
Highly Responsive and Efficient QoS Routing
Using Pre- and On-demand Computations

along with a New Normal Measure

Yanxing Zheng1, Turgay Korkmaz2 and Wenhua Dou1

1 School of Computer Science, National University of Defense Technology, ChangSha,
HuNan, 410073, P.R. China. Email: yxzheng@nudt.edu.cn

2 Department of Computer Science, University of Texas, San Antonio, USA.
E-mail: korkmaz@cs.utsa.edu

Abstract. Multi-constrained path (MCP) selection is one of the great
challenges that QoS routing (QoSR) faces. To address it in an effi-
cient and highly responsive manner, we propose a new QoSR algorithm,
namely NM MCP. Using the Dijkstra’s algorithm with respect to each
link metric, NM MCP pre-computes k primary paths, where k is the
number of link weights. When a routing request arrives, it executes a
modified version of the Dijkstra’s algorithm using a newly proposed,
normal-measure-based nonlinear cost function.

keywords: QoS routing, Pareto optimal, multi-objective optimization.

1 Introduction

One of the key issues in the next-generation networks is how to identify feasi-
ble paths that can satisfy the quality-of-service (QoS) requirements of different
applications. This problem is commonly known as QoS routing (QoSR). The
potential benefits of QoSR and the need for it have been recognized and ac-
knowledged by the research community and industry [1][2]. Much work has been
done on various aspects of QoSR [3][4][5]. For better responsiveness and higher
success rate in identifying feasible paths, we developed a new normal measure
based MCP algorithm (NM MCP).

The rest of the paper is organized as follow. In Section 2, we formally de-
fine some related concepts. In Section 3, we review the most related studies. In
Section 4, we present the proposed NM MCP algorithm. We report simulation
results in Section 5. Finally, we conclude the paper in Section 6.

2 Problem Formulation and Preliminaries

Let Psd denote the set of paths between source node s and destination node
d in network G(N, E), where N is the set of nodes and E is the set of links.
For path p = n1 → n2 →, . . . ,→ nm ∈ Psd, each link is associated with k



2

additive metrics. The sum of the jth metric of path p can be represented as:
wj(p) =

∑m
i=2 wj(ni−1 → ni), j ∈ {1, 2, . . . , k} . Thus path p can be written as

p(w1(p), w2(p), . . . , wk(p)).

Definition 1. W k = W1×W2× . . .×Wk is called QoS Metric Space (QoSMS),
where wj(p) ∈ Wj , j ∈ {1, 2, . . . , k} for any p ∈ G(N, E).

Definition 2. Mapping F is a function that maps path p(w1(p), w2(p), . . . , wk(p))
to a point in W k, i.e., F (p) = (f1(p), f2(p), . . . , fk(p)) = (w1(p), w2(p), . . . , wk(p)).

Definition 3. Multi-constrained path (MCP) problem: Consider a network
G(N, E). Each link (u, v) is associated with a k-dimensional metric vector. Each
element of w is an additive QoS metric: wi(u, v) ≥ 0, i = 1, 2, . . . , k. Given rout-
ing request c = (c1, c2, . . . , ck), the problem is to find a path p ∈ Psd such that
fi(p) = wi(p) =

∑
(u,v)∈p wi(u, v) ≤ ci, for i = 1, 2, . . . , k.

Definition 4. Multi-constrained and Multi-optimization Problem (MCMOP):
For the above MCP problem, in addition to finding a path subject to the given
constraints, the objective is to

minF (p) = min{w1(p), w2(p), . . . , wk(p)} (1)

Clearly, the solutions to MCMOP will also be the solutions to MCP in Defi-
nition 3. Therefore, given a MCP problem, we can solve the derived MCMOP
problem and take its solutions as that of original MCP problem. MCMOP is
actually a special case of discrete MOOP that can simply be stated as follows.
Definition 5. Multi-objective optimization problem (MOOP):

minF (x)
x

= min[f1(x), f2(x), . . . , fk(x)] (2)

where k is the number of objectives.

Definition 6. Cover: Vector u = (u1, u2, . . . , uk) is said to cover v =
(v1, v2, . . . , vk), denoted by u ¹ v, iff ∀i ∈ {1, 2, . . . , k}, ui ≤ vi.

