . We will thus refer to this objective function as InvCap. We prove this by
contradiction. If it is not the case, this means that there exists one flow for
which the InvCap path does not minimise its contribution to

∑
a∈A ua. But its

contribution to this sum is in fact the traffic on this flow multiplied by the sum
of the inverse of the capacity of all the links of the path, which is minimised by
InvCap SPF.

3.6 Summary

Clearly, all the presented objective functions are related, while quite different.
A first difference is that some of them use only absolute values of the load
l (like MIRA), some only relative values u (like Blanchy, WMeanDelay, or
Degrande) and finally some use both (like Fortz, or MeanDelay).

Score Function (to be minimised)

Fortz
∑

a∈A
φa

MIRA −
∑

(s,t)
θst

Blanchy
∑

a∈A
(ua − umean)2 + α

∑
a∈A

(ua)2

MeanDelay
∑

a∈A

1
ca−la

WMeanDelay
∑

a∈A

la
ca−la

InvCap
∑

a∈A
ua

umax umax

Degrande CB.umax + CU .
∑

a∈A
ua

MinHop
∑

a∈A
la

Table 2. Summary of objective functions

Table 2 presents a summary of all the presented objective functions. MIRA’s
function is used with αst = 1, ∀(s, t). For Blanchy, we have to fix the α parameter.
For Degrande, we have to fix C ′

B and C ′
U . In the table, we have added the cost
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function called MinHop. This function simply minimises the total load over all
the links of the networks (

∑
a∈A la). Following the same development as for

InvCap, this function is minimised by a SPF routing considering a weight of 1
for each link (what we call a min hop routing).

We can point out that at low load, 1 − u ≈ 1 and c − l ≈ c and thus
Fortz ≈ MinHop while WMeanDelay ≈ InvCap.

4 Simulations

In order to compare all the objective functions, we will model the traffic engi-
neering routing problem as a linear program (LP) and solve it to optimality for
all the presented objective functions. In this formulation, all the flows can be
arbitrarily split. Obviously, this cannot be really implemented in a network, but
can be approached with MPLS routing and to some extent with ECMP. This
assumption allows us to formulate the problem as a linear program (which is
easy to solve to optimality) instead of a mixed integer program (which cannot
be solved to optimality in a reasonable time). The LP formulation will be used to
solve the routing problem to optimality and compare the solutions obtained for
every objective function. We will not write the formulation of all the objective
functions, because this would take too much space, but we explain clearly how
they can be reproduced. We have used an LP node-link formulation (as in [1]).
Fortz is expressed in [1]. For MIRA, we use a classical max flow formulation
for each pair of nodes. For Blanchy, the square function is approximated by
its linear approximation in the range [−1, 1]. MeanDelay and WMeanDelay
are approximated by convex piecewise linear functions. Degrande and MinHop
are linear so they can be expressed easily, without modification. We will not
present MeanDelay in our result tables because we have noticed similar results
than WMeanDelay (noted Delay in the tables). For Degrande function, we
use C ′

B = 103 and C ′
U = 1 (as in [5]) and for Blanchy, α = 3 (which seems to

provide good results).

4.1 Simulation description

We made our simulations on three different networks. The first topology was gen-
erated in the TOTEM toolbox [6] using Waxman’s method [7]. This topology is
composed of 25 nodes and 50 full-duplex links. We set the value for parameters α
and β to 0.15 and 0.2. We have generated a random traffic matrix for this topol-
ogy. The second topology is an operational network. This operational network is
composed of about 20 routers and 40 bidirectional links. To build a realistic traf-
fic matrix, we have collected netflow data on each interface of the network and
aggregated this information to build a traffic matrix (the procedure to generate
traffic matrices from netflow traces is described in [8]). The last topology is the
US research network (Abilene). It is composed of 11 nodes and 14 bidirectionnal
links of 10 Gbps each. As for the operational network, we have used netflow
data measured on the network to build a realistic traffic matrix. We have run
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our simulation on two traffic matrices per topology: the actual one (TM) and
the double of it (2TM) (where each OD component has been multiplied by 2).

