
Using Secure Coprocessors to Protect Access to
Enterprise Networks

Haidong Xia, Jayashree Kanchana and José Carlos Brustoloni

Dept. Computer Science, University of Pittsburgh,
210 S. Bouquet St. #6135, Pittsburgh, PA 15260, USA

{hdxia,kanchana,jcb}@cs.pitt.edu

Abstract. Enterprise firewalls can be easily circumvented, e.g. by attack
agents aboard infected mobile computers or telecommuters’ computers,
or by attackers exploiting rogue access points or modems. Techniques
that prevent connection to enterprise networks of nodes whose configu-
ration does not conform to enterprise policies could greatly reduce such
vulnerabilities. Network Admission Control (NAC) and Network Access
Protection (NAP) are recent industrial initiatives to achieve such policy
enforcement. However, as currently specified, NAC and NAP assume that
users are not malicious. We propose novel techniques using secure copro-
cessors to protect access to enterprise networks. Experiments demon-
strate that the proposed techniques are effective against malicious users
and have acceptable overhead.

1 Introduction

Enterprise networks’ first line of defense typically consists of firewalls and vir-
tual private network (VPN) gateways. System administrators usually attempt
to install such nodes at every point of contact between an enterprise’s intranet
and the public Internet. However, the security perimeter thereby achieved can
be rather leaky. Users can bring to their offices mobile computers infected while
used on a trip. Telecommuters can use hacked computers to connect to the enter-
prise’s VPN. Users often install in their offices wireless access points or modems,
without consulting system administrators. Users may find such rogue network
nodes or mobile computers convenient, but attackers can use them to circumvent
the enterprise’s firewalls.

These vulnerabilities could be prevented in an enterprise network that verifies
that a node’s configuration conforms to the enterprise’s security policies before
accepting connection of the node to the network. This type of network policy
enforcement has not traditionally been available, but currently there are several
initiatives to support it, including Cisco’s Network Admission Control (NAC) [1]
and Microsoft’s Network Access Protection (NAP) [9].

In Microsoft’s NAP, before connecting to an intranet, a host sends to a
network-designated server a list of the host’s software components and config-
uration. This list indicates, e.g., what operating system and anti-virus software

2

are installed in the host and what version, security patches, and virus defini-
tions they have. If the server finds that the host’s software is up-to-date and
acceptable, the server allows the host to connect to the intranet. Otherwise, the
server confines the host to a restricted network. The restricted network allows
the host’s software to be updated and brought into compliance with intranet
policies. Cisco’s NAC architecture extends this concept to control the connec-
tion not only of hosts, but also access points and other devices. Networks and
nodes that support such access control functionality are expected to become
common in the next several years.

However, NAC and NAP provide only weak security. Software component and
configuration lists can be easily forged or modified by a malicious user. Using
a forged or modified list, an attacker can circumvent NAC and NAP and gain
access to a network with a node that can greatly harm the network’s security.

This paper examines the question of how secure coprocessors could be used
to harden architectures such as NAC and NAP. The Trusted Computing Group
(TCG) [18] has specified secure coprocessors (called TPMs – Trusted Platform
Modules) [19] that have low cost (about $4 per host) and are commercially
available in an increasing number of computers by IBM, HP, and other manu-
facturers [14]. TPMs enable security primitives that were previously unavailable,
in particular attestation. Attestation reveals to another party the software con-
figuration running on a host, in a securely verifiable manner. Unlike NAC’s and
NAP’s software component and configuration lists, attestations cannot be easily
forged or modified by attackers. Section 2 describes attestation in greater detail.

We identify three challenges for building systems that use attestation, and
contribute novel solutions for them. First, attestation has to be integrated with
network protocols in a manner that does not defeat security. Attestation as spec-
ified by TCG is vulnerable to man-in-the-middle (MITM) attacks. We show in
Section 3.1 that this vulnerability is not eliminated simply by tunneling attes-
tation packets, e.g. using TLS [2]. We contribute a novel form of attestation,
Bound Keyed Attestation (BKA), that can be integrated with other protocols
easily and without MITM vulnerability.