Definition 7. Dominance: Vector u = (u1, u2, . . . , uk) is said to dominate v =
(v1, v2, . . . , vk), denoted by u ≺ v, iff u is partially less than v, namely ∀i ∈
{1, 2, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, 2, . . . , k} : ui < vi.

Definition 8. Pareto Optimal solution: Path p(w1(p), w2(p), . . . , wk(p)) ∈ Psd

is a Pareto Optimal solution iff there is no path p′(w′1, w
′
2, . . . , w

′
k) ∈ Psd such

that (w′1, w
′
2, . . . , w

′
k) ≺ (w1, w2, . . . , wk)

Definition 9. Pareto set P ∗ and Pareto front PF ∗: For a given MOOP, P ∗ =
{p(w1, w2, . . . , wk, ) ∈ Psd|p(w1, w2, . . . , wk) is a Pareto optimal solution of
MOOP }, and PF ∗ = {(w1, w2, . . . , wk)|p(w1, w2, . . . , wk) ∈ P ∗}
Elements in PF ∗ are also called as Pareto optimal points. If a routing request is
satisfied by path p(w1, w2, . . . , wk), then the request can also be satisfied by an
element in PF ∗. So, when we deal with MCMOP problems, we can only consider
the elements in PF ∗. If any Pareto optimal point cannot satisfy the routing
request, the request should be refused. This property allows us to efficiently
reduce the search space without compromising solutions.



3

3 Related Work

In general, researchers used two kinds of path length functions: linear path length
function (LPLF) and nonlinear path length function (NLPLF). LPLF first takes
linear combination of multiple link weights and make a single link weight for
each link as l(u → v) =

∑k
i=1 αiwi(u → v). Combination coefficient vector

α = (α1, α2, . . . , αk) is usually called as a search direction of Dijkstra’s algorithm.
Later we use Dijkstra(α) to denote the Dijkstra’s algorithm that searches in
direction α. Typical LPLF-based QoSR algorithms include Jaffe’s algorithm [6],
LARAC [7], MEFPA [8] and DWCBLA [9].

The main disadvantage of LPLF-based algorithms is that Pareto optimal
points lying in the nonconvex part of Pareto front can never be found. To deal
with such cases, researchers naturally considered NLPLF-based algorithms [10][11].
One main drawback of the existing QoSR algorithms using NLPLF is that they
do not take the practical spread of Pareto front into consideration and thus
introduce unnecessary computations in various cases [12].

In contrast to the above QoSR algorithms, we consider a new NLPLF, which
is inspired by the work of Das and Dennis [13]. Das and Dennis developed a
new method called normal boundary intersection (NBI) to obtain Pareto optimal
points for an MOOP in case of continuous objective space. This method provides
a means for obtaining an even distribution of Pareto optimal points based on
the user-supplied parameters vector β, even with a nonconvex Pareto front. NBI
method transforms an MOOP into the following sub-problem:

Minimize λ (3)

such that

φβ + λn̂ = F (x)− F ∗ (4)

In this sub-problem, φ is a pay-off k × k matrix in which the ith column is
composed of the vector F (x∗i ) − F ∗, where F (x∗i ) is the vector of objective
functions evaluated at the minimum of the ith objective function; β is a vector
of scalars such that

∑k
i=1 βi = 1 and βi ≥ 0; n̂ = φe, where e ∈ Rk is a column

vector of ones in objective space. φβ is referred as the Convex Hull of Individual
Minima (CHIM). The set of attainable objective vectors {F (x)} is denoted by
h̄. The boundary of h̄ is denoted by ∂h̄. NBI is in fact a technique intended to
find the portion of h̄ which contains the Pareto optimal points.

For a specific β, φβ represents a point in the CHIM. φβ+tn̂, t ∈ R represents
the points on normal n̂. The solution of (3) is the point of intersection of the
normal and ∂h̄ closest to the origin. The constraint in (4) ensures that the point
x is actually mapped by F to a point on the normal. The sub-problem given in
(3) is referred as the NBI sub-problem and written as NBIβ . Different solutions
would be found by varying β.



