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Abstract. We develop an analytical model for modeling limited-range
wavelength conversion employed in an OBS switch. The system is mod-
eled as a simultaneous resource possession problem. We propose a product-
form solution which calculates approximate blocking probabilities for de-
gree of conversion d = 1, 2 and for large number of wavelengths. We then
propose an approximate model for large values of d. The output of our
model was verified with simulation results.

1 Introduction

Optical Burst Switching (OBS) is one of the promising technologies to realize the
next generation all-optical Internet [3] [8] [15]. In OBS, the contention issue that
arises at the switches due to simultaneous arrival of several control packets can be
minimized by using wavelength conversion, Fiber Delay Line (FDL) buffers and
deflection routing. A combination of these three techniques can also be employed
to reduce blocking of data bursts. C. Gauger [5] examined the performance
of OBS nodes which employ wavelength converter pools and FDL buffers for
contention resolution. Several strategies based on different ordering of probing
converter pools and FDL buffers have been proposed to optimize performance
such as minimizing delay or the number of converters.

In this paper, we focus on wavelength conversion to reduce contention among
data bursts. We consider only the case of limited-range wavelength conversion.
In limited-range wavelength conversion, data bursts arriving on a wavelength
can be converted to a fixed set of wavelengths above and below the original
wavelength. The degree of conversion d defines the number of target wavelengths
for conversion on either side of the original wavelength. Thus an incoming data
burst can be converted to a total of (2∗d+1) destination wavelengths. Previous
studies on limited-range wavelength conversion for lightpaths include [4],[12] and
[14] for an OBS network. Recently, Akar and Karasan [2] proposed a method
to exactly calculate the blocking probabilities in an OBS switch with partial
wavelength conversion, i.e number of converters available being less than the
number of wavelengths.



Previous studies in OBS which dealt with limited-range wavelength conver-
sion focused on computing link blocking probabilities and path blocking proba-
bilities [14]. They also assumed Poisson arrivals for their model. In this paper,
we focus on a single OBS switch. We assume sources to be of ON-OFF nature.

We develop an analytical model to determine the blocking probabilities for
data bursts in a core OBS switch which employs limited-range wavelength con-
version to resolve contention among data bursts. We assume the absence of FDLs
and deflection routing. The blocking probabilities obtained from this queueing
model are approximate. We propose a product-form solution from which block-
ing probabilities can be computed for large number of wavelengths but only for
d = 1, 2. We then develop a large scale approximation technique which can be
applied to large values of w and d.

The paper is organized as follows: Section 2 describes the architecture of the
core OBS switch that we have assumed for our model. In Section 3, we present an
approximate queueing model for limited-range wavelength conversion for the case
of small d. In Section 4, we describe an approximate model for large systems. In
Section 5, we compare the outputs of our analytical models with the simulation
results, and in Section 6, we draw some conclusions.

2 The OBS switch

The core OBS switch is comprised of k incoming and k outgoing fibers, the
switching fabric and wavelength converters. Such a switch can be implemented
using several architectures [13] [10] [11]. Each output fiber has a set of wavelength
converters (c) that can be used by bursts traveling out of that particular fiber.
The bandwidth in each fiber is partitioned into several wavelengths (w) using
Wavelength Division Multiplexing (WDM).

In this paper, we model one such output fiber with its own set of wave-
length converters. Each outgoing wavelength λi, i = 1, 2, . . . , w, has k number
of incoming wavelengths λi, one per input fiber, targeted into it. Part of the
bursts arriving in each of the k input wavelengths λi is switched to the desti-
nation wavelength λi of the output fiber under study. The remaining bursts are
switched through other output fibers. An incoming burst on λi will try to be
scheduled on its home wavelength λi in the outgoing fiber. In case the home
wavelength is busy, the burst tries to occupy adjacent wavelengths in the range
d, i.e λi±d, if a converter in the common converter pool per output fiber is avail-
able. The method of trying to occupy an alternate wavelength will be explained
in the analytical model section.

3 The queueing model for small d

The Markov process for limited-range wavelength conversion does not have a
product-form solution [9]. In view of this, we propose an approximate solution for
the problem of computing blocking probabilities in an OBS switch that employs
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limited-range wavelength conversion. The queueing problem is modeled as a
simultaneous resource possession problem as follows:

Let us consider a three wavelength example to illustrate our method. The
original model is decomposed into sub-systems as depicted schematically in figure
1.