Second, the operating system (OS) has to be modified such that it properly
records and reports in attestations any OS modifications since the system has
booted. TCG specifies TPM’s hardware, boot sequence, and interfaces, but not
the inner working of systems that use those interfaces, especially after boot time.
Most OSs define privileged users (e.g., root) with authority to modify the OS or
its configuration at any time. However, the charter of TCG’s relevant working
group explicitly excludes what the OS should do to maintain attestation consis-
tency after boot time [20]. In Sections 4.1 and 4.2, we propose TCB prelogging
and security association root tripping for guaranteeing such consistency.

Third, use of a TPM must not harm host safety. In addition to attestation,
TPMs provide another security primitive, sealing. Data sealed to a given host
software and configuration can be accessed only when the host software and
configuration are the same. Sealing can be used for digital rights management.
Before sending content to a receiver, a sender obtains the receiver’s attestation.

3

The sender sends the content only if the sender deems the receiver’s software as
trustworthy. The receiver’s software then seals the content so that it cannot be
accessed by untrusted software. However, sealing can be used also for software
lock-in [4]. An application, e.g. an editor, may seal to itself content created by
the host owner. This can make it impossible for the host owner to switch to
a different application or to access the data using a future host. In this sense,
sealing can make a host unsafe. In Section 4.3, we propose sealing-free attestation
confinement for securing network access without compromising host safety.

Experimental results in Section 5 show that our proposed mechanisms are
effective and have acceptable overhead. We discuss related work in Section 6,
and conclude in Section 7.

2 TPM functions

To secure access to enterprise networks, we use two main TPM functions: authen-
ticated boot and attestation. We describe these functions in this section. Readers
who are already familiar with TCG secure coprocessors may skip this section.

Authenticated boot presupposes that when a host is reset, control of the CPU
is transferred to a small, trusted, immutable software component. In a personal
computer, this component is the BIOS boot block. The OS’s boot sequence is
modified such that, before each software component A passes control to another
software component B that has not yet been measured, A measures B’s digest,
appends the digest to a measurement log, and compresses the digest into the
TPM. A obtains B’s digest using SHA-1 (Secure Hash Algorithm) [11]. SHA-1
digests are 20 bytes long, regardless of data length. This algorithm has properties
such that it is infeasible to modify B without also modifying its digest, or to find
a B whose digest is an arbitrary value. The TPM compresses a digest into one of
its registers by concatenating the register’s value and the digest, computing SHA-
1 on this concatenation, and storing the resulting value back into the register.
The TPM’s registers are initialized to zero on host reset. They can be read, but
cannot be otherwise modified. TPM register values can be used to authenticate
the measurement log, whose plaintext is stored in main memory.

Attestation is a protocol that enables a remote party R to obtain and authen-
ticate a host P ’s measurement log. R sends to P a nonce, i.e., a cryptographically
random number that is never reused. P asks its TPM to sign a so-called quote,
containing the nonce and current values of the TPM’s registers. Presence of the
nonce in the quote guarantees that a quote cannot be later replayed. The sig-
nature uses an attestation identity key (AIK). P sends the corresponding AIK
certificate to R together with the quote and measurement log. TPMs generate
private and public AIK pairs internally. TPMs use private AIKs only to sign
quotes (as defined above), and never reveal such keys externally. The host owner
obtains the AIK certificate from a so-called privacy certifying authority, which
verifies that the host contains a properly attached TCG-compliant TPM. R au-
thenticates the AIK certificate using the certifying authority’s public key, which
R is assumed to know out-of-band. R then uses the nonce and public AIK to

4

authenticate the quote and uses the quote to authenticate the measurement log.
The authenticated log reveals securely to R what software booted in P .

3 Network protocol enhancements

This section describes protocol enhancements for securing network access.
IEEE 802.1x [7] is a standard, widely supported protocol that can be config-

ured to require mutual authentication between a node and a local area network
(LAN) before the node is allowed to communicate through the network (be-
yond authentication). The participants to this protocol are the supplicant, i.e.
the node that requests access, the authenticator, e.g. a switch or access point
that mediates the supplicant’s access to the network, and the authentication
server, e.g. a RADIUS server that authenticates and authorizes the supplicant’s
access. A variety of authentication protocols can be used over 802.1x, including
PEAPv2 [13]. PEAPv2 begins by creating a TLS tunnel between authentica-
tion server and supplicant, with certificate-based authentication of the former
by the latter. The server then typically uses MS-CHAPv2 for password-based
supplicant authentication. Finally, PEAPv2 binds the TLS and MS-CHAPv2
keys to guarantee that the respective endpoints are the same. 802.1x also en-
ables the creation of a security association between authenticator and supplicant,
with cryptographic keys for encrypting and authenticating packets sent between
them. On Ethernet, such packet-level cryptography is being standardized by
IEEE 802.1ae; on Wi-Fi, packet-level cryptography is enabled by IEEE 802.11i.