4.2 Results

We have to keep in mind that we made some linear approximation of some objec-
tive functions. The original function could give slightly different results in some
cases. Also, some (non-linear) objective functions give different results depend-
ing on the load of the links. So, the particular traffic matrices and networks on
which we made the tests can have its influence as well. Notice that InvCap and
MinHop objective functions do not provide exactly the same routing scheme
than classical shortest path first algorithm with inverse capacity or unitary met-
rics. Indeed, our LP model of these objective functions allows extensive and
non-equal flow splitting (which is not the case in classical OSPF or ISIS imple-
mentations). So our results may present better solutions than the ones obtained
by shortest path first algorithms. We have also noticed a negative point for some
objective functions: multiple routing schemes achieve the optimal objective func-
tion value (especially for umax). By default, the LP solver returns one of these
solutions, at random. As we did not want random values in our tables, we have
added a small delay contribution to these objective functions (MIRA, InvCap,
umax, Degrande and MinHop) so that the LP solver returns a “good” solution
from the set of possible equivalent routing schemes. So we should keep in mind
that these objective functions could lead to worse results than the ones presented
in this section if we do not add this delay contribution and if we do not allow
arbitrary flow splitting.

Objective umax uper10 umean ABWmin lmean θtot

function % % % Mbps Mbps Mbps
TM 2TM TM 2TM TM 2TM TM 2TM TM 2TM TM 2TM

Fortz (1.14) (1.14) (1.28) (1.33) (1.26) (1.21) (0.67) (0.55) (1.03) (1.05) (0.97) (0.95)

MIRA 100 100 (1.40) (1.48) (1.17) (1.16) 0.0 0.0 (1.15) (1.10) 6504 5012

Blanchy (1.22) (1.23) 26.0 50.0 (1.13) (1.12) (0.88) 531 (1.12) (1.11) (0.96) (0.94)

Delay (1.20) (1.08) (1.17) (1.20) (1.04) (1.11) 882.0 (0.95) (1.16) (1.11) (0.97) (0.95)

InvCap (2.07) 100 (1.55) (1.61) 15.7 31.5 882.0 0.0 (1.21) (1.20) (0.98) (0.96)

umax 34.9 69.7 (1.15) (1.20) (1.07) (1.12) (0.74) (0.57) (1.17) (1.11) (0.97) (0.95)

Degrande 34.9 69.7 (1.35) (1.39) (1.05) (1.05) (0.74) (0.57) (1.19) (1.18) (0.97) (0.95)

MinHop 100 100 (1.29) (1.43) (1.27) (1.25) 0.0 0.0 781 1578 (0.97) (0.95)

Table 3. Results on network of 25 nodes (Waxman topology). The table contains
absolute optimal values (in bold, green, without parentheses), or relative non-optimal
values (between parentheses) with respect to the optimal one. The values that are less
than 10% from the optimal value are bold. Finally the values that are 2 times worse
than the optimal one are in italic and red. For each metric, we present the values for
the actual traffic matrix (TM) and for the doubled traffic matrix (2TM).

Tables 3 and 4 give the values of the TE metrics at the optimum for each
objective function on Waxman and the operational networks. We do not present
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results on Abilene network due to lack of space. We have removed the θmin

metric from the tables because all the objective functions obtained the optimal
value. We have also removed the delaymean metric because corresponding values
were very small, or infinite (when ABWmin = 0). Indeed, we do not take the
propagation delay into account and the link capacities are huge. This implies that
all the delay values are almost equivalent, because negligible when compared to
the propagation delays. Although all the delay values (except infinite values, of
course) are tiny, we can point out that the Delay objective function gives good
results for all the TE metrics on all the topologies. This is because the delay
objective embeds most TE concerns (load, utilisation, available bandwidth) and
even though the queuing delays are most often negligible, they become non-
linearly sufficiently high when the load approaches the capacity to enforce load
balancing.

We start our analysis with table 3, which presents results for the topology
generated using Waxman’s model. We can see that all the objective functions
are not equivalent. MinHop is given for comparison purposes (it gives the lowest
achievable value for lmean) but is clearly not a good objective function on its
own. Indeed, it leads to a high value of umax which is a very important concern.
The lowest achievable value for umax is given by the umax function which only
optimises this variable. The lowest achievable value of the umean variable is given
by InvCap. This function is not very good on its own because it leads in this
case to a high umax value. The combined Degrande is a very good objective
function on this topology. Indeed, it gives nearly optimal values for all the met-
rics. Blanchy, Fortz and Delay are quite good. We notice also that MIRA is
good except for umax which is 100% (and thus ABWmin = 0 and delaymean is
infinite). We analyse this fact as follows. MIRA is based on max-flows (and only
on max-flows). Suppose that we have two routes in the network for a particular
OD pair of nodes. The value of the residual max-flow will be the same if we
route all the traffic on one route or if we route half of it on each route. This is
the cause of the bad load balancing policy and the high value of umax given by
MIRA.

