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Abstract. Maintaining a long network lifetime with stringent energy
constraints on tiny sensor nodes poses an extremely challenging task for
wireless sensor networks. This paper provides a thorough analysis on a
randomized algorithm that makes scheduling decisions without the help
of geographic information. The analytical results precisely describe the
relationship among achievable network coverage, energy saving, and node
density. We also analyze the performance of the randomized algorithm
with time asynchrony and propose a heuristic randomized scheduling
scheme to improve the performance.

1 Introduction

Recent progress in wireless communication and MEMS (Micro-ElectroMechanical
System) makes it feasible to build tiny wireless sensor nodes that integrate sen-
sors, processors, memory, and wireless transceiver within the size of several cube
millimeters [10]. Once deployed, sensor nodes organize themselves into a net-
work through short-range wireless communication. The potential applications
of such networks are limitless, ranging from habitant monitoring, battle field
surveillance, object tracking, to forest fire alarming.

Due to their extremely small dimension, sensor nodes have very limited en-
ergy supply only. In addition, it is usually hard to recharge the battery after
deployment, either because the number of sensor nodes is too large, or because
the deployment area is hostile for recharging. But once deployed, a sensor net-
work is expected to keep working for several weeks or months. Such expectation
will never be met without carefully scheduling the energy consumption of each
sensor node to maximize the lifetime of the whole network.

This paper aims at designing and analyzing sensor node scheduling algorithms
without geographic information and in the mean time preserving network cov-
erage. We stress that a sensor node’s sensing range is totally independent of
its radio transmission range because they rely on different hardware. Readers
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should not assume that turning off redundant sensors based on sensing cover-
age would inevitably result in problems in network connectivity. For instance,
we can adopt a broadly-used, two-tiered radio communication architecture, in
which sensor nodes communicate directly with a Field Data Collector (FDC)
and the FDC communicates directly with the base station.

The contribution of this paper is in four aspects. First, we build a mathe-
matical model to analyze a purely randomized sensor node scheduling algorithm
and to illustrate the relationship among achievable coverage quality, energy sav-
ing, and node density. Second, we prove that the purely randomized algorithm
is resilient to time asynchrony if the network is sufficiently dense. Such feature
is indispensable for a practical scheduling algorithm since precise time synchro-
nization is very hard for large sensor networks [2]. Our proof hence provides
strong supporting evidence on the randomized scheduling algorithm for realistic
applications. Third, we propose a heuristic method that improves the achievable
coverage quality of the purely randomized algorithm by evenly assigning neigh-
boring sensor nodes into different monitoring sets. Finally, simulation study is
performed to verify the correctness of the analytical results and to demonstrate
the advantages of the proposed heuristic method.

2 Purely Randomized Scheduling Scheme

We introduce a purely randomized scheduling algorithm in this section. This al-
gorithm has several prominent features. First, it does not assume the availability
of any location or directional information. Second, it is a purely distributed algo-
rithm, thus scalable for large networks. Third, it is resilient to clock asynchrony
and requires only a roughly synchronized clock, which significantly decreases
the energy and communication overhead required by maintaining network-wide
time synchronization. The third feature has never been discovered by previous
work [1, 5, 7].

The idea of this algorithm is extremely simple. Assume that the sensor nodes
constitute a set S, which will be divided into k disjoint subsets. Each sensor node
randomly joins one of the k disjoint subsets. Once the k subsets are formed, they
work alternatively. At any given time, there is only one subset working, and all
the sensor nodes belonging to this subset will turn on. The intuition behind this
algorithm is that when the network is sufficiently dense, each subset alone will
cover most part of the field. Because of the randomness, this algorithm cannot
guarantee the elimination of blind points– areas that cannot be monitoring by
any sensor node for a given time period. But these blind points are not static,
that is, a blind point at this time can be covered at another time, as long as
it is within the sensing range of certain sensor nodes. This feature makes a
phenomenon hidden from detection almost impossible.

The above algorithm has been proposed simultaneously in [1, 5] but has not
been analyzed thoroughly to obtain practically usable analytical results. In the
following sections, we will fill this gap by providing a more straightforward
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analysis on coverage intensity to evaluate the performance of this purely ran-
domized scheduling scheme.