Figure 1 depicts the decomposition of a system with w = 3 and d = 1 into
three sub-systems n1,n2 and n3 each being an Erlang loss queue. The number of
sub-systems is equal to the number of wavelengths w. Each sub-system ni rep-
resents a home wavelength λi and neighboring wavelengths into which a burst
coming on the home wavelength can be converted into. We represent each wave-
length with a server in the Erlang loss queue sub-system. Thus, each sub-system
has number of servers ranging from (d+1) to (2∗d+1). The border sub-systems
n1 and n3 have two servers and the central sub-system n2 has three servers. The
state of each server is represented by ni,jε{0, 1}, where i is the sub-system and
j is the wavelength index. Thus, n1 = {n1,1, n1,2}, n2 = {n2,1, n2,2, n2,3} and
n3 = {n3,2, n3,3}.

The state of the system is given by the union of states of servers in all the
sub-systems combined. Thus, for the three node example, the state of the system
is represented by the tuple (n1, n2, n3) = (n1,1, n1,2, n2,1, n2,2, n2,3, n3,2, n3,3).

Let p(n1, n2, n3) be the probability of the system being in one such state.
Then, we have

p(n1, n2, n3) =
1
G
∗ p(n1) ∗ p(n2) ∗ p(n3) (1)

or,

p(n1,1, n1,2, n2,1, n2,2, n2,3, n3,2, n3,3) =
1
G
∗ p(n1,1, n1,2) ∗ p(n2,1, n2,2, n2,3) (2)

∗p(n3,2, n3,3)



where G =
∑

p(n1) ∗ p(n2) ∗ p(n3) summed over all feasible states.
The problem has been decomposed to a granularity which allows us to apply

the rules of simultaneous resource possession.
Rule 1 : A wavelength server can be occupied in only one sub-system
Rule 2 : The number of conversions cannot exceed c

Thus we have,
n1,1 + n2,1 = 1 (3)

n1,2 + n2,2 + n3,2 = 1 (4)

n2,3 + n3,3 = 1 (5)

n1,2 + n2,1 + n2,3 + n3,2 ≤ c (6)

The wavelength occupancy constraint (Rule 1 ) and the converters constraint
(Rule 2 ) reduce the state space from which the solution is computed. The com-
putation of the individual sub-system probabilities p(nx), where xε{1 . . . w} will
be explained in the sub-section 3.2.

When we generalize our model to any number of wavelengths w, we have,

p(n1, n2, n3, . . . , nw) =
1
G
∗ p(n1) ∗ p(n2) ∗ p(n3) ∗ . . . ∗ p(nw) (7)

The model is further decomposed so as to include the constraints of wave-
length occupancy and the number of available converters. Each subsystem thus
becomes:

ni = (ni,i−d, ni,i−d+1, ..., ni,i, ...., ni,i+d−1, ni,i+d) (8)

and in ni,j , i,j ε{1 . . . w}
The constraints for simultaneous resource possession are:

ni,i−d+ni,i−d+1+. . .+ni,i−1+ni,i+ni,i+1+. . .+ni,i+d−1+ni,i+d = 1∀i = 1, 2, .., w
(9)

i=w,j=i+d∑

i=1,j=i−d,j≥1

ni,j ≤ c (10)

The computation of G is a complicated task because of the state space explo-
sion with large values of w and d. We shall describe the approach we take for the
computation of G in sub-section 3.3. Once the probability of the system existing
in each state has been determined, the blocking probability of each wavelength
is then the sum of all the corresponding blocking states.

3.1 The Arrival process

We use the IDLE-ON arrival process shown in figure 2 to generate bursts on
a single incoming wavelength λi. The IDLE and ON periods are exponentially
distributed with a mean of 1

ν and 1
µ respectively. A single ON period generates

a single burst. An IDLE period is followed by the ON period and vice-versa.
If a burst is dropped, the source returns to the IDLE state. Since there are k
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input fibers, the burst arrival process from all the k incoming wavelengths λi

is the superposition of k single IDLE-ON sources as shown in figure 2(b). We
assume that all the k arrival IDLE-ON sources are identical. We also assume
in this paper that the superposition process is identical for all wavelengths λi,
i = 1 . . . w.

As described in section 2, we are modeling a single output fiber. Each wave-
length in the fiber will only have some of the traffic directed towards it from its
k corresponding input wavelengths. Consequently, the IDLE period is assumed
to have been appropriately extended so that only the bursts destined to the
outgoing wavelength in the fiber are modeled.

