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Abstract. This paper extends the Birkhoff-von Neumann unicast switch-

ing strategy to the multicast case. Using a graph theoretic model we

show that the rate region for a traffic pattern is precisely the stable set

polytope of the pattern’s ‘conflict graph’, in the no-fanout splitting case.

Computing the offline schedule is equivalent to fractional weighted graph

coloring which takes polynomial time for perfect graphs. For a general

conflict graph, we show that deciding achievability of a given rate vector

is NP -hard, but can be done in polynomial time for the case of moderate

multicast load. The result naturally leads to an offline schedule.

1 Introduction

Online unicast scheduling in input-queued switches is a well-studied problem.
McKeown et al. [1] gave a scheduling algorithm known as the maximum weighted
matching (MWM) algorithm which achieves 100 % throughput for all admissible
unicast arrival patterns. One major drawback of MWM-based approaches is that
they do not provide cell delay guarantees. The Birkhoff-von Neumann (BVN)
switch proposed by Chang et al. [2] addresses this issue. The BVN switch pro-
vides 100 % throughput for all non-uniform traffic, and also gives deterministic
cell delay guarantees for certain types of traffic.

The basic idea of the BVN approach is as follows. Suppose the average ar-
rival rate of packets is known for every input-output pair. This rate requirement
matrix is decomposed into a convex combination of permutation matrices. Since
a permutation matrix naturally corresponds to a switch configuration, this de-
composition leads to an offline1 schedule. In this paper, we study the extension
of this approach to the case when there are multicast flows within the switch.

A fundamental question that arises while trying to extend the BVN strategy
to multicast is that of how to split the fanout (the set of destinations) of each
multicast flow. There are many options each requiring a different queuing policy:

1. Copying: Each input maintains one virtual output queue (VOQ) for every
output. When a multicast cell arrives at an input, it is replicated as many
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times as its fanout size. One copy is added to the VOQ of each of the outputs
in the fanout. This is equivalent to viewing the multicast as a collection of
unicast flows.

2. No-splitting: This is the other extreme, where a multicast cell is sent to
all outputs in its fanout in a single time slot. Each input must maintain a
separate VOQ for every multicast flow. Moreover, the switch should have
intrinsic multicast capability2.

3. Fanout-splitting: Multiple copies of the multicast cell are generated and,
in each slot, one copy is transferred to a subset of the fanout which has not
already got the cell. The fanout is thus split partially. Again, the switch
needs to have intrinsic multicast capability. This can be implemented in two
ways:

– Static splitting: Here, the multicast traffic pattern is assumed to be
known before hand. All cells of a flow are split in the same manner (which
is decided offline). This is like replacing the original multicast with a set
of “split flows”, for which further splitting is not allowed. Each input
must maintain a separate VOQ for every split flow. When a multicast
cell arrives at an input, it is replicated according to the predecided policy,
and one copy is added to the VOQ of each of its split flows.

– Dynamic splitting: For this strategy, each input maintains a VOQ
for every subset of the fanout. When a multicast cell arrives at an input,
it is transferred to some subset of its fanout and then, re-enqued into
the VOQ corresponding to the remaining part of the fanout. The way in
which a multicast flow’s fanout is split can vary from cell to cell.

Dynamic splitting is the least constrained approach and subsumes the other
options. It is known that, in the online case, dynamic fanout-splitting gives
better throughput than no-splitting [3]. However, this benefit comes at a cost.
Since the way flows are split is not known beforehand, the part of the fanout
that remains to be served at some point of time, could be any arbitrary subset
of the original fanout. Therefore, each input has to maintain a separate VOQ
for every possible subset of the fanout, resulting in an exponential number of
queues, even if the traffic pattern is known beforehand. In contrast, the static
splitting approach requires a much smaller number of queues. At each input, one
VOQ for every split flow is enough.

Earlier work on multicast switching has focused on online algorithms when
dynamic splitting is allowed. Marsan et al. [4] defined the optimal online multi-
cast scheduling algorithm, and defined the capacity region, but did not give an
explicit characterization.

In this paper, we present a graph theoretic model for the problem, and use it
to derive the rate region of the no-splitting case. We also present an algorithm
to decide the achievability of a given set of rates, and find an offline schedule, in
the case of moderate multicast load.

