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Abstract. Empirical studies report frequent occurrences of path failure
in the Internet. In providing resilience to such failures, we propose the
computation of alternate backup end-to-end path that is disjoint to the
default IP path. This disjoint path is created using transit hubs that can
be located at diverse points in the Internet. Transit hubs provide better
utilization of network resources. Assuming an IP layer routing between
any two nodes, we show that the problem of computing such a disjoint
path is NP-complete. We present an exact and a heuristic solution for
the problem. Using routing data obtained from PlanetLab, we evaluate
the efficacy of our heuristic solution.
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1 Introduction

Current Internet routers select only a single path between a source and des-
tination node. The choice of this default IP path is not left to the end hosts,
instead it is left to the Administrative (AS) domain operators or on the BGP
level policies. Often it is desirable for the end hosts to have better control over
the route selected in context of traffic engineering and QoS controlled applica-
tions. A solution framework that has been gaining immense interest recently in
the research community is using transit hubs. Transit hub routing allows routing
between end hosts via a set of dedicated transit nodes that are placed at diverse
locations on the Internet.

The benefits of transit hub routing are multidimensional. Transit hubs can
forward packets, compute an end-to-end alternate path by chaining a set of
default IP paths and thus facilitate better utilization of network resources. It
provides better control over the load distribution in a network and can route
packets over less congested areas. An interesting application area is bulk data
transfers. Transit caches were deployed on the Internet in experiments [7], which
resulted in transmission speeds of up to 47.6 Mbps during transfers of 3 TB
of data between SanDiego and Urbana-Champaign. Bulk data transfer is not



readily supported by current Internet routers and would have been improbable
without transit hubs. Another ongoing research effort in this direction is the
Logistical Networking project [2] in which the transit hubs (called depots) offer
middleware-like storage services that can be used in many applications.

Relying just on the single default IP path may lead to various end-to-end
performance bottlenecks. Experimental studies conducted by authors of detour
indicate that in many cases, alternate paths have better latency and throughput
characteristics than direct default IP paths. Albeit the strong case for alternate
paths, they cannot be directly constructed using existing routers as they do
not provide any rerouting flexibilities. Transit hubs provide an elegant solution
framework (using techniques like IP-in-IP encapsulation [4], overlay networks
[1] or flexible extension headers of IPv6 datagrams) for creating alternate paths
between end hosts and works seamlessly with the existing routers.

There is immense literature on traditional multipath routing problem[3, 10,
8] (others not provided due to space constraints). The advantages of multipath
routing can be exploited to its fullest extent if the paths are link (or node)
disjoint. Suurballe [10] presented polynomial time algorithms for computation
of a pair of disjoint paths such that the sum of the path lengths is minimum. The
idea of using intermediate nodes to provide a level of indirection in creating an
alternate path was proposed in [1, 5, 12, 2]. These intermediate nodes have been
referred with various nomenclature: as overlay nodes [1, 5], rendezvous points
[12], depots [2], hubs [4] and transit hubs in this paper.

Our first contribution is to establish the NP-completeness of the K-transit
hub routing problem. Secondly, we present an exact algorithm for solving the K-
Transit hub routing problem. Our third contribution is a heuristic based solution
that is effective for large networks. We evaluate the efficacy of our heuristic
through extensive experimentation on PlanetLab’s Abilene network and various
randomly generated topologies.

2 Disjoint Path Routing Using Transit Hubs

The objective of the K-Transit hub routing problem is to find out if it is possible
to construct a path from s to d by concatenating at most K + 1 paths (from
the set of n ∗ (n − 1) paths) so that (i) each of these paths is edge-disjoint with
the original s to d path and (ii) the paths are mutually edge-disjoint. In other
words, can we find a set of paths {Ps,v1

, Pv1,v2
, Pv2,v3

, Pv3,v4
, . . . , Pvk−1,vk

, Pvk,d},
1 ≤ k ≤ K + 1 such that the concatenation of these paths will produce a path
from s to d and condition (i), (ii) above are satisfied.