Objective umax uper10 umean ABWmin lmean θtot

function % % % Mbps Mbps Gbps
TM 2TM TM 2TM TM 2TM TM 2TM TM 2TM TM 2TM

Fortz (1.18) (1.13) (1.63) (1.17) (1.17) (1.14) (0.89) (0.56) (1.00) (1.04) (0.99) (0.98)

MIRA (1.41) 100 (1.63) (1.65) (1.07) (1.09) (0.75) 0.0 (1.03) (1.05) 4331 4027

Blanchy (1.16) (1.15) 14.2 28.5 (1.07) (1.11) (0.90) (0.50) (1.24) (1.23) (0.99) (0.97)

Delay (1.04) (1.02) (1.32) (1.21) (1.01) (1.02) (0.97) (0.92) (1.15) (1.17) (0.99) (0.99)

InvCap (1.18) (1.09) (1.51) (1.49) 6.9 13.8 (0.89) (0.69) (1.19) (1.19) (0.99) (0.98)

umax 38.4 76.9 (1.56) (1.21) 6.9 (1.01) 95.7 36.0 (1.20) (1.15) (0.99) (0.99)

Degrande 38.4 76.9 (1.51) (1.49) 6.9 13.8 95.7 36.0 (1.19) (1.19) (0.99) (0.98)

MinHop (1.36) 100 (1.76) (1.60) (1.16) (1.20) (0.78) 0.0 262 525 (0.99) (0.98)

Table 4. Results on the operational network. See the legend of table 3 to understand
these values.
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To better discriminate the Degrande, Delay and Blanchy functions we we
can analyse the results corresponding to the doubled traffic matrix. In this case,
Blanchy has a quite high value of umax, while InvCap leads to a fully loaded
link (umax = 100%). Degrande and Delay are in this case the best objective
functions. Fortz is also quite good in this situation.

On table 4 we can see the results for the operational topology. Blanchy
obtains good values for all the metrics and the best value of uper10. MIRA
logically gives the optimum for the θtot variable, which is its objective function.
We remark that many other objective functions give values close to this optimal
θtot value. On the operational network, we consider that the best compromise
is Degrande because it gives almost optimal values for all the variables except
uper10. Both Delay and Blanchy are quite good and give better results for
uper10. Fortz improves lmean at the expense of all the other variables. MIRA
and MinHop give high values regarding umax.

We have noticed on the Abilene network that there is less variation between
the values of our metrics. But we have still pointed out the performance of Delay
and Degrande which are the best objective functions of these simulations.

One last important point is the fact that at low load, we can see that Fortz is
approaching the optimal value of lmean, the objective of MinHop, while Delay is
approaching the optimal value of umean, the objective of InvCap. This confirms
the approximation we made in section 3.6.

Objective umax uper10 umean ABWmin lmean θtot

Function LL HL LL HL LL HL LL HL LL HL LL HL

Fortz
√ √ √ √ √ √

± ±
√ √ √ √

MIRA • • • •
√ √

• •
√ √ √√ √√

Blanchy
√

•
√ √ √ √ √

•
√ √ √ √

Delay
√ √ √ √ √ √ √ √ √ √ √ √

InvCap • •
√

±
√√ √√

± •
√ √ √ √

Degrande
√√ √√ √ √ √ √ √ √ √ √ √ √

Table 5. Metrics At Low Load (LL) and High Load (HL)

To conclude this section, we analyse table 5 which presents the good (
√

) and
bad (•) metrics for each objective function at low and high load5. On this table,
we see that Fortz, Delay and Degrande are the best because these have no red
point.

5 Conclusion

In this paper, we have shown how well-known network-wide objective functions
reflect requirements for Traffic Engineering. As our results reflect, they are not
equivalent. We have shown the power of some functions and the weaknesses of

5 In this table,
√√

is used to denote the optimal value and ± to denote a value which
is not bad, but which is not as good as

√
values.
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others. We have outlined that, although the transmission + queueing delay is
often negligible, choosing this delay as objective function gives good results for
almost all TE metrics. It is not that surprising considering that almost all TE
link metrics feed into the delay (see figure 1).

The best objective functions are Delay and Degrande on the tested topolo-
gies. We have a preference for Delay because it does not need any configuration
or parameter. Fortz is quite good also in all the situations, while having perfor-
mance somewhat under Delay and Degrande. Blanchy has good results also,
except for highly loaded networks. MIRA gives good solutions concerning the
total residual max flow, but this function gives bad results concerning the max-
imal link utilisation.

This study provides an objective basis to select an objective function when
designing a new Traffic Engineering routing algorithm. It may also be useful
to revisit existing TE algorithms to make them work with the objective func-
tions that best match the various TE concerns we have studied. Furthermore,
while this study has been performed for packet switched networks, the objective
functions and TE metrics used (see table 5) are also valid in circuit switched
networks.
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