PEAPv2 authenticates only the supplicant’s user. We propose to combine
PEAPv2 with Bound Keyed Attestation (BKA). This combination enables the
server to authenticate both the supplicant’s host configuration and user before
the server authorizes the supplicant’s communication. If the server does not trust
the supplicant’s configuration, the server can deny access to the supplicant or
confine the supplicant to a restricted virtual LAN (VLAN, as indicated, e.g., by
a RADIUS access accept attribute).

3.1 Bound Keyed Attestation

This subsection shows that attestation, as defined by TCG, is vulnerable to
MITM attacks. It then proposes BKA, a novel form of attestation that resists
MITM attacks.

As shown in Fig. 1, a malicious user can use two computers, one of which
is conformant to network security policies, to get past TCG-defined attestation.
The user hacks the intermediate computer such that it passes to the user’s
conformant computer any attestation requests, and passes the corresponding
attestation replies back to the authentication server. The latter cannot discern
the presence of a MITM, and therefore authorizes access, even though the MITM
may have a configuration in complete violation of the network’s security policies.

This vulnerability is not eliminated by securely tunneling attestation mes-
sages, e.g. using TLS. A secure tunnel can protect the confidentiality and in-
tegrity of the messages against third-party attacks. However, if the client is not

5

TLS

host
conformant MITM server

authentication
nonce

quote

nonce

quote

Fig. 1. TCG-specified attestation is vulnerable to MITM attacks. If a malicious
user has two computers, one of which is conformant to the server’s policies, the
user can employ the conformant computer to get a hacked computer accepted
by the server. It makes no difference if TLS is used.

trustworthy, the tunnel cannot prevent the latter from acting as a MITM that
relays attestation or other messages between the tunnel and another computer.

To thwart this type of attack, we propose a novel form of attestation, Bound
Keyed Attestation (BKA). It differs from TCG-specified attestation in two im-
portant ways. First, it derives new keys shared by the attestation endpoints.
Second, it securely binds these keys to a tunnel’s keys. This binding guaran-
tees that tunnel and attestation endpoints are the same. Consequently, a MITM
attack is not possible.

All BKA messages can be transmitted using a previously established se-
cure tunnel T (e.g., PEAPv2’s TLS tunnel) with which the attestation will be
bound. It is assumed that T is cryptographically secured with a dynamically
generated secret key KT that is not revealed to users. T can have states attested
or not-attested (default). System policies can prevent communication other than
for attestation while the tunnel is not-attested. Like a Diffie-Hellman key ex-
change [3], BKA uses two publicly known numbers: a prime number q and an
integer α that is a primitive root of q. These numbers do not need to change.
As shown in Fig. 2, the attestation initiator A picks two random numbers: a
nonce NA, which is never reused, and another integer 0 ≤ XA < q, which may
be reused. The initiator computes its public key YA = αXA mod q. The initiator
then sends to the attestation responder B a BKA request message Mi containing
q, α, YA, and NA.

The responder then picks a random integer 0 ≤ XB < q, which may be
reused, and computes its public key YB = αXB mod q. The responder com-
putes the attestation shared secret as KAB = Y XB

A mod q, and its attesta-
tion binding BB = SHA1(NA|KT |KAB |YA|“BKA response”), where | denotes
concatenation. The responder also computes the initiator’s attestation nonce
nA = SHA1(NA|KAB). The responder then gets from its TPM its quote QB

containing nA. Finally, the responder sends to the initiator a BKA response
message Mr containing YB , a fresh nonce NB , BB , QB , and B’s measurement
log LB and AIK certificate CB . Alternatively, if the responder also wishes to
obtain the initiator’s attestation, the responder sends to the initiator a BKA
response-request message Mrr containing the same fields as Mr.