4

4 Proposed Algorithm

The NBI method proposed for an MOOP in case of continuous objective space
cannot directly be used for MCMOP because (as clearly stated by Das and Den-
nis [13]) NBI may fail if the objective space is discrete as in MCMOP. Therefore,
we reconsider the ideas behind NBI in the context of MCMOP problems.

4.1 Definition of path length

For MCMOP problems, we modify the constraint in (4) such that the points in
∂h̄ can still be measured by the normal when ∂h̄ is not connected. We normalize
the objective function as in [14] so that the scaling deficiencies will be avoided.

Let pi∗ denote the path that has the minimum wi for all paths between s
and d. We can then define a Utopia point as

F ∗ = [f1(p1∗), f2(p2∗), . . . , fk(pk∗)]T = [f∗1 , f∗2 , . . . , f∗k ]T (5)

Let us also define a normalizing matrix as:

L = [l1, l2, . . . , lk]T = FN − F ∗ (6)

where FN def
= [fN

1 , fN
2 , . . . , fN

k ]T and fN
i = max[fi(p1∗), fi(p2∗), . . . , fi(pk∗)].

We can now define the normalized F (p) as follows

F̄ (p) = [f̄1(p), f̄2(p), . . . , f̄k(p)],

where f̄i(p) = (fi(p)− f∗i )/li.
Based on the above definitions, we define the path length as follows

len(p) = −min(λi) (7)

s.t. φ̄β + N = F̄ (p) (8)

where N = (λ1n1, λ2n2, . . . , λknk)T and F̄ (p) = [f̄1(p), f̄2(p), . . . , f̄k(p)]T .
The meaning of n̂ = (n1, n2, . . . , nk)T is the same as the one in (4) except

that it is now pointing away from the origin. By denoting φ̂β by a vector γ =
(γ1, γ2, . . . , γk)T , we can rewrite the constraint in (8) as follow.

λini = γi − f̄i(p), i=1,2,. . . ,k (9)

The path length defined in (7) is called Normal measure length, or NM length.
Note that NM length is nonlinear and the length of path p in this definition is
not necessarily positive. (Due to page limitations, detailed discussions related
to the intuitive meaning of λi and how different Pareto optimal points can be
found by varying β had to be skipped here but can be found in [12].)

We now give some important properties of NM length. Again due to page
limitations, we omit their proofs but they can be found in [12].



5

Theorem 1. If the length of a path p is larger than the length of routing con-
straint c (which is taken as a point in objective space), then at least one weight
of the path p violates the corresponding constraint.

Theorem 2. Suppose two paths p(w1, w2, . . . , wk) and q(w′1, w
′
2, . . . , w

′
k) are

given. If F (p) ¹ F (q), then the length of path p is no longer than that of q.

Theorem 3. Using LPLF in a given search direction α = (α1, α2, . . . , αk),
Dijkstra(α) generates a Pareto optimal solution

Theorem 4. Let p(w1, w2, . . . , wk) ∈ Psd denote the solution generated by
Dijkstra(α). If routing request c = c(c1, c2, . . . , ck) dominates p(w1, w2, . . . , wk),
then c cannot be satisfied by any paths in Psd.

4.2 NM MCP algorithm

As outlined in Fig 1, the proposed algorithm NM MCP mainly consists of two
phases: precomputation and on-demand computation. In the precomputation

NM MCP(G, s, d, c)
G: Network topology; s: source node;
d: destination node; c: routing request (c1, c2, . . . , ck)
Boundlen: The length of the routing request

(1): pi∗=Pre-computation(G,s), i = 1, 2, . . . , k
(2): on-demand computation

(2.1) Check feasibility(pi∗ , c)
(2.2) if feasibility is not decided

(2.2.1) Preparation(pi∗ , c = (c1, c2, . . . , ck))
(2.2.2) NM Dijkstra(G, s, d, c,Boundlen)

Fig. 1. Proposed NM MCP algorithm.

phase, NM MCP executes the procedure called Pre computation given in Fig 2.
This procedure simply computes the shortest paths individually with respect to
each weight. We call those paths that minimize the individual weights as primary
paths. Note that these paths depict the ‘state’ of the network from the viewpoint
of the source node s and will be used in on-demand computation phase. Based on
the primary paths, we also obtain f∗i , i = 1, 2, . . . , k, and compute normalizing
vector L using Eq. (6).

