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Abstract. This paper introduces relevant statistics for the description of routes
in the internet, seen as a graph at the interface level. Based on the observed prop-
erties, we propose and evaluate methods for generating artificial routes suitable
for simulation purposes. The work in this paper is based upon a study of over
seven million route traces produced by CAIDA’s skitter infrastructure.
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1 Introduction

Realistic modeling of routes in the internet is a challenge for network simulation. Until
now, one has had to choose one of the three following approaches to simulate routes: (1)
use the shortest path model, (2) explicitly model the internet hierarchy, and separately
simulate inter- and intra-domain routing, or (3) replay routes that have been recorded
with a tool like traceroute [1]. All of these methods have serious drawbacks.

The first method does not reflect reality: routes do not in general have the same
properties as shortest paths, as already pointed out by Paxson [2], because of routing
policies [3,4] mainly at the autonomous system (AS) level. As described in detail re-
cently by Spring et al. [3], and earlier by Tangmunarunkit et al. [5,4], this often induces
a lengthening of paths, or path inflation, compared to shortest paths. The second method
is limited by our ability to explicitly simulate the internet hierarchy. Much work [6,7]
has been done in order to model the internet graph, and much progress has been made,
but today’s topology generators are still capable of being highly inaccurate in capturing
some parameters while they strive to adhere to others. (See, for instance, the findings
in Li et al.’s SIGCOMM 2004 paper [8].) Then, even if one is satisfied with the qual-
ity of the topology simulation, there is the question of simulating dynamic inter- and
intra-domain routing. A non-negligible programming effort is required if the choice is
made not to use a simulator, such as ns [9], that has these algorithms built in. Finally,
the third method is not suitable if routes from a large number of sources are to be sim-
ulated. Today’s route tracing systems employ at most a few hundred sources. CAIDA’s



skitter [10,11] infrastructure, for instance, produces an extensive graph suitable for sim-
ulations, but it is based on routes from just 30 sources.

Note that despite its well known drawbacks, and because of the lack of more ac-
curate models, the shortest path model is generally used. Examples from recent years
include Lakhina et al.’s Infocom 2003 paper [12], Barford et al.’s SIGCOMM 2002 pa-
per [7], Riley et al.’s MASCOTS 2000 paper [13], and Guillaume et al.’s Infocom 2005
paper [14]. The ns network simulator documentation proposes simulating routes by
shortest paths as an alternative to simulating routing algorithms [9, Chs. 26, 29].

This paper’s principal contribution is a new approach to modeling routes in the
internet, one that does not share the drawbacks just described. We suggest using an
actual measured graph of the internet topology, such as the graph generated by skitter.
From that topology, we suggest choosing sources and destinations as one wishes from
the nodes of the graph. Between these sources and destinations, we suggest generating
artificial routes with a model chosen to reflect statistical properties of actual routes.

Central to this contribution are two specific models that we propose for artificial
route generation: the random deviation model and the node degree model. These mod-
els generate routes with relatively inexpensive calculations, and the routes that they
generate better reflect the statistical properties of actual routes than does the shortest
path model.

The remainder of this paper is organized as follows. Sec. 2 describes the data set
that we have used and the context in which our work lies. Sec. 3 proposes a set of
statistical properties to describe routes in the internet. Sec. 4 proposes the models we
use to simulate routes based on these properties. Sec. 5 evaluates those models, and
Sec. 6 concludes the paper.

2 The framework

The ideal perspective from which to characterize routes in the internet would be from a
snapshot of the routing tables of routers throughout the network. Unfortunately, such a
snapshot is impossible to obtain on the scale of the entire network. In this section, we
describe the alternative that we opted for, and the hypotheses we made.

2.1 The internet as a graph

Efforts to map the internet graph take place at two levels. One is the autonomous system
(AS) connectivity graph, which can be constructed from BGP announcements (captured
for instance by The Oregon Route Views Project [15]). The other is the router and
IP graph, which can be obtained using traceroute and similar tools from a number of
different points in the network. To our knowledge, skitter, which conducts traceroutes
from on the order of 30 servers to on the order of a million destinations, is the most
extensive ongoing effort at the IP level.

Neither level is ideally suited to the task of modeling the behavior of routes at the
router level. While the AS graph is directly based upon routing information, it is too
coarse-grained to capture the details of path inflation. For this study, we therefore fo-
cussed on the IP and router level.



The main problem with this level is that what one actually sees is the graph of IP in-
terfaces, while the graph of routers is more relevant. One single node in the router graph
appears as several separate nodes, one or more for each of its interfaces, in the IP graph.
Ideally, then, one would construct the router graph using methods to “disambiguate” IP
addresses, such as the alias resolution techniques described by Pansiot et al. [16], and
by Govindan et al. [17] for Mercator. There are also techniques, such as those used by
Spring et al. [18,19], in Rocketfuel, and by Teixeira et al. [20], that take advantage of
router and interface naming conventions to infer router-level topology.

We do not use the router graph, however. The disambiguation techniques, as applied
for example in the iffinder tool from CAIDA [21], do not work by simple inspection of
the IP graph; they require active probing, preferably simultaneously with graph discov-
ery. This constraint makes extensive disambiguated router-level graphs much harder to
obtain than IP interface graphs. At best, some core network topologies are available in
this form thanks to Rocketfuel. But Rocketfuel is untested in stub networks. Finally, it is
very difficult to judge the extent to which disambiguation is successful, and incomplete
or incorrect disambiguation could introduce unknown biases.