3 Performance Analysis

3.1 Network Model

We consider static sensor networks in a two-dimensional field. We assume that
sensor nodes are randomly and independently deployed in the field. Compared
with other sensor deployment strategies such as deployment in grids and deploy-
ment according to pre-define positions, random deployment is much easier and
cheaper [9]. We assume that all sensors have the same size of the sensing area.
Note that our following mathematical model does not make any assumptions on
the shape of the sensing area. Therefore, the results obtained from the model are
independent of sensor nodes’ physical features such as orientation and angular
aperture.

3.2 Performance Analysis

Definition 1: Coverage Intensity for a Specific Point. For a given point
p in the field, we define the coverage intensity for this point as

Cp =
Tc

T

where T is any given long time period and Tc is the total time during T when
point p is covered by at least one active sensor node.

Definition 2: Network Coverage Intensity. We define the network coverage
intensity, Cn, as the expectation of Cp. That is, Cn = E[Cp].

For easy reference, all notations used in our probabilistic analysis are listed
in Table 1.

Theorem 1: With the purely randomized scheduling algorithm, Cn = 1 −(
1 − q

k

)n, where q = r
a is the probability that each sensor node covers a given

point.
Proof: Suppose that a given point inside the monitored field is covered by s
sensor nodes, denoted as set S. The purely randomized algorithm will assign
each sensor node in S to one of the k disjoint subsets randomly. Let’s consider
the question of how many subsets do not include any sensor node in S. For the
first subset (subset 0), it must miss all the s sensor nodes to let the above event
happen. Since each sensor node hits the first subset independently with same
probability of 1

k ,

Pr {S0 is empty} =
(

1 − 1
k

)s

and thus

Pr {S0 is not empty} = 1 −
(

1 − 1
k

)s
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Table 1. Notations

Symbol Description
n the total number of deployed sensor nodes
T the working time duration for each subset in one round
a the size of the whole field
r the size of the sensing area of each sensor
k the number of disjoint subsets
s the number of sensor nodes that cover a specific point inside the field
S the set of sensor nodes that cover a specific point inside the field
si the number of sensor nodes that belong to subset i and cover a specific point

inside the field
Si the set of sensor nodes that belong to subset i and cover a specific point

inside the field

This probability is the same for all subsets by symmetry.
We define a random variable Xj . Xj = 0 if Sj is empty and Xj = 1 otherwise.
Let X =

∑k−1
j=0 Xj denote the total number of nonempty Sj , (0 ≤ j ≤ k− 1).

Then

E [X] =
k−1∑

j=0

E [Xj ] = k ×
[
1 −

(
1 − 1

k

)s]

According to the definition of Cp, the coverage intensity for point p, which is
covered by s sensor nodes, is

Cp =
E [X] × T

k × T
= 1 −

(
1 − 1

k

)s

Here s is a binomial random variable, and

Pr {s = j} =
(

n

j

)
× qj × (1 − q)n−j

where q = r
a is the probability that each sensor node covers a given point.

Therefore, the network coverage intensity Cn, which is the expectation of Cp,
can be calculated as

Cn = E [Cp] = 1 −
(
1 − q

k

)n

⊓%

Corollary1:For a givenk, the lower boundon thenumber of sensor nodes required
in the whole network to provide a network coverage intensity of at least t is

⌈
ln(1 − t)
ln(1 − q

k )

⌉

where q = r
a .
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proof: Based on Theorem 1, if we predefine the value of k, which is proportional
to the energy saving we target at, and we require the network coverage intensity
is no less than a threshold value t, which is the coverage requirement defined
by users, we can compute the lower bound of n, the number of sensor nodes
required to fulfill the task, by solving the inequality

1 −
(
1 − q

k

)n
≥ t

It is easy to see that

n ≥
⌈

ln(1 − t)
ln(1 − q

k )

⌉
.

⊓%

Theorem 1 and Corollary 1 illustrate clearly the relationship among the coverage
requirement, energy saving, and the minimum number of sensor nodes. Based
on Theorem 1, we can also easily get the following corollary:

Corollary 2: For a given n, the upper bound of the number of disjoint subsets
to provide a network coverage intensity of at least t is

q

1 − e
ln(1−t)

n

where q = r
a .