3.2 Computing the probabilities for each sub-system

In each sub-system, a customer is allocated to the home server. In case it is busy,
a free immediate adjacent server is chosen with probability 0.5. If both are busy,
the next set of adjacent servers are scanned for an empty server. The probabilities
for each sub-system can be obtained from the birth-death process and lacks a
closed-from expression [9]. On increasing the values of w and d, it gets difficult
to solve a Markov chain for each sub-system. On close examination, it can be
seen that adding a few transitions to the birth-death can get us a closed-form
expression, which is the Erlang system or the Engset system depending on the
assumption regarding the arrival process. By using either of these systems, we
can get away with the problem of marking the servers. Thus, we can assume that
the servers are allocated randomly. This gives rise to a product-form solution
which is an approximation to the probability terms p(nx) in equation 7.

In equation 2, the probability terms on the right hand side are determined
using the Engset model. If n is the number of servers, k the number of input
fibers and µ, ν are as described in the arrival process, the probability that there
are i customers in such a M/M/n/n/k system is given by:

π∗i =

(
k−1

i

)
( ν

µ )i

∑n
j=0

(
k−1

j

)
( ν

µ )j
(11)



The Engset probabilities of equation 11 are those as seen by an arrival.
The approximated probabilities that a specific set of i servers is occupied in

a sub-system is given by:

πi =
π∗i(
n
i

) (12)

The product of such terms if the state is valid can be added to compute G. The
blocking probability of a particular wavelength is finally computed by summing
up all the appropriate blocking states.

3.3 Computation of G

We now describe the approach taken to compute the normalization constant
G. By brute-force enumeration, it takes O(ww) to cover the entire state space
and determine the blocking probabilities for each wavelength. It is clear that
brute-force enumeration cannot be used to compute G for large values of w and
d. We have determined that this approach can be taken to solve for d = 1, 2
and very small values of w. For larger values of d, we propose the large scale
approximation technique described in section 4.

3.4 Large number of wavelengths

In this section, we describe the method for extending the computation of blocking
probabilities for large number of wavelengths where d = 1, 2.

As was described in section 3.3, we can compute G by brute-force enumera-
tion only for very low values of d and w. However, there are some properties of
blocking probabilities with increasing number of wavelengths that we can make
use of to compute blocking probabilities for these large systems.
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Figure 3(a) plots the simulation results for the blocking probability of the
middle wavelength of the system with increasing number of w in the system. The
number of converters increases proportionally with the number of wavelengths.
It can be seen that with increase of w, there is a very small gradual decrease in
the blocking probability. It can also be seen that the trend is similar for different
arrival rates. We recall that we have assumed an identical superimposed arrival
process to each wavelength.

Figure 3(b) plots the simulation results for the blocking probabilities for all
the wavelengths in the system, for two different cases. We assume that each
wavelength is fed by the same superposition arrival process. It can be seen that
the border wavelengths have the highest blocking since the degree of conversion
is smaller for them compared to the center wavelengths. In the following sec-
tions, we focus only the blocking probabilities of the middle wavelength and it
can be noted that the border wavelengths have higher values. Also, we assume
symmetric traffic wherein each wavelength is fed by the same arrival process
resulting in the same arrival rate.

3.5 The four-point method

From the previous section, it can be seen that a smaller system (smaller w)
with a proportionally smaller number of converters can be made use of to get
an approximate value of the blocking probabilities, which then slowly decreases
with increasing w.

0 10 20 30 40 50 60
0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Number of wavelengths

B
lo

ck
in

g 
pr

ob
ab

ili
tie

s 
fo

r 
th

e 
m

id
dl

e 
w

av
el

en
gt

h

Simulation(k=10,d=1,ν=0.1,c=33%)

(a) Exponential decay

( x , y )

( x , y )

( x , y )
( x , y )

2 2

3 3

PLATEAU

Increasing number of wavelengths

Blocking
probabilities 
for the
middle
wavelength

SPAN

(b) Four-point method
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Figure 4(a) plots the simulation results for the blocking probability of the
middle wavelength with increasing number of wavelengths as in figure 3(a), but
starting with very few wavelengths. It can be seen that the distribution is very
similar to the exponential distribution. In the four-point method, we use the
brute-force enumeration described in section 3.3 to calculate the initial 4 points



on the curve. We then use these points to determine the value of the plateau P
of the curve, see figure 4(b).

Let (x0, y0), (x1, y1), (x2, y2) and (x3, y3) be the initial 4 points on the curve.
The size of the system W is (2 ∗ d + 1), (2 ∗ d + 3), (2 ∗ d + 5) and (2 ∗ d + 7)
respectively. The converters are proportionally decreased from their initial value
in the original system w. A one phase exponential decay function with the initial
4 points can be used to determine P , see [6], which is the blocking probability
for large number of w and for d = 1, 2.

4 Large scale approximation
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Fig. 5. Large scale approximation

The methods discussed in section 3 can only be applied for d = 1, 2. In this
section, we describe an approximate model for large d. The schematics of the
model are shown in figure 5.