The initiator processes Mr as follows. First, the initiator computes the at-
testation shared secret as KAB = Y XA

B mod q. The initiator then computes the
expected value of BB using KAB . If the received BB does not match this ex-

6

Responder (B) Initiator (A)

Select XA, NA

YA = αXA mod q
q, α, YA, NA�

Select XB , NB

YB = αXB mod q
KAB = Y XB

A mod q
BB = SHA1(NA|KT |KAB |YA|...)
nA = SHA1(NA|KAB)
Get QB(nA), LB , CB

YB , NB , BB , QB(nA), LB , CB

-

KAB = Y XA
B mod q

Verify BB , CB , QB(nA), LB

BA = SHA1(NB |KT |KAB |YB |...)
[nB = SHA1(NB |KAB)
Get QA(nB), LA, CA]

�
BA, [QA(nB), LA, CA]

Verify BA, [CA, QA(nB), LA]

Fig. 2. Bound Keyed Attestation (BKA) thwarts MITM attacks by guaranteeing
that the endpoints of the communication tunnel (e.g., TLS) and attestation are
the same. Items between brackets are needed only for mutual attestation.

pected value, the initiator sends a BKA error message to the responder and
returns failure (possibly the tunnel and attestation endpoints are not the same,
and a MITM attack is happening). Otherwise, the initiator authenticates CB us-
ing the respective certifying authority’s public key (known securely out-of-band),
authenticates the responder’s quote QB using nA and CB , and authenticates the
responder’s measurement log using QB . If any of the authentications fails, or the
initiator does not recognize a measurement in the responder’s log LB as that
of a trusted software component, the initiator sends a BKA error message to
the responder and returns failure. Otherwise, the initiator computes its binding
BA = SHA1(NB |KT |KAB |YB |“BKA success”). The initiator then sends to the
responder a BKA success message Ms containing BA, transitions T ’s state to
attested, and returns success.

Processing of Mrr by the initiator is similar to that of Mr, except that (1) the
initiator also computes the responder’s attestation nonce nB = SHA1(NB |KAB)
and gets from the initiator’s TPM its quote QA containing nB , and (2) instead
of Ms, the initiator sends to the responder a BKA success-response message Msr

containing BA, QA, and A’s measurement log LA and AIK certificate CA.
The responder processes Ms by computing the expected value of BA and

verifying that the received BA matches it. If so, the responder transitions T ’s
state to attested. Otherwise, T ’s state remains not-attested. Processing of Msr

is similar, except that, if the received BA matches its expected value, (1) the
responder also authenticates CA, QA, and LA, and (2) if all authentications

7

succeed, and the responder identifies each measurement in the initiator’s log as
that of a trusted software component, then the responder transitions T ’s state
to attested; otherwise, T ’s state remains not-attested.

Nonces NA and NB guarantee quote freshness and allow bound keyed attesta-
tions to be obtained frequently, without burdening the processors each time with
the expensive computation of YA, YB , and KAB . Performance can be improved
also by caching the authentication of CA and CB and the values of common in-
termediate expressions that change infrequently. The attestation nonces nx are
one-way functions of not only the nonces Nx but also the attestation shared key
KAB . Therefore, the quotes are bound to the attestation shared key, which in
turn is bound to the tunnel key KT by Bx, where x ∈ {A,B}.

4 Operating system enhancements

As explained in the previous section, BKA requires hosts to have TPMs. How-
ever, use of TPMs poses several OS challenges. We propose in the following
subsections three novel solutions to these challenges: TCB prelogging, security
association root tripping, and sealing-free attestation confinement.

4.1 TCB prelogging

TCG documents specify that a system’s BIOS, master boot record, boot loader,
and OS kernel should be measured and their digests included in the system’s
measurement log. However, not only these components, but any member of the
system’s Trusted Computing Base (TCB) needs to be measured. A system’s TCB
is defined as the set of components whose malfunction (due, e.g., to a bug or
attack) would allow the system’s policies to be compromised. Therefore, the TCB
includes not only the TCG-mentioned components, but also their configuration
files and any privileged applications that could modify them, e.g. root-owned
scripts or daemons and setuid applications. On the other hand, unprivileged user
applications that are not part of the TCB can be created, configured, modified,
or destroyed without compromising the system’s ability to enforce policies.