Corollary 2 is very useful in dynamically adjusting the coverage intensity of a
sensor network after it is deployed. When the total number of sensor nodes is
fixed, the network coverage intensity can be adjusted by changing the number of
disjoint subsets k. This feature is extremely useful for practical sensor networks
requiring adjustable measurement quality and long network lifetime.

4 The Impact of Clock Asynchrony

4.1 A Glance at Clock Asynchrony

Intuitively, the randomized scheduling algorithm should work well without re-
quiring strict time synchronization. Let’s check the example shown in Fig. 1.

Supposed working shift of
subset i

Sensor 0 (ahead of time)

Sensor 1 (behind time)

Sensor si-1 (ahead of time)

... ...

 t0  t1

Fig. 1. A point p monitored by si sensor nodes in subset i

Aiko Pras



Randomized Coverage-Preserving Scheduling Schemes 961

A point p in the monitored field is covered by si sensor nodes in the subset i.
Assume that among the si sensor nodes, some sensor nodes (e.g., sensor node 0)
are ahead of supposed starting time while some (e.g., sensor node 1) are behind
the time. In this example, point p can be monitored during the whole working
shift of subset i even if the sensor nodes are not synchronized very well.

There are only three possibilities that point p may not be monitored during
the working shift of subset i:

1. All the si sensor nodes are ahead of the starting time of subset i.
2. All the si sensor nodes are behind the starting time of subset i.
3. Some sensor nodes in Si are ahead of the starting time of subset i while some

in Si are behind the time, and there is a gap period when no sensor node in
Si can monitor point p during the working shift of subset i.

4.2 Analysis on the Impact of Clock Asynchrony

To facilitate analysis, we make the following assumptions:

1. We assume that the internal time ticking frequency of each sensor node is
accurate but may not be synchronized precisely to the standard time.

2. We assume that the clock drift of each sensor node from the standard time,
∆t, is a normally distributed random variable with parameters (0,σ).

3. If we use T , the working duration of each subset in one round, to normalize
∆t, we assume ∆t ≥ T

2 is an extremely rare case and could be ignored.

For a point p in the field, we suppose there are si sensor nodes assigned to
subset i (1 ≤ i ≤ k) covering p. Let ∆tj denote the deviation of the clock of the
j-th sensor node from the standard clock (0 ≤ j ≤ si − 1). ∆tj is a normally
distributed random variable with parameters (0,σ). If ∆tj ≤ 0 holds for all j
(0 ≤ j ≤ si − 1), which means all the clocks of these si sensor nodes are ahead
of time, there will be a period of unmonitored time at the end of the working
duration of subset i with the length of min{−∆tj , 0 ≤ j ≤ si − 1}. Likewise, if
∆tj ≥ 0 holds for all j (0 ≤ j ≤ si − 1), which means all the clocks of these si

sensor nodes are behind time, there will be a period of unmonitored time at the
beginning of working duration of subset i with the length of min{∆tj , 0 ≤ j ≤
si − 1}.

Note that the sensor nodes with an ahead-of-time clock in subset i + 1 and
the sensor nodes with a behind-time clock in subset i − 1 could help decrease
the unmonitored time length during the working duration of subset i. Never-
theless, considering these cases will greatly increase the analysis complexity by
introducing correlation between neighboring subsets, we ignore these cases when
calculating the network coverage intensity. Therefore, the calculated network
coverage intensity is the lower bound of the actual value.

We now calculate the expectation of the unmonitored time fraction (the time
when p is not covered by any of these si sensor nodes) during the working shift
of subset i. We denote this expectation as Esi .
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When si = 0, it is obvious that E0 = 1. When si ≥ 0,

Esi =
∫ ∞

0
xf1 (x) dx +

∫ 0

−∞
−yf2 (y) dy

where x = min{∆tj , 0 ≤ j ≤ si − 1}, y = max{∆tj , 0 ≤ j ≤ si − 1}, f1 (x) and
f2 (y) are the p.d.f. of x and y, respectively.

Since ∆t0,∆t1, · · ·,∆tsi−1 are independent normal distribution random vari-
ables, we can get

Pr{x ≥ a} = [1 − Φ (a)]si

where Φ (a) is the c.d.f. of normal distribution. Therefore,

f1 (x) = siφ (x) [1 − Φ (x)]si−1

where φ (x) = 1√
2πσ

e
−x2

2σ2 and Φ (x) =
∫ x
−∞ φ (x) dx.