The idea is illustrated with the help of an example overlay network (Fig.
1) obtained from the PlanetLab. The overlay network has five nodes 1 through
5. The nodes a through j represent routers through which the overlay nodes
establish paths between each other. In this example, the primary path for data
transfer from overlay node 1 to node 4 is through the link 1-4 (path P3). If the
following question is asked: “Is it possible to construct an alternate path from
node 1 to 4, disjoint from the default path, by concatenating at most two mutually
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Fig. 1. Overlay Network from the PlanetLab (See legend)

Legend: Nodes in Fig 1 Paths connecting overlay nodes

1: PlanetLab 1, University of Arizona P1: 1 - a - b - c - d - e - 2;
2: PlanetLab 2, Carnegie Mellon University P2: 1 - a - b - c - d - e - 3;
3: PlanetLab 2, Duke University P3: 1 - 4; P4: 1 - a - b - c - d - e - 5;
4: PlanetLab 2, University of Washington P5: 2 - f - g - h - i - j - 1; P6: 2 - 3;
5: PlanetLab 2, Princeton University P7: 2 - f - g - h - i - 4; P8: 2 - 5;
a: kscyng-dnvrng.abilene.ucaid.edu P9: 3 - f - g - h - i - j - 1;
b: iplsng-kscyng.abilene.ucaid.edu P10: 3 - 2;
c: chinng-iplsng.abilene.ucaid.edu P11: 3 - f - g - h - i - 4; P12: 3 - 5;
d: nycmng-chinng.abilene.ucaid.edu P13: 4 - 1;
e: washng-nycmng.abilene.ucaid.edu P14: 4 - a - b - c - d - e - 2;
f: nycmng-washng.abilene.ucaid.edu P15: 4 - a - b - c - d - e - 3;
g: chinng-nycmng.abilene.ucaid.edu P16: 4 - a - b - c - d - e - 5;
h: iplsng-chinng.abilene.ucaid.edu P17: 5 - f - g - h - i - j - 1;
i: kscyng-iplsng.abilene.ucaid.edu P18: 5 - 2; P19: 5 - 3;
j: dnvrng-kscyng.abilene.ucaid.edu P20: 5 - f - g - h - i - 4;

disjoint paths?”, the answer to the question is “yes” because such a path can be
constructed by concatenating paths P4 and P20.

3 Problem Formulation and Complexity Analysis

As indicated earlier, the input to the K-Transit hub routing problem is (i) an
undirected network graph G = (V, E), (ii) a set of n ∗ (n − 1) paths (|V | = n)
between every source-destination node pair (the path from node i to j may notbe
same as the path from j to i) and (iii) specified source and destination nodes
s and d respectively. The objective of the K-Transit hub routing problem is to
find out if it is possible to construct a path from s to d by concatenating at most
K + 1 paths (from the set of n ∗ (n − 1) paths) so that (i) each of these paths
is edge-disjoint with the original s to d path and (ii) the paths are mutually
edge-disjoint.

In order to find an answer to this question, we first remove all the edges used
by the path from s to d from the graph G = (V, E). Let P be the set of all
n ∗ (n − 1) paths given as the input. After removal of the edges belonging to
the s to d path, many of the paths in P may become disconnected. We refer



to such paths as “unavailable” (Punav). The other subset of paths in P are the
“available” paths (Pav).

Note that here we make no attempt to consider future connection requests
and the bandwidth required to satisfy them. It could very well happen that
the alternate path computed by our algorithms may not be able to satisfy a
connection request due to other network traffic at that time. In our approach,
we merely try to ascertain whether such an alternate path exists in the network.
The rationale behind this decision is that the K-Transit hub problem by itself
without considering any of these parameters is NP-complete. In order to keep
the problem tenable, we focus on just the computation of an alternate path
by concatenating at most K + 1 paths. In this regard, we do not consider the
capacity of the links in our model.

3.1 Definitions and Notations

Definition 1. Intersection set of paths: The intersection set of two paths Pi and
Pj is the set of edges common between the paths and is denoted by Pi ∩ Pj.