We propose that each system maintain a configuration file listing the system’s
TCB components and respective digests. A bug in this TCB list (e.g., absence of
a TCB component) could enable system policies to be violated. Therefore, the
TCB list needs to include an entry for itself. By convention, the digest of the
TCB list is calculated by making this entry’s digest equal to zero, and the result
is stored in this entry. At boot time, after the kernel mounts the file systems, the
kernel appends the TCB list to the measurement log and compresses the list’s
digests into the TPM. Thereafter, whenever a file that is a TCB component, root-
owned script or daemon or setuid application is opened or exec’ed, the kernel
measures the file’s digest. If this digest is different from the one last logged for
the file, the kernel appends the new measurement to the log and compresses the
new digest into the TPM. Thus, an authenticated measurement log will reveal
whether a tampered or untrusted TCB component has run in the system since
the system booted.

8

4.2 Security association root tripping

Unprivileged users cannot cause the OS kernel or daemons to compromise the
system’s policy enforcement. (If that is not true, the system has a bug that needs
to be fixed.) However, privileged users (e.g., root) can easily violate the system’s
policy enforcement, e.g. by using commands such as sysctl or ifconfig or by using
a debugger to attach and modify privileged processes, after boot time. It can
be difficult or impossible to guarantee that all such configuration modifications
are captured in the system’s measurement log. Moreover, TCG does not specify
what to do when such modifications occur.

We propose to modify the OS such that it detects and takes appropriate
action when a privileged user attempts to gain interactive access to the system
(e.g. by logging in or using the su command). If there are any attestation-based
security associations, the system warns the user that, if the user wants to con-
tinue, the system will immediately drop those security associations. Thus, in the
case of secure intranet access, the system will destroy the keys used for packet-
level cryptography, making access impossible. Furthermore, if the user wants to
continue, the system appends this event to the measurement log with a well-
known digest and compresses the latter into the TPM. Therefore, subsequent
attestations will show that a privileged user has logged in interactively. System
administrators can configure authentication servers to deny access to such sup-
plicants, who will need to reboot before again gaining access to the network
(reboot erases the measurement log, as well as any non-persistent configuration
changes; persistent changes are captured by the new measurement log after re-
boot). These mechanisms do not preclude remote system administration or help,
as long as these are performed using daemons that the network’s authentication
server is configured to trust.

4.3 Sealing-free attestation confinement

TPMs include a function, sealing, that can be abused by applications. As dis-
cussed in the Introduction, sealing enables software lock-in, making hosts unsafe.

To enable BKA without compromising safety, we propose that the OS (1)
support authenticated boot and attestation, but not sealing, and (2) allow at-
testation only in conjunction with network access control protocols (such as
802.1x and IPsec’s IKE). Abusive applications then cannot encrypt and bind
to themselves file contents, as necessary for software lock-in. When the host is
disconnected, the contents would need to be sealed, but the OS does not provide
this service. On the other hand, when the host is Internet-connected, abusive
applications, instead of sealing, could attempt to store file encryption keys in
a remote server that reveals the keys only to abusive applications in attested
clients. However, the OS allows attestation only in conjunction with protocols
that typically cannot go through enterprise firewalls. Because the OS confines
attestation to the intranet, it thwarts software lock-in also in this case.

9

Table 1. Breakdown of authentication and authorization latency and projected
throughput (standard deviations represented between brackets: [σ])

Step PEAPv2 PEAPv2 + LOG PEAPv2 + BKA

TLS 39.6 ms [0.2] 39.9 ms [0.8] 38.9 ms [0.9]
LOG 24.4 ms [0.2]
BKA 2758 ms [263]
MS-CHAPv2 20.6 ms [0.5] 17.4 ms [0.2] 17.9 ms [0.2]
Binding TLS/MS-CHAPv2 7.0 ms [0.2] 6.8 ms [0.2] 6.8 ms [0.1]

Total 67.2 ms [0.5] 88.4 ms [0.5] 2822 ms [263]
CPU busy 22.6 ms [0.2] 23.9 ms [0.2] 116 ms [10]

Projected throughput 2650 supp/min 2510 supp/min 519 supp/min

5 Experimental evaluation

This section evaluates the performance impact of the proposed mechanisms.
Reported results are averages of six measurements.