By symmetry, we have
∫ 0

−∞
−yf2 (y) dy =

∫ ∞

0
xf1 (x) dx

Therefore,

Esi = 2
∫ ∞

0
six [1 − Φ (x)]si−1 φ (x) dx.

Since x is a normal distribution with parameters (0,σ), when x ≥ 0, we have
Φ (x) ≥ 1

2 , and thus 1 − Φ (x) ≤ 1
2 .

So we get

Esi ≤ 2
∫ ∞

0
six

(
1
2

)si−1

φ (x) dx =
siσ√
2π

(
1
2

)si−2

Here, Esi is the expectation of the unmonitored time fraction during the working
shift of subset i, which includes exactly si sensor nodes covering the point p.
Suppose that the total number of sensor nodes in the network that cover point p
is s. Any subset may contain j sensor nodes to cover p, where j varies from 0 to
s. Therefore, we can calculate the expectation of the unmonitored time fraction
for any subset (denoted as Ēs):

Ēs =
s∑

j=0

Ej × Pr{the subset contains j nodes to cover p}

≤ 1 ×
(

1 − 1
k

)s

+
s∑

j=1

jσ√
2π

(
1
2

)j−2 (
1 − 1

k

)s−j (
1
k

)j (
n

j

)

=
(

1 − 1
k

)s

+
sσ

8
√

2π (k − 1)

(
1 − 1

2k

)s−1

Thus, for any point covered by s sensor nodes, the expectation of the monitored
time fraction of the working-shift of any subset

Es = 1 − Ēs ≥ 1 −
(

1 − 1
k

)s

− sσ

8
√

2π (k − 1)

(
1 − 1

2k

)s−1

Aiko Pras



Randomized Coverage-Preserving Scheduling Schemes 963

We next calculate E, the expectation of Es.

E =
n∑

s=0

Es × Pr{the point is covered by s sensor nodes}

=
n∑

s=0

Es

(
n

s

)
qs (1 − q)n−s , where q =

r

a

≥ 1 −
n∑

s=0

(
1 − 1

k

)s (
n

s

)
qs (1 − q)n−s

− sσ

8
√

2π (k − 1)

n∑

s=0

(
1 − 1

2k

)s−1 (
n

s

)
qs (1 − q)n−s

= 1 −
(
1 − q

k

)n
− nqσ

8
√

2π (k − 1) (1 − q)

(
1 − q

2k

)n−1

For any point p, by symmetry, each subset has the same E value, so the expec-
tation of the monitored time fraction, which is the network coverage intensity
Cn, according to the definition, can be calculated as

Cn =
k × E

k
= E

Observing the expression of Cn above, we find that the term 1−
(
1 − q

k

)n is equal
to the Cn in Section 3.2, where all the clocks are well-synchronized. Thus, the last
term ∆ = nqσ

8
√

2π(k−1)(1−q)

(
1 − q

2k

)n−1 indicates the impact of time asynchrony
on network coverage intensity. The numeric results in Fig. 2 show the weight of
∆ over Cn, when σ = 0.1613. In this case, Pr(∆t ≥ T

2 ) is less than 0.1% and
thus negligible. The small values of the weight indicate the negligible impact of
clock asynchrony on network coverage and illustrate that the purely randomized
scheduling scheme is resilient to time asynchrony.
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Fig. 2. Impact of Clock Asynchrony
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5 Heuristic Randomized Scheduling Scheme

The purely randomized scheduling scheme works well, but it still has room for
further improvement. For instance, assume that a point p is covered by s (s ≥ k)
sensor nodes. If the s sensor nodes are assigned to only l subsets, where l < k,
the point p is only covered in l

k time fraction even if the achievable coverage
intensity of the point p is 100%. Our heuristic randomized scheduling algorithm
is based on the above observation and tries to assign the s sensor nodes evenly
into the k subsets.