Definition 2. Compatible Paths: Two paths Pi and Pj are said to be compatible
if their intersection set is empty.

Definition 3. Concatenation of Paths: If Pi is a path from si to di and Pj is
a path from sj to dj, they can be concatenated if di = sj and the result of the
concatenation operation is a path from si to dj.

Definition 4. K-Transit Hub Routing Problem

Instance: Given an undirected graph G = (V, E), a set of triples (si, di, Pi), 1 ≤
i ≤ r, where si is a source node, di is destination node and Pi is a path from si

to di and r is the number of such triples, specified source, destination nodes s

and d respectively and an integer K.
Question: Suppose Pav = {P1, . . . , Pr}. Is there a subset P ′

av ⊆ Pav such that:
(i) | P ′

av | ≤ K + 1
(ii) The paths in P ′

av are mutually compatible, i.e., if Pi, Pj ∈ P ′

av, then Pi∩Pj =
∅, ∀i 6= j and

(iii) A path from s to d can be constructed by concatenating the paths in P ′

av.

3.2 Complexity Analysis

Theorem. The K-Transit Hub Routing Problem is NP-Complete.
Proof. It is not difficult to verify that the K-Transit hub routing problem is in
NP. We show that the K-Transit Hub Routing Problem is NP-complete by a
polynomial transformation from the 3SAT problem. From a given instance of
the 3SAT problem, specified by a set of variables X = {x1, . . . , xn} and a set
of clauses C = {C1, . . . , Cm}, we construct an instance of the K-Transit Hub
Routing Problem in the following way. First, we classify each edge in the graph
G = (V, E) as a path-edge or a non-path-edge.



Definition 5. An edge (u, v) ∈ E is called a path-edge, if ∃Pi = (u, v) where
Pi ∈ Pav. Otherwise, the edge is known as a non-path-edge.

It may be noted that a path between a source-destination node pair may
comprise of both of these types of edges. The instance (G,Pav, s, d, K) of the
K-Transit hub routing problem can be generated from the instance of the 3-
SAT problem in three steps: (i) We construct a subgraph G1 of G. (ii) Paths in
Pav consisting of more than one edge are specified. (iii) We augment G1 with
additional nodes and edges to construct G. It may be noted that all paths in Pav

consisting of exactly one edge are specified in (i) and (iii), and all paths with
more than one edge are specified in (ii).
Step 1. ∀xi ∈ X and ∀Cj ∈ C, construct a 4-node subgraph with node set
{ui,j, u

′

i,j , vi,j , v
′

i,j} and edge set {(ui,j, u
′

i,j), (vi,j , v
′

i,j)}, where both edges are
path-edges. For each fixed xi, ∀j = 1, . . . , m − 1, we connect the subgraph
for xi, Cj and the one for xi, Cj+1 with two non-path-edges (u′

i,j , ui,j+1) and
(v′i,j , vi,j+1). Then for each xi, we add six more vertices: ai, bi, ci, a

′

i, b
′

i and c′i.
We connect ai, bi, ci with path-edges (ai, bi) and (ai, ci) and connect a′

i, b
′

i, c
′

i with
path-edges (a′

i, b
′

i) and (a′

i, c
′

i). For each xi, we add four more non-path-edges:
(bi, ui,1), (ci, vi,1), (u

′

i,m, b′i) and (v′i,m, c′i). In addition, ∀i = 1, . . . , n− 1, we add
a path-edge (a′

i, ai+1) to connect the subgraphs corresponding to xi and xi+1.
If the instance of the 3SAT problem is given by φ = (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨
x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3), then the graph G1 corresponding to φ is
shown in Fig. 2.
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Fig. 2. Subgraph G1 of G
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Fig. 3. Long paths consisting of more
than one edge

Step 2. In this step, we specify all the paths in Pav consisting of more than
one edge. ∀i = 1, . . . , n, a path between bi and b′i: Pbi

= bi−ui,1−u′

i,1 . . .−u′

i,m−b′i
and a path between ci and c′i: Pci

= ci−vi,1−v′i,1 . . .−v′i,m−c′i are added into Pav.