In the on-demand computation phase, which is entered when a routing re-
quest c arrives, NM MCP first calls Check feasibility that is also given in Fig 2.

This procedure checks the feasibility of primary paths. If there is no primary
paths that can satisfy c, NM MCP tries to find a feasible path by executing a



6

(I)Pre computation(G, s)
G: Network topology; s: Source node

(1): Computing k primary paths pi∗ ,for i = 1, 2, . . . , k
(2): Determining Utopia point

F ∗ = [f∗1 , f∗2 , . . . , f∗k ]T = [f1(p
1∗), f2(p

2∗), . . . , fk(pk∗)]T

(3):Computing normalizing vector L = [l1, l2, . . . , lk]T

(II)Check feasibility(pi∗ , c)
(1)For i = 1, 2, . . . , k

(a) If pi∗ ¹ c return pi∗ ; success

(b) If ci < wi(p
i∗)return fail;

(2)End of for
(3)Otherwise, return undecided

Fig. 2. Procedure Pre computation and Check feasibility.

modified version of Dijkstra’s algorithm (called NM Dijkstra) with respect to
the new link weight NM length. Recall that different values for β will lead to
different shortest paths with respect to NM lengh. So, one key issue here is, for
a specific routing request c, how to select a proper β that can generate a better
path. Actually, we need to determine φ̄β rather than the specific values of φ̄ and
β. For this, we take the intersection of the normal which is across the routing
request c = (c1, c2, . . . , ck) and the Utopia hyperplane.

To compute φ̄β and other required parameters (e.g., the length Boundlen of
the routing request which will be used as the upper bound for paths explored in
NM Dijkstra), NM MCP calls Procedure Preparation given in Fig 3. It then ex-

Preparation(pi∗ , c = (c1, c2, . . . , ck))
(1): Calculating φ̄β
(1.1)Determine the normaln̂ = (n1, n2, . . . , nk) that across the routing request
(1.2)Get the intersection point of n̂ and the hyperplane U .

This point is taken as φ̄β, and denoted by vector (γ1, γ2, . . . , γk)
(2): Computing the length of routing request

(2.1)Normalizing the routing request: c̄i =
ci−f∗i

li

(2.2)λi = (γi−c̄i)
ni

(2.3)Boundlen=-min(λi)

Fig. 3. Preparation procedure.



7

ecutes NM Dijkstra. Similar to the standard Dijkstra’s algorithm, NM Dijkstra
maintains only three labels: cost(u), parent(u), and len(u) for each node u.
cost(u) is a k-dimensional vector, each entry of which represents the individ-
ually accumulated link weights along the current path from s to u. parent(u)
represents the predecessor of node u. len(u) is the length of the path from s to
u. NM Dijkstra initially sets len(u)=∞ and parent(u)=NIL for every node u. It
then starts from node s, setting each entry of cost(s) to 0 and len(s) to −∞. It
then updates the labels of each adjacent node of s using the relaxation process
shown in Fig 4.

NM Dijkstra Relax(u,v)
(1) Increase=(w1(u, v), w2(u, v), . . . , wk(u, v))
(2) Tempcost=cost(u)+Increase
(3) For i = 1, 2, . . . , k

newcost(i)=
Tempcost(i)−f∗i

li

(4) For i = 1, 2, . . . , k

λi = (γi−newcost(i))
ni

(5) templen=-min(λi)
(6) If templen < len(v)

len(v)=templen; parent(v)=u; cost(v)=Tempcost
(7) EndIf

Fig. 4. Relaxation procedure of NM Dijkstra.

This relaxation procedure is the fist modification to the Dijkstra’s algorithm.
NM Dijkstra then continues to explore the graph by choosing the next node that
has the least length. The second modification here is to consider only those nodes
whose lengths are smaller than the Boundlen when deciding whether to extend
a node or not.

The computational complexity of NM MCP algorithm is (k+1) times that of
the Dijkstra’s algorithm, k times for precomputation and (if needed) one time for
on-demand computation. Therefore, the worst-case response time of NM MCP
is at most one iteration of the Dijkstra’s algorithm while the best of existing
on-demand algorithms require at least a few iterations of it.