We implemented the proposed OS enhancements on FreeBSD 4.8 and in-
stalled this OS on an IBM ThinkPad T30 computer with 1.8 GHz Pentium 4
CPU, 256 MB RAM, TPM version 1.1b, TPM-aware BIOS, and built-in 802.11b
interface. The master boot record and GRUB were modified for measuring di-
gests and compressing them into the TPM as specified by TCG. We measured
a total boot time of 20.08 s (σ = 0.12) before and 20.15 s (σ = 0.17) after
our modifications. Although TCB prelogging and file digest measuring impose
overheads, they are completely dominated by other boot costs. During system
operation, each file digest measurement can be cached, and need not be repeated
while the file is not modified [15]. Because TCB components change infrequently,
file digest measurements can be expected to have little impact on steady-state
performance. Security association root tripping affects only certain commands
(e.g., login and su) and only when used by privileged users. Therefore, it also
has negligible performance impact, as does sealing-free attestation confinement.

We integrated PEAPv2/802.1x with BKA on the FreeRADIUS authentica-
tion server [5] and Open1x supplicant [12]. In order to estimate a comparison
with NAP, we alternatively integrated PEAPv2/802.1x with a NAP-like LOG
protocol. Both in BKA and in LOG, the supplicant sends its list of software
components and configuration to the authentication server, who may approve it
or not. However, unlike BKA’s list, LOG’s list can be forged by the supplicant.
We installed FreeRADIUS on a Dell Dimension 4550 computer with 2.4 GHz
Pentium 4 CPU, 256 MB RAM, and unmodified FreeBSD 4.10. We installed
Open1x on the aforementioned IBM T30 computer. As authenticator, we used a
Cisco Aironet 1100 802.11b access point connected to the authentication server
via Fast Ethernet. We used BKA with precomputed modulus (1024-bit) and
primitive root. Table 1 shows that the time it takes for the supplicant to con-
nect to the network increased from about 67 ms to 88 ms with LOG or 2.8 s
with BKA. To understand the source of BKA’s large overhead, we measured the
time it takes for the supplicant to obtain a quote from its TPM, and found it to

10

be 2.5 s (σ = 0.2). Therefore, most of the latency added by BKA is due to the
TPM. However, even with a low-cost, slow TPM, such as the one we used, the
connection latency is acceptable.

In order to evaluate the impact of LOG or BKA on the CPU utilization of the
authentication server, we instrumented the OS’s idle loop and interrupt vector.
The instrumented OS uses the CPU’s built-in cycle counter to measure CPU idle
time, excluding interrupts. We also instrumented FreeRADIUS to measure the
total time necessary to authenticate and authorize supplicant access. Table 1
shows how long the authentication server’s CPU was busy while processing a
single supplicant, and the projected throughput (load for saturating the CPU).
LOG and BKA reduced projected throughput from roughly 2650 to 2510 or 519
supplicants/minute, respectively. BKA’s large overhead is due to its use of public-
key algorithms for key exchange and authentication of certificates and quotes, as
well as repeated applications of SHA-1. Although BKA’s overhead is substantial,
the projected throughput may be acceptable for medium-size networks. Note
that, in our scheme, a supplicant imposes no load on the authentication server
after the latter authorizes access. In larger networks, load can be distributed
simply by using multiple low-cost authentication servers, such as the one we
used.

6 Related work

NAC [1] and NAP [9] are the architectures most closely related to our work.
Because NAP uses DHCP for controlling access to enterprise LANs, malicious
users can circumvent it simply by using a static networking configuration. We
use 802.1x instead of DHCP to avoid this security loophole. NAC is currently
implemented on certain routers, using a proprietary access control protocol. Un-
like our solution, such an implementation does not prevent unauthorized access
to LANs that a malicious user might directly connect to.

Our TCB lists are similar to what Tripwire [17] uses to verify host integrity.
However, unlike Tripwire, we enable administrators to verify host integrity re-
motely. Bear [8] is a Linux-based OS that supports TPMs and uses similar lists,
signed by trusted system administrators. Bear’s Enforcer verifies at load time
whether a file’s digest matches its value on the signed list. In case of a mismatch,
Enforcer takes the action specified on the list (e.g., return failure). Bear does
not support attestation, relying instead on certificates with special semantics,
and has no protection against privileged users. Security association root tripping
(Section 4.2) would significantly improve Bear’s security.