2 The ability to simultaneously transfer a cell to multiple outputs using simultaneous

switching paths



2 Rate Region and Offline Schedule

Definition 1 (Conflict graph). The conflict graph G = (V,E) for a given
traffic pattern is defined thus:

V = set of all flows to be served

E = {(vi, vj)|flows i, j cannot coexist within a valid switch configuration}.

The conflict graph brings out the connection constraints in the switch. A valid
switch configuration consists of a set of flows that can co-exist, which corresponds
to a set of vertices no two of which are connected - in other words a stable
set. A convex combination of stable sets gives a schedule where the flows in a
particular stable set are served for a fraction of time equal to the coefficient in
the combination. This leads to the following result. (The proof of the theorems
in this paper are not given here for want of space, and can be found in [6]).

Theorem 1. The rate region for the multicast case with no-splitting is precisely
the stable set polytope of the conflict graph. ⊓⊔

Next, we address the problem of computing the offline schedule in a general case.
This approach gives an efficient algorithm for the case of perfect conflict graphs.
[6] gives several examples of traffic flows whose conflict graph is perfect.

Theorem 2. The problem of computing the decomposition of the given rate re-
quirements into switch connection states (stable sets) is precisely the problem of
fractional weighted graph coloring of the conflict graph, with the weights chosen
as the required rates for the flows. ⊓⊔

3 Deciding Achievability

Theorem 3. The problem of deciding whether a given rate requirement vector
is achievable using the no-splitting strategy is NP -hard. ⊓⊔

The basic idea of the proof is to map the decidability question to the membership
problem over the stable set polytope of a general graph. We next show that the
hardness result can be extended to the case when dynamic fanout splitting is
allowed. For details of the proof, please refer to [6].

Theorem 4. The problem of deciding whether a given rate vector is within the
rate region of the no-splitting case can be reduced to an instance of the corre-
sponding problem in the fanout-splitting case. ⊓⊔

Corollary 1. The problem of deciding achievability in a multicast switch when
fanout-splitting is allowed, is NP -hard. ⊓⊔

We now present an algorithm to decide the achievability of a given rate
vector, with no fanout-splitting. The algorithm runs in time polynomial in the
switch size (N) if the number of multicasts is O(logN)(see [6] for details). This
algorithm naturally gives a schedule to achieve the rates in a stable manner.



Algorithm 1 DECIDER:
INPUT: A rate requirement vector ro; a traffic pattern in an N ×N switch, with
k multicasts and all possible unicasts.
OUTPUT: Is ro within the achievable region corresponding to the traffic pattern,
in the no-splitting case? If yes, give a schedule to achieve it in a stable manner.

1. Let the multicasts be M1,M2, . . . ,Mk. Let A ⊆ [k]. Let RA be the rate region
for the traffic pattern with the condition that the multicasts {Mi|i ∈ A} are
all always being served. Compute RA for all possible subsets A of [k].

2. Verify whether ro lies in the convex hull of all the RA’s. The answer to this
question is the output.
Let Bjx ≤ cj, j = 1, 2, . . . , J be the set of convex regions representing RA.
Verifying whether a point r is in the convex hull of these regions is equivalent
to verifying whether this linear program in the variables yj and φj is feasible:

J∑

j=1

φj = 1; φj ≥ 0; r =
J∑

j=1

yj; Bjyj ≤ φjcj ∀j = 1 to J. (1)

4 Conclusions

In this paper, we have investigated offline multicast switch scheduling using a
graph theoretic formulation of the problem in terms of conflict graphs. We have
shown that the rate region for a given traffic pattern is the stable set polytope of
the conflict graph. We have provided an algorithm to decide the achievability of
a rate vector and find the offline schedule for a moderate number of multicasts,
in the no splitting case. Note that static splitting can be seen as an instance of
no-splitting, with the set of flows chosen as the split flows. So, all results derived
for no-splitting strategy in this paper hold for the static splitting strategy, which
is very attractive as it requires a much smaller number of queues than dynamic
splitting. The i-SLIP [5] unicast algorithm can be extended to multicast using
the conflict graph formulation presented here. This is explained in detail in [6].
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