4.3 Improvements to NM MCP

Since NM MCP adopts nonlinear path length, it also suffers from the inherent
drawback of nonlinear path lengths, namely the sub-section of a shortest path is
not necessary the shortest one. To further improve the performance, we enhanced
NM MCP by using a look-ahead method similar to the one used in [15]. In the



8

look-ahead method, we first compute the shortest path tree rooted at the desti-
nation to each node v in the graph. For this, Dijkstra’s shortest path algorithm
is executed k times for each link weight separately. Accordingly, the least length
between the destination node and every node u is determined and maintained
with respect to each link weight individually. We then use this information in the
relaxation process of NM Dijkstra algorithm to have a better estimation of the
path length based on NM length. The computation complexity of NM MCP with
look-ahead ability is (2k+1) times that of Dijkstra’s algorithm. To distinguish
from Pareto look-ahead, we call this look-ahead as nonlinear look-ahead.

5 Performance Evaluation

Performance evaluation includes three parts. The first part is the comparison of
NM MCP with H MCOP [16][11], which is an efficient on-demand QoSR algo-
rithm using nonlinear path length, and MEFPA [8], which is an efficient pre-
computation algorithm using linear path length. The second part evaluates the
performance increase introduced by Pareto look-ahead. The last part evaluates
the response time of NM MCP.

5.1 Simulation model and performance measures

Topologies used for simulations are based on Waxman’s model with 50, 100 and
200 nodes. Each link is associated with k weights using wi ∼ uniform[1,300]. For
each node number, 200 graphs are generated per experiment. For each instance
of a random graph, one source node and 25 destination nodes, which are at
least two hops away from the source node, are generated randomly. For each
source-destination pair, one routing request is generated.

As the key performance measure, we use success rate (SR), the ratio of the
routing requests satisfied by heuristic to the total routing requests generated.

5.2 Performance comparison of QoSR algorithms

In this part, we compare the SR of NM MCP with that of two QoSR algorithms:
H MCOP and MEFPA. The computational complexity of H MCOP for every
routing request is twice that of the Dijkstra’s algorithm. MEFPA, on the other
hand, requires pre-iterations of the Dijkstra’s algorithm, where b is a user speci-
fied parameter that controls the complexity and the performance. MEFPA with
parameter b is denoted by MEFPA(b). We use NM MCP2 to denote NM MCP
with nonlinear look-ahead ability.

Routing requests are generated with respect to the k primary paths de-
noted by pi(wi1, wi2, . . . , wik), i = 1, 2, . . . , k. Let fmax

j = max(wij) and fmin
j =

min(wij), i = 1, 2, . . . , k.
We first consider the same method in [16] to generate routing requests. Specif-

ically, we generate:

ci ∼ uniform[0.8 ∗ fmax
i , 1.2 ∗ fmax

i ] (10)



9

The case of generating constraints according to (10) in bi-objective QoSMS is
shown in Fig 5.(a). As seen from the figure, most routing requests generated

f
2

m
a
x


f
1

m
a
x


w
1


w
2


p
1
*


p
2
*


R
o
u
t
i
n
g
 
r
e
q
u
e
s
t


f
2

m
i
n


f
1

m
i
n


f
2

m
a
x


f
1

m
a
x


w
1


w
2


p
1
*


p
2
*


R
o
u
t
i
n
g
 
r
e
q
u
e
s
t


f
2

m
i
n


f
1

m
i
n


(
b
)
 (
c
)


f
2

m
a
x


f
1

m
a
x


w
1


w
2


p
1
*


p
2
*


R
o
u
t
i
n
g
 
r
e
q
u
e
s
t


(
a
)


Fig. 5. The distribution of critical routing requests.

in this manner are likely to be feasible. We call such routing requests as loose
routing requests (LRR).

In fact, the most critical routing requests lie in the area shown in Fig 5.(b) [9].
This critical area is the so called “NP-complete” range [17]. Loose routing re-
quests only cover a small part of this area. So we use another method to generate
routing requests:

ci ∼ uniform[0.8 ∗ fmin
i , 1.2 ∗ fmax

i ] (11)

Fig 5.(c) shows the case of generating constraints according to (11) in bi-objective
QoSMS. The whole NP-complete range is covered by the distribution of routing
requests. We call such routing requests as critical routing requests (CRR).