For the example used in Step 1, the paths specified in this step are highlighted
in Fig. 3.
Step 3. This step has two parts. First, a set of nodes {s, w0, w1, . . . , wm, d} is
added to the graph G1 (Recall that m is the number of clauses in the 3SAT
instance). Second, a set of path-edges is added as follows: (i) connect s and
w0 by a path-edge (s, w0), connect a′

n and d by a path-edge (a′

n, d) (ii) ∀i =
1, . . . , n,∀j = 1, . . . , m, if xi ∈ Cj , then add (wj−1, ui,j), (u′

i,j , wj) and if x̄i ∈ Cj ,
then add (wj−1, vi,j), (v′i,j , wj) (iii) connect wm to a1 by a path-edge (wm, a1).
This completes the construction procedure of G with all of paths in Pav. The
resulting graph G is shown in Fig. 4.
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Fig. 4. Graph G
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Fig. 5. The transit hub path corre-
sponding to the truth assignment of φ

Set s, d to be the source node and destination node respectively in graph
G = (V, E).Set K=|E|. Construction of the instance of the K-Transit hub prob-
lem is now complete.
Claim: There exists a truth assignment satisfying the instance of the 3SAT prob-
lem, if and only if a path from s to d can be constructed in the generated instance
of the K-Transit hub routing problem by concatenating at most K +1 mutually
compatible paths.
Proof of the claim: Suppose that there is a truth assignment satisfying the in-
stance of the 3SAT problem. We can construct a path from s to d by concate-
nating a subset of paths in the following way: (i)Go from s to w0 following the
path-edge between them. (ii)Each Cj , j = 1, . . . , m, has at least one literal, z that
has been assigned “true” by the truth assignment. This implies that we can go
from wj−1 to wj using the corresponding path-edges (i.e., wj−1 −ui,j −u′

i,j −wj

or wj−1 − vi,j − v′i,j − wj). (iii)Go from wm to a1 using the path-edge between
them. (iv)If x1 = “true”, then no edge on the path from c1 to c′1 has been used
so far; otherwise, if x1 = “false”, then no edge on the path from b1 to b′1 has



been used yet. Hence, we can go from a1 to a′

1 using one of the following two
sequences of paths: if the path from b1 to b′1 is unused, then take (a1, b1), path
from b1 to b′1, and then (b′1, a

′

1); if the path from c1 to c′1 is unused, then take
(a1, c1), path from c1 to c′1, and then (c′1, a

′

1). (v)∀i, 1 ≤ i ≤ n − 1, go from a′

i

to ai+1, using the path-edge between them. (vi)∀i, 2 ≤ i ≤ n go from ai to a′

i

following the same process as in step (iv). (vii)Go from a′

n to d following the
path-edge between them. Thus, we find a s − d path, which is a concatenation
of a sequence of mutually compatible paths.

To prove the converse, suppose that we can go from s to d by concatenating
a sequence of mutually compatible paths. It is not hard see that we must first go
from s to wm by following the path-edges incident to wj ’s. Then, from wm, we
have to go through each subgraph corresponding to xi’s, from ai to a′

i, by using
the long paths from bi to b′i, or the ones from ci to c′i. ∀i = 1, . . . , n, if the path
from bi to b′i is used, then assign xi to be “false” and if the path from ci to c′i is
used, then assign xi to be “true”. It is not hard to check this assignment satisfies
the corresponding 3SAT problem. This completes the proof of the theorem. 2

In the sample 3SAT instance φ considered in Steps 1, 2, and 3, the truth
assignment f(x1) = FALSE, f(x2) = TRUE, f(x3) = TRUE satisfies φ. The
corresponding s − d path is shown in Fig. 5

4 Exact Solution for the K-Transit Hub Routing Problem

In this section, we provide an exact algorithm for the solution of the K-Transit
hub routing problem. As a first step in that direction, we first construct a Path
Intersection Graph (PIG).