To achieve even assignment of sensor nodes to the k subsets, we adopt the
following strategy. Initially, each sensor node selects a random backoff time be-
tween 0 and maxBackOff. The value of maxBackoff should be reasonably large to
avoid broadcast collision. During the backoff period, each sensor node will listen
to the channel and receive broadcast messages from its neighbors that indicate
their subset selections. At the timeout of its backoff, each sensor node checks the
decisions on subset assignment received from its neighbors, assigns itself into a
subset that includes the fewest neighbors (if a tie exists among several subsets,
select one randomly among these subsets), and broadcasts this decision to its
neighbors. Once all sensor nodes have selected their subset, they will work in
the same way as in the purely randomized scheduling algorithm.

Unlike the distributed greedy algorithms proposed in [1] and [8] which depend
on the availability of precise location information of each sensor node to decide
redundancy, our heuristic method is simple and does not assume the availability
of any location information. The energy cost of our method is only one local
broadcast for each sensor node, which is extremely lightweight and scalable for
large sensor networks.

6 Simulation

6.1 Simulation Model

In our simulation, all sensor nodes are deployed randomly in a 1000 meters ×
1000 meters square area. Each sensor node has a fixed sensing range of 50 meters.
We set the radio transmission range equal to the sensing range when we compare
the performance of the purely randomized scheduling algorithm and the heuristic
scheduling algorithm, since the performance of the former one has nothing to do
with radio range while the latter one performs best with the sensing range equal
to the radio range. The performance of the heuristic scheduling scheme under
different ratios of the sensing range over the radio range is also investigated.

We use network coverage intensity (refer to Section 3.2) to evaluate the per-
formance of the scheduling algorithms. For each simulation scenario, twenty runs
with different random seeds are conducted and the results are averaged.

6.2 Simulation Results

Fig. 3 illustrates the relationship between the number of deployed sensor nodes
and network coverage intensity with the purely randomized scheduling scheme.
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Both analytical results and simulation results are presented in the figure. From
the figure, the analytical results and simulation results match pretty well, indi-
cating the correctness of our mathematical analysis. Given a fixed k, network
coverage intensity increases with the increase of the number of deployed sensor
nodes, and given a fixed number of deployed sensor nodes, network coverage in-
tensity increases with the decrease of k. It is consistent with the intuition since
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decreasing k or increasing the number of sensor nodes will increase the density
of working nodes and hence improves the coverage intensity. This figure also
provides a reference map between network coverage intensity and the number of
sensor nodes needed.

Fig. 4 shows the performance comparison between purely randomized schedul-
ing and heuristic randomized scheduling. From the figure, it can be seen that
given the same k value and the same number of sensor nodes, the heuristic
scheme always achieves a higher coverage intensity than the purely randomized
one. In addition, if there are enough sensor nodes deployed, the heuristic scheme
can outperform purely randomized scheme even if the purely randomized scheme
use a smaller k. This can be verified by the fact that the two curves correspond-
ing to the “k=6, purely randomized” scheme and the “k=8, heuristic” scheme
cross when the number of deployed sensor nodes is around 900. This phenomenon
further demonstrates the advantage of the heuristic scheme.

Fig. 5 shows the impact of different radio ranges on the performance of heuris-
tic randomized scheduling. The best performance appears in the case where the
sensing range and the radio range are equal. This is because under this situation,
the number of neighbors (in terms of radio range) of a sensor node accurately
reflects the local coverage redundancy in the neighborhood of this sensor node.
If the sensing range is different from the radio range, the estimation of sensing
redundancy will be inaccurate, misleading the heuristic method to make wrong
decisions and thus degrading its performance. From Fig. 5, if the ratio of the
sensing range over the radio range is not too far from 1, the performance of the
heuristic randomized scheduling scheme is still better than the purely random-
ized scheduling scheme. But the advantage of heuristic method will be negligible
when the radio range differs significantly from the sensing range and provides
very inaccurate redundancy information.

7 Conclusion

In this paper, we analyze the performance of a purely randomized scheduling
algorithm and disclose the relationship among coverage intensity, energy saving,
and the required number of sensor nodes. Our mathematical model is signifi-
cantly different from other work [1] in that our model uses a straightforward
performance metric and provides simple equations to estimate performance di-
rectly from given parameters. This analysis is very important in the sense that it
greatly facilitates dynamical adjustment of network coverage intensity. We also
analyze the performance of the randomized algorithm with time asynchrony and
propose a heuristic randomized scheduling scheme to improve the performance.
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