90.5


91.5


92.5


93.5


94.5


k=2
 k=3
 k=4


H_MCOP
 MEFPA(3)


93


93.5


94


94.5


95


95.5


96


k=2
 k=3
 k=4


MEFPA(7)
 MEFPA(20)


91.7


92.2


92.7


93.2


k=2
 k=3
 k=4


NM_MCOP
 NM_MCOP2


S
R


N
=
5
0
(
L
R
R
)
 N
=
1
0
0
(
L
R
R
)
 N
=
2
0
0
(
L
R
R
)


Fig. 6. Performance comparison of different algorithms under loose routing requests.

Fig 6 show the performance comparison of various algorithms under multiple
constraints using LRR. As clearly seen from the figures, NM MCP gives high SR
and MEFPA becomes comparable to it when b is increased. When b takes a larger



10

number, MEFPA(b) will introduce not only a high computation overhead but
also a larger routing table (after each iteration of Dijkstra’s algorithm, a path
will be stored in routing table) [9]. On the other hand, NM MCP only performs k
iterations of Dijkstra’s algorithm and give comparable SR to that of MEFPA(20).
This implies that NM MCP can re-execute the Pre computation procedure more
frequently than MEFPA within the same period. As a result, NM MCP will suffer
less from stale routing information and give better performance in practice.

Due to their ability to cope with stale routing information, on-demand com-
putation is also essential for the success of QoSR solutions. But H MCOP re-
quires two iterations of Dijkstra’s algorithms. However, NM MCP executes Di-
jkstra’s algorithm at most once and give better performace with the help of
the precomputed paths. Hence, NM MCP has a quicker response speed than
H MCOP. So NM MCP makes a good tradeoff between precomputation and on-
demand computation. Furthermore, NM MCP uses LPLF in precomputation
phase and NLPLF in on-demand computation phase, making a good tradeoff
between LPLF and NLPLF as well.

5.3 Evaluation of Pareto look-ahead

In this part, we evaluate the performance increase brought by Pareto look-ahead
mechanism. We use the unfeasible rate (UR), the ratio of the times that on-
demand computation is avoided to the number of total routing requests gen-
erated. Simulation results for UR versus k (which denote the number of link
wights) are shown in Fig 7. We can see that performance gains are less as k

1


2


3


4


5


6


7


k=2
 k=3
 k=4
 k=5
 k=6


N=50


N=100


N=200


U
R


0


2


4


6


8


10


12


k=2
 k=3
 k=4
 k=5
 k=6


N=50


N=100


N=200


(
a
)
 
U
n
d
e
r
 
L
R
R
 (
b
)
 
U
n
d
e
r
 
C
R
R


Fig. 7. Evaluation of Performance increase brought by Pareto look-ahead.

increases. This is because when k is large, the probability that routing requests
dominate primary paths is small. Moreover, when routing requests are critical,
considerable parts of them are inherently unfeasible. So the probability that these
routing requests dominate primary paths is large and hence more performance
increase is gained.



11

5.4 Evaluation of response time

A practical QoSR algorithm should have not only a high SR, but also a quick
speed of response. In this part, we look at how often routing requests can be
responded immediately by NM MCP. Routing requests that can be responded
immediately includes those satisfied by primary paths and those determined to
be unfeasible by Pareto look-ahead. Hence we count individually the precompu-
tation success rate (PSR), the ratio of the number of routing requests satisfied
by primary paths to the number of routing requests generated, and UR. Routing
requests that cannot be responded immediately need further on-demand compu-
tation. We count the ratio of the number of these routing requests to the number
of total routing requests as on-demand computation rate (OCR).