Definition 6. A Path Intersection Graph is the intersection graph of paths in
the set Pav. This is a graph Gpig = (Vpig , Epig), where each node represents a
path in the set Pav and two nodes have an edge between them, if the corresponding
paths have any common edge.

Definition 7. An independent set (or a stable set) in a graph G = (V, E) is a
subset V ′ ⊆ V , such that no two nodes in V ′ are adjacent to each other in the
graph G = (V, E).

Definition 8. An independent set in a graph G = (V, E) is called a maximal
independent set if it is not a proper subset of any other independent set in the
graph.

As a second step towards construction of the alternate s to d path, we com-
pute all the maximal independent sets of the path intersection graph. The max-
imal independent sets of the path intersection graph will correspond to the sets
of maximal compatible paths in Pav. Let {MIS1, MIS2, . . .} represent the set
of maximal independent sets of the path intersection graph.

As a third step in the process to construct an alternate s to d path, we con-
struct a Path Construction Graph corresponding to each maximal independent
set MIS1, MIS2, . . . , MISt computed in the previous step.



Definition 9. Each node in a Path Construction Graph corresponding to a
MISi, 1 ≤ i ≤ t, Gpcg(i) = (Vpcg(i), Epcg(i)), corresponds to a path in MISi and
two nodes have an edge between them if the corresponding paths have a common
terminating point, i.e., if the terminating points of a path are vi, vj and the
terminating points of another path are vk, vj, then the nodes corresponding to
these two paths will have an edge between them in the graph Gpcg(i).

Let Vpcg(i, s) = {vs,1, vs,2, . . . , vs,p} denote the set of nodes that correspond
to paths whose one terminating point is the designated source node s. Similarly,
let Vpcg(i, d) = {vd,1, vd,2, . . . , vd,q} denote the set of nodes that correspond to
paths whose one terminating point is the designated destination node d. Now in
the graph Gpcg(i), we compute the shortest path between the nodes vs,j , 1 ≤ j ≤
p and vd,k, 1 ≤ k ≤ q. If any of these paths have length at most K + 1, then it
is possible to construct an alternate path from s to d, disjoint from the original
path Ps,d in the graph G = (V, E), by concatenating compatible paths in the
set Pav. This process of building a path construction graph Gpcg(i) from MISi

followed by the computation of shortest path needs to be repeated ∀i, 1 ≤ i ≤ t,
where t is the number of maximal independent sets. If a shortest path of length
at most K + 1 cannot be found in any one of these graphs Gpcg(i), 1 ≤ i ≤ t,
then it is impossible to construct an alternate path from s to d, disjoint from the
original path Ps,d in the graph G = (V, E) by concatenating compatible paths
in the set Pav.

Algorithm 1 K-Transit Hub Routing Exact Solution(G,Pav, s, d, K)

step 1 Compute Path Intersection Graph, Gpig = (Vpig, Epig) for the paths in Pav.
step 2 Compute all Maximal Independent Sets of Gpig , MIS =

{MIS1, MIS2, . . . , MISt}.
step 3 Compute a subset MIS ′ ⊆ MIS, such that all elements of MIS ′, contain

at least one path whose terminating point is s and another path whose termi-
nating point is d.

step 4 Repeat steps 5-7 for each elements MISi of MIS ′,
step 5 Compute the Path Construction Graph Gpcg(i) corresponding to MISi

step 6 Let Vi,s be the set of nodes in Gpcg(i) that corresponds to those paths whose
one terminating point is s and Vi,d be the set of nodes in Gpcg(i) that cor-
responds to those paths whose one terminating point is s. Repeat step 5 for
each element vi,s ∈ Vi,s and for each element vi,d ∈ Vi,d

step 7 Compute the shortest path from vi,s to vi,d. If the shortest path length is at
most K + 1, then an alternate path from s to d using compatible paths from
the set Pav exists. EXIT from the loop.