TcgLinux [15] is another OS with TPM support. Because tcgLinux does not
have a TCB list, it logs and compresses into the TPM digests of all files that are
executed, and requires shells and other programs to be modified to do the same
with their security-sensitive scripts and configuration files. This design makes
it harder to verify that all TCB configuration files are being measured. It also
unnecessarily exposes in attestations the execution of unprivileged programs,
reducing user privacy. TcgLinux has mechanisms to prevent privileged users

11

from making system modifications that might not be detected by attestation. It
does allow, however, any modifications that would be detected by attestation.
TcgLinux attestations have been used to secure VPN access [16]. However, that
solution has several shortcomings. First, TCG-specified attestation is vulnerable
to MITM attacks, as shown in Section 3.1. Second, tcgLinux would be vulnerable
to MITM attacks even if BKA were used, because it does not prevent privileged
users from reading secret keys and other parameters of VPN tunnels. In contrast,
security association root tripping would close the VPN tunnels before such read-
ing would be possible. Third, the VPN gateway has to verify fresh attestations
of each client frequently. If attestation frequency is low, users may be able to
connect an insecure node to the VPN long enough to cause harm. On the other
hand, our experimental results suggest that high attestation frequencies could
severely limit the throughput of the VPN gateway. In contrast, security associ-
ation root tripping achieves security with a single attestation at the beginning
of each client’s session.

Microsoft’s NGSCB architecture [10] uses TPMs and divides the system into
trusted and untrusted halves. The untrusted half runs a conventional OS, includ-
ing file system and network protocol stack. On the other hand, the trusted half
secures user credentials and keys for digital rights management. It uses storage
and communication services provided by the untrusted half. NGSCB requires
special CPUs with Intel’s LaGrande Technology (LT). Terra [6] is an OS with
similar architecture, but uses a virtual machine monitor instead of LT. It is un-
clear how NGSCB or Terra would be used for securing network access, because
those systems cannot guarantee the integrity of the untrusted half’s configura-
tion.

7 Conclusions

Firewall-based network security perimeters can be leaky. Architectures such as
NAC and NAP attempt to plug perimeter leaks by preventing nodes that do
not conform to a network’s security policies from joining the network. How-
ever, those architectures are vulnerable to malicious users. TCG has specified
inexpensive secure coprocessors that could harden those architectures. However,
several challenges need to be overcome, including how to prevent MITM at-
tacks, undetected changes to system files, tampering by privileged users, and
software lock-in. We proposed novel solutions to these challenges: bound keyed
attestation, TCB prelogging, security association root tripping, and sealing-free
attestation confinement. We integrated these mechanisms with FreeBSD and
PEAP over 802.1x. Experimental results show that our techniques allow secure
coprocessors to protect access to enterprise networks robustly, safely, and with
acceptable overhead.

References

1. Cisco: Network Admission Control. [Online] http://www.cisco.com/en/US/

netsol/ns466/networking_solutions_sub_solution_home.html

http://www.cisco.com/en/US/netsol/ns466/networking_solutions_sub_solution_home.html
http://www.cisco.com/en/US/netsol/ns466/networking_solutions_sub_solution_home.html

12

2. Dierks, T., Allen, C.: The TLS Protocol Version 1.0. IETF, RFC 2246, Jan. 1999.
[Online] ftp://ftp.rfc-editor.org/in-notes/rfc2246.txt

3. Diffie, W., Hellman, M.: New Directions in Cryptography. In Transactions on In-
formation Theory, IEEE, 1976, 22:644-654.

4. Felten, E.: Understanding Trusted Computing. In Security and Privacy, IEEE,
May/June 2003, pp. 60-62. [Online] http://www.princeton.edu/~echi/ele572/
Felten%20-%20Understanding%20trusted%20computing.pdf

5. FreeRADIUS: Homepage. [Online] http://www.freeradius.org/
6. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A Virtual

Machine-Based Platform for Trusted Computing. In Proc. 19th Symposium on
Operating System Principles, ACM, 2003. [Online] http://www.stanford.edu/

~talg/papers/SOSP03/terra.pdf

7. IEEE: Port-Based Network Access Control. 802.1x Std. (2001) [Online] http://
standards.ieee.org/getieee802/download/802.1X-2001.pdf

8. Marchesini, J., Smith, S., Wild, O., Stabiner, J., Barsamian, A.: Open-Source Ap-
plications of TCPA Hardware. In Proc. 20th Annual Computer Security Appli-
cations Conference, ACSAC, Dec. 2004. [Online] http://www.cs.dartmouth.edu/
~carlo/research/bearapps/bearapps.pdf