Fig 8 shows the simulation results when routing request are loose and critical

0%


25%


50%


75%


100%


k=2
k=3
k=4
k=5
k=6

0%


25%


50%


75%


100%


k=2
k=3
k=4
k=5
k=6


OCR


UR


PSR


(
a
)
U
n
d
e
r
 
L
R
R
 (
b
)
U
n
d
e
r
 
C
R
R


Fig. 8. Evaluation of response time and on-demand computation overhead.

with node number N=200. We can see that when routing requests are loose,
most routing requests can be responded immediately and only very small parts
of routing requests need further on-demand computation. When routing requests
are critical, again a considerable part of routing requests does not require further
on-demand computation. Note that only one iteration of Dijkstra’s algorithm
is executed for each routing request that needs on-demand computation. On
average, on-demand computation overhead of NM MCP is significantly lower
than one iteration of Dijkstra’s algorithm, particularly under LRR.

6 Conclusions

To solve a given MCP problem, we derived from it a new MCMOP problem,
which can be viewed as a special case of discrete version of MOOP. We con-
sidered this problem to develop a new nonlinear path length function, namely
NM length. Based on this length function, we designed an efficient algorithm
(namely, NM MCP). Using extensive simulations, we showed that NM MCP al-
gorithm is very efficient when both SR and response time are taken into account.



12

References

1. Korkmaz, T., Krunz, M.: Bandwidth-delay constrained path selection under in-
accurate state information. IEEE/ACM Transactions on Networking (ToN) 11
(2003) 384–398

2. Korkmaz, T.: State-path decoupled QoS-based routing framework. In: Proceedings
of the IEEE GLOBECOM ’04 Conference. (2004) (to appear).

3. Chen, S., Nahrstedt, K.: An overview of quality-of-service routing for the next
generation high-speed networks: Problems and solutions. IEEE Network 12 (1998)
64–79

4. Zheng, Y., Dou, W., Tian, J., Xiao, M.: An overview of research on qos routing.
In: Advanced Parallel Processing Technologies(APPT03), Springer LNCS(2834)
(2003) 387–397

5. Kuipers, F., Korkmaz, T., Krunz, M., Van Mieghem, P.: Performance evaluation
of constraint-based path selection algorithms. IEEE Network (2004) (to appear).

6. Jaffe, J.M.: Algorithms for finding paths with multiple constraints. Networks 14
(1984) 95–116

7. Juttner, A., Szviatovszki, B., Mecs, I., Rajko, Z.: Lagrange relaxation based
method for the QoS routing problem. In: Proceedings of the INFOCOM 2001
Conference. Volume 2., IEEE (2001) 859–868

8. Cui, Y., Xu, K., Wu, J.: Precomputation for multi-constrained qos routing in high-
speed networks. In: Proceedings of the INFOCOM 2003 Conference, San Francisco
(2003)

9. Zheng, Y., Tian, J., Liu, Z., Dou, W.: An efficient dynamic weight coefficient qos
routing algorithm. In: International Network Conference(INC04), UK (2004)

10. De Neve, H., Van Mieghem, P.: TAMCRA: a tunable accuracy multiple constraints
routing algorithm. Computer Communications 23 (2000) 667–679

11. Korkmaz, T., Krunz, M.: Routing multimedia traffic with QoS guarantees. IEEE
Transactions on Multimedia 5 (2003) 429–443

12. Zheng, Y., Korkmaz, T., Zhang, H., Dou, W.: Pre- and on-demand com-
putations along with a new normal measure. Technical report (2004)
http://www.cs.utsa.edu/∼korkmaz/yanxing/TR-NM-MCP.pdf.

13. Das, I., Dennis, J.: Normal-boundary intersection: a new method for generating the
pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim
8 (1998) 631–657

14. Messac, A., Ismail-Yahaya, A., Mattson, C.: The normalized normal constraint
method for generating the pareto frontier. Struct. Multidisc. Optim 25 (2003)
86–98

15. Korkmaz, T., Krunz, M.: A randomized algorithm for finding a path subject to
multiple QoS constraints. Computer Networks Journal 36 (2001) 251–268

16. Korkmaz, T., Krunz, M.: Multi-constrained optimal path selection. In: Proceedings
of the INFOCOM 2001 Conference. Volume 2., Anchorage, Alaska, IEEE (2001)
834–843

17. Kuipers, F., Mieghem, P.: The impact of correlated link weights on qos routing.
In: Proceedings of the INFOCOM 2003 Conference, IEEE (2003)