step 8 If no path of length at most K +1 can be found in any of the combinations of
vi,s and vi,d, then an alternate path from s to d using compatible paths from
the set Pav does not exist.

step 9 EXIT



4.1 Algorithm Analysis

The algorithm first computes the Path Intersection Graph of the set of available
paths Pav and then computes all maximal independent sets of this graph. The
maximal independent sets give the set of compatible paths that can be concate-
nated for constructing the path from the source s to destination d. In step 5 of
the algorithm the Path Construction Graph is constructed and in step 7, the
shortest path between a vi,s and vi,d is computed. Since the process is repeated
for all maximal independent sets that contains a vi,s and vi,d and for all vi,s

and vi,d, if a path between s to d can be obtained by concatenating at most
K +1 compatible paths in the set Pav, this process will find it. This ensures the
correctness of the algorithm.

For generating all maximal independent sets of a graph, algorithms such as
the ones presented in [11] and [6] can be used. Both the algorithms produce
the maximal independent sets one after another in such a way that the delay
between generation of two consecutive maximal independent sets is bounded
by a polynomial function of the input size. The computation complexity of the
algorithm in [11] is O(n∗m∗α) and the algorithm in [6] is O(n3 ∗α) where n, m

and α represents the number of nodes, edges and the maximal independent sets
of the graph respectively. We use the algorithm in [6] for generating all maximal
independent sets in step 2 of the K-Transit hub routing algorithm.

Let α, β represent the number maximal independent sets of the path intersec-
tion graph and the paths (i.e. |Pav|) respectively. The worst case computational
complexity of step 1 of the algorithm is O(β2), step 2 is O(β3 ∗ α) and step 3 is
O(β2 ∗ α). Thus, the overall complexity of the algorithm is O(α ∗ β4).

5 Heuristic Solution for the K-Transit Hub Routing

Problem

The main overhead involved in the exact algorithm is in the computation of all
the maximal independent sets of the path intersection graph. In this section, we
present a heuristic solution using randomization technique for the K-Transit Hub
Routing problem that produces a solution with high probability. The complexity
of the solution is bounded by a polynomial function of the number of nodes in
the overlay network.

5.1 Complexity Analysis

As in the exact algorithm, the heuristic solution starts by determining the Path
Intersection Graph of the available paths Pav. However, instead of finding all
maximal independent sets involving the two nodes(paths) vs and vd that ter-
minate in s and d respectively, the algorithm randomly generates a maximal
independent set for each pair-wise combination of vs and vd. The random gener-
ation procedure first includes the two nodes vs and vd into a working set MIS
of independent nodes. It then randomly selects a node from all the remaining



Algorithm 2 Heuristic for K-Transit Hub Routing Problem (G,Pav, s, d, K)

step 1 Compute Path Intersection Graph Gpig = (Vpig, Epig) for paths in Pav.
step 2 Compute set of nodes, Vs ∈ Vpig that correspond to the paths whose one

terminating point is s and Vd ∈ Vpig as nodes that correspond to the paths
whose one termination point is d.

step 3 Repeat steps 4 through 7 for every node-pair (vs, vd) ∈ Vs × Vd.
step 4 Construct a maximal independent set with two nodes vs and vd, MIS =

{vs, vd}
step 5 Let NNS(S), the “Non-Neighborhood Set” of S be defined as NNS(S) =

Vpig\(N (S)
S

S), where N (S) represents the neighborhood set of S. Select
with equal probability a node v ∈ NNS(S). Augment the maximal indepen-
dent set, MIS = MIS

S
{v}.

step 6 If MIS is not a maximal independent set, go back to step 5. Otherwise, form
the Path Construction Graph Gpcg. Compute Vi,s, Vi,d ∈ V (Gpcg) as the set of
nodes corresponding to paths having one terminating point in s, d respectively.

step 7 Compute the shortest path between every pair vi,s ∈ Vi,s and vi,d ∈ Vi,d. If
there exists a shortest path of length at most K + 1 between any vi,s ∈ Vi,s

and vi,d ∈ Vi,d, then an alternate path from s to d using compatible paths
from the set P exists. EXIT from the loop.

step 8 If none of the combinations of vs and vd report a path of length at most K +1,
then there is no alternate path from s to d using compatible paths from the
set Pav.

step 9 EXIT

non-neighboring nodes of MIS in the Path Intersection Graph and includes it
into MIS. This process is continued until MIS is maximally independent.