9. Microsoft: Network Access Protection. [Online] http://www.microsoft.com/

windowsserver2003/technologies/networking/nap/default.mspx

10. Microsoft: Next Generation Secure Computing Base – Technical FAQ. July 2003.
[Online] http://www.microsoft.com/technet/security/news/ngscb.mspx

11. NIST: Secure Hash Standard. Federal Information Processing Standards Pub. 180-
1, Apr. 1995. [Online] http://www.itl.nist.gov/fipspubs/fip180-1.htm

12. Open1x: Homepage. [Online] http://www.open1x.org/
13. Palekar, A., Simon, D., Salowey, J., Zhou, H., Zorn, G., Josefsson,

S.: Protected EAP Protocol (PEAP) Version 2. IETF. Internet Draft,
Oct. 2004. [Online] ftp://ftp.rfc-editor.org/in-notes/internet-drafts/

draft-josefsson-pppext-eap-tls-eap-10.txt

14. Pearson, S. (ed.): Trusted Computing Platforms – TCPA Technology in Context.
Prentice Hall, 2003.

15. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of
a TCG-based Integrity Measurement Architecture. In Proc. Security Symposium,
USENIX, Aug. 2004. [Online] http://www.usenix.org/publications/library/

proceedings/sec04/tech/sailer.html

16. Sailer, R., Jaeger, T., Zhang, X., van Doorn, L.: Attestation-based Policy En-
forcement for Remote Access. In Proc. 11th Conference on Computer and Com-
munications Security (CCS), ACM, Oct. 2004. [Online] http://portal.acm.org/
citation.cfm?id=1030083.1030125

17. Tripwire.org: Homepage. [Online] http://www.tripwire.org/
18. Trusted Computing Group: Homepage. [Online] https://www.

trustedcomputinggroup.org/home

19. Trusted Computing Group: Trusted Computing Platform Alliance (TCPA) Main
Specification Version 1.1b. [Online] https://www.trustedcomputinggroup.org/

downloads/Main_TCG_Architecture_v1_1b.zip

20. Trusted Computing Group: Work Group Charter Summary. 2004. [Online]
https://www.trustedcomputinggroup.org/downloads/Work_Group_Charters_

Summary.pdf

ftp://ftp.rfc-editor.org/in-notes/rfc2246.txt
http://www.princeton.edu/~echi/ele572/Felten%20-%20Understanding%20trusted%20computing.pdf
http://www.princeton.edu/~echi/ele572/Felten%20-%20Understanding%20trusted%20computing.pdf
http://www.freeradius.org/
http://www.stanford.edu/~talg/papers/SOSP03/terra.pdf
http://www.stanford.edu/~talg/papers/SOSP03/terra.pdf
http://standards.ieee.org/getieee802/download/802.1X-2001.pdf
http://standards.ieee.org/getieee802/download/802.1X-2001.pdf
http://www.cs.dartmouth.edu/~carlo/research/bearapps/bearapps.pdf
http://www.cs.dartmouth.edu/~carlo/research/bearapps/bearapps.pdf
http://www.microsoft.com/windowsserver2003/technologies/networking/nap/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/networking/nap/default.mspx
http://www.microsoft.com/technet/security/news/ngscb.mspx
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.open1x.org/
ftp://ftp.rfc-editor.org/in-notes/internet-drafts/draft-josefsson-pppext-eap-tls-eap-10.txt
ftp://ftp.rfc-editor.org/in-notes/internet-drafts/draft-josefsson-pppext-eap-tls-eap-10.txt
http://www.usenix.org/publications/library/proceedings/sec04/tech/sailer.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/sailer.html
http://portal.acm.org/citation.cfm?id=1030083.1030125
http://portal.acm.org/citation.cfm?id=1030083.1030125
http://www.tripwire.org/
https://www.trustedcomputinggroup.org/home
https://www.trustedcomputinggroup.org/home
https://www.trustedcomputinggroup.org/downloads/Main_TCG_Architecture_v1_1b.zip
https://www.trustedcomputinggroup.org/downloads/Main_TCG_Architecture_v1_1b.zip
https://www.trustedcomputinggroup.org/downloads/Work_Group_Charters_Summary.pdf
https://www.trustedcomputinggroup.org/downloads/Work_Group_Charters_Summary.pdf

	Using Secure Coprocessors to Protect Access to Enterprise Networks
	Haidong Xia, Jayashree Kanchana, José Brustoloni (University of Pittsburgh)