The system is decomposed into two loss queues. The first one, referred to as
the server bottleneck and the second one as the converter bottleneck. The server
(i.e. wavelengths) bottleneck is used to determine the blocking due to lack of
servers for a given d, and the converter bottleneck is used to determine blocking
due to lack of converters c. The server bottleneck and the converter bottleneck
are modeled separately and independence is assumed between them.

Figure 6 forms the basis for modeling the server bottleneck. The original
system of size w and d with limited-range conversion has been transformed to
a modified system of size (2 ∗ d + 1) with full-range conversion. As was stated
earlier in subsection 3.5, the effect of border wavelengths tends to decrease as
the system size considered, i.e the number of wavelengths w, increases. It was
observed that this increase of system size can be approximately modeled by
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Fig. 6. Conversion from limited-range to full-range conversion

conversion from limited-range to full-range with w = (2 ∗ d + 1). Further, the
number of converters for the (2 ∗ d + 1) system is proportionally reduced from
the original system. A numerical example of this is shown in figure 7, where the
y axis denotes the average blocking probability of all the wavelengths. We use the
same superposed arrival process to each wavelength as was described in section
3.1.

20 30 40 50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of fibers

A
ve

ra
ge

 b
lo

ck
in

g 
pr

ob
ab

ili
ty

Analytical(w=61,full range,ν=0.02,c=100%)
Simulation(w=100,d=30,ν=0.02,c=100%)

Fig. 7. Full-range conversion

The server bottleneck is modeled by an Engset system M/M/(2 ∗ d+1)/(2 ∗
d + 1)/((2 ∗ d + 1) ∗ k). The converter bottleneck is also modeled as an Engset
system. But the percentage of ((2 ∗ d + 1) ∗ k) customers, θ, that have to use
the converter pool needs to be determined. The approximate θ is determined as
follows:

probability (an arrival using a converter)
= probability (its destination wavelength is busy) = pBlocking(M/M/1/1/k)



Therefore,
No. of arrivals that use a converter = (2 ∗ d+1) ∗ k ∗ pBlocking(M/M/1/1/k)

= (2 ∗ d + 1) ∗ k ∗ θ
Thus, the Engset system for converter bottleneck becomes

M/M/c/c/((2 ∗ d + 1) ∗ k ∗ θ).
If pBs is the probability that a burst gets blocked at the servers and pBc is

the probability that a burst gets blocked at the converter pool, then, because of
the independence assumption the probability that a burst gets blocked is given
by:

pB = 1− (1− pBs)(1− pBc) (13)

5 Results

An event based simulation model was constructed to evaluate the results of
the analytical model. The simulation results were plotted with 95% confidence
interval estimated by the method of batch means, see Perros [7]. Each batch is
completed when every wavelength has 30,000 bursts arriving at it. The confidence
intervals are very tight and are not discernible in the graphs. A software called
GraphPad Prism[1] was used to fit a one phase exponential decay function with
the initial 4 points as described in the four-point method.

The blocking probability of the center wavelength was calculated by varying ν
(which varies the arrival rate), the number of fibers k, the degree of conversion, d
and the number of wavelengths, w. Both analytical results and simulation results
have been plotted. We use the four-point method for d = 1, 2 and large scale
approximation for larger d. Only a subset of these results are shown here. Please
refer to [9] for the complete set.

The way we take the initial 4 points differs for d = 2. To get the fourth point,
we have to consider a system of size (2∗d+7) = 11. By brute-force enumeration,
it is not possible to explore all the states of such a system within reasonable time.
So, we get the fourth point via simulation, which takes far lesser time. We note
that the analytical values are much closer to the simulation ones than in the
case of d = 1. However, the range for very good accuracy seem to be between
10−1 and 1. For lower blocking probabilities it is hard to fit a curve because of
the gap between the three analytical points and the fourth simulation point.

Figure 8(f) plots the simulation results for large values of d. It can be seen that
increasing d is most effective at low arrival rates and/or at high % conversion.
Increasing d does not have a big impact when blocking probabilities are high.

6 Conclusion

In this paper, we proposed an approximate solution for limited-range wavelength
conversion in an OBS switch. The problem was modeled as a simultaneous re-
source possession problem and an approximate product-form solution was pro-
posed. This solution could be applied for very small values of w and d. A method
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called the four-point method extended the solution for larger values of w. We
then proposed a large scale approximation technique which calculated average
blocking probabilities for very large values of w and d. d has significant impact on
blocking when the percentage of converters available is high and/or low arrival
rates. When the percentage of conversion is small, the benefits of d saturates
very early and large values of d may not be useful.
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