Let β is the number of nodes in the Path Intersection Graph. Step 1 has
worst case computational complexity of O(β2). Steps 5 and 6 perform O(β2)
operations in the worst case to compute a Maximal Independent Set. Step 7 of
the algorithm performs O(β2) operations to check if there exist compatible paths
in the Path Construction Graph between the source node and the destination
node. Thus, the overall complexity of the algorithm is O(β4).

5.2 Performance of the Heuristic Solution

To evaluate the performance of our proposed exact and heuristic solutions, we
conducted experiments for the K-transit hub routing problem on randomly gen-
erated topologies and the Abilene network.

The problem instances were generated in 3 steps:
Step 1. Georgia-Tech Internet Topology Model topology generator was used to
generate the random physical layer topologies having 30 nodes and average node
degree varying between 2 and 6.
Step 2. A subset of these nodes were randomly chosen with uniform distribution
as the set of overlay nodes.
Step 3. Shortest Paths using Dijkstra’s algorithm between every pair of the
overlay nodes were computed. These act as the primary paths in our experiments.



One of the metrics used for the evaluation of the performance of the heuristic
is the success ratio. Success ratio is the ratio of number of source-destination
pairs for which a path was found by the algorithm to total number of source-
destination pairs.

Three sets of experiments were conducted to study the performance of the
heuristic solutions. In the first set (6(a)), the number of overlay nodes were
varied from 3 to 7 and success ratio of both the exact and the heuristic solutions
were measured for all source-destination pairs. The value of K was chosen to be
greater than the number of overlay nodes. In the second set of experiments 6(b),
different physical topologies consisting of 30 nodes were chosen with varying
average node degrees. In each case, 6 nodes were chosen to be overlay nodes and
the success ratio of the exact and heuristic algorithms were measured for all the
30 source-destination pairs. The aim of this experiment was to study the impact
of the average node degree on the performance of the algorithm. The third set
of experiments (7) were conducted with two data sets. For various values of K,
the success ratio of both the algorithms were recorded. The physical topology
had 30 nodes with an average node-degree of 4 and the overlay structure had 7
nodes.
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Fig. 6. Performance of the Heuristic Solution, (a) Success Ratio vs. Number of overlay
nodes; (b) Success ratio vs. Average node degree
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Fig. 7. Performance of the Heuristic Solution, (a) Success ratio vs. Value of K for
instance 1; (b) Success ratio vs. Value of K for instance 2

In most of the cases, the success ratio of the heuristic was close to the exact
algorithm. Increasing average node-degree in the physical topology (6(b)) has a
positive effect on finding alternate paths in the overlay. The success ratio for both
the heuristic and exact algorithms increase with increased average node-degree.



The results (7(a), (b)) indicate that the performance of the heuristic solution
is not significantly dependent on the value of K, the number of paths that are
allowed to be concatenated to construct the source to destination path. In all
these experiments, the execution times of the heuristic and exact solution were
noted. In many instances, the execution time of the exact solution was almost
1000 times more than that of the heuristic. We thus conclude that our heuristic
technique almost always produces a very high quality solution in a fraction of
time needed to find the exact solution.

6 Conclusion

In this paper, we consider the problem of computing an alternate path that is
disjoint to the default IP path. Such an alternate path can be computed by
exploiting transit hubs placed at opportunistic locations on the Internet. We
show that the problem of finding such a path with constraint on the number
of transit hubs is NP-complete. We provide an exact and approximate solution
for the problem. Our experimentations demonstrate that our heuristic produces
near optimal solution for most of the instances in a fraction of time needed to
find the optimal solution.
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