To avoid these difficulties, we have restricted ourselves to the IP graph as obtained
from skitter. The resulting caveat is that the graph may not be properly representative
of the router graph. This caveat is however mitigated by the fact that the IP graph is a
legitimate graph in its own right. As Broido et al. note [22], “interfaces are individual
devices, with their own individual processors, memory, buses, and failure modes. It is
reasonable to view them as nodes with their own connections.” If a simulation does
not require the explicit modeling of routers then a graph of interfaces can be perfectly
adequate. Even more so since certain parameters, such as route lengths, are preserved.
That is to say that a route that has a given length in the router graph has the same length
in the corresponding IP graph. (Other parameters, such as node degree, will differ, and
it is essential to take this into account when interpreting results.)

2.2 The data set

This study uses skitter data from July 2nd 2003. During that day, 23 servers targeting
594,262 destinations with 7,075,189 traceroutes. We merge these traceroutes to produce
our IP graph. This graph captures the small-world, clusterized, and scale-free nature of
the internet already pointed out in numerous publications, see for instance [23,24]. In
particular, the average distance is approximately 12.54 hops, and the degree distribution
is well fitted by a power law of exponent 1.97.

Notice that this graph is necessarily incomplete and biased due in particular to prob-
ing from a limited number of sources, to route dynamics, to tunneling and to erro-
neous or absent responses to traceroute probes. Biases of graphs induced by acquisition
through a small number of traceroute monitors have been studied for instance in by
Lakhina et al. [12]. However, recent studies by Dall’Asta et al. [25] and Guillaume et
al. [14] show that one may be quite confident of the accuracy, using this kind of ex-
ploration, of distances and degrees, which are the main properties that we study here.
We therefore consider the IP interface graph in this study, and in particular we use the
skitter data as it represents the current state of the art in its extent and accuracy.



3 Statistical properties of routes

This section presents a set of properties for statistical description of internet routes.
These properties motivate the models of Sec. 4. Several properties have already been
studied in previous work, and the work here serves to evaluate and update them.

3.1 Route lengths

It is well known that routes are not shortest paths: they are not optimal in general.
Fig. 1(a) shows the length distributions of the routes in our data set, and of the corre-
sponding shortest paths. It also shows the distribution of the difference (delta) between
the length of a route and the corresponding shortest path. The mean length of 15.57
hops for routes in this data set fits closely Paxson’s observations [2] on a data set from
nine years prior. The shortest paths have a mean length of 12.55 hops (11.4 hops if the
graph is considered to be undirected).
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Fig. 1: Statistical properties of internet routes.

The delta distribution confirms Tangmunarunkit et al.’s observation [5,4], mentioned
at the beginning of this paper, that roughly 80% of routes are not shortest paths. In this
data set, 19.34% of routes are shortest paths. Moreover, since the data is incomplete,
there are undiscovered links, which implies that 19.34% is an overestimate.



3.2 Hop direction

When a packet travels from one router to another, it may move closer to its destina-
tion, but also it may move farther, or it may move to an interface that is at the same
distance from the destination as one it just left. Likewise, the distance from the source
may increase, decrease, or stay constant. We will call these behaviors the hop direction,
considered with respect to either the destination or the source. In principle, a hop should
always increase the distance from the source and decrease the distance to the destina-
tion; in such cases, the route is a shortest path. Note that hop directions in the router
graph can be observed directly in the interface graph, since distances are preserved
between the two graphs.

We determine hop direction by computing the shortest path from each traceroute
source to all other nodes, using breadth-first search. This is feasible due to the small
number of sources. It would also be natural to look at hop direction with respect to the
destinations but, since they are much more numerous, it is computationally expensive.

We found that 87.3% of hops go forwards, 4.6% go backwards, and 8.1% remain at
the same distance from the source (we call these stable hops). More precisely, Fig. 1(b)
shows the portion of forward, backward, and stable hops at each hop distance for routes
of 15 hops (the most numerous ones). Note that, as one would expect, the first and
last few hops are generally forward because there are few alternatives. On the contrary,
in the core of the network a significant proportion of the hops (more than one third)
do not go closer to the destination. This type of behavior has already been described
in the literature as the product of policy-based routing in the core of the internet. As
Tangmunarunkit et al. [5,4] note, such behavior may be induced by load balancing,
commercial considerations, etc.

3.3 Degree evolution along a route

Recent work has shown that many real-world complex networks tend to have very het-
erogeneous degrees, well fitted by power laws. This is in particular true for the internet,
as observed by Faloutsos et al. [23] and others. Moreover, most of the short paths be-
tween pairs of nodes in these networks tend to pass through the highest degree nodes.
Actually, almost all paths (not only short ones) tend to pass through these nodes, which
make them essential for network connectivity, see for instance [26,27,28,29,30].

These observations lead us to ask how the node degree evolves along a route. If
routes tend to pass through high degree nodes, where do they do so, and what degree
nodes do they encounter? Furthermore, does this tendency to pass through high degree
nodes imply that, when a choice exists between next hops, the next hop that leads to the
highest degree node is generally chosen?

Fig. 1(c) shows1 how node degree evolves for routes of length 15. It reveals that a
typical route does not pass through the highest degree nodes, though a certain number
of routes do pass through some very high degree nodes. There is a peak in median out-
degree observable at distance 1. The median falls at distance 2, rises again, and then

1 In Fig. 1(c), dots indicate the median. Vertical lines run from the min to Q1 and from Q3 to
the max. Tick marks indicate the 5th, 10th, 90th and 95th percentiles.



stays fairly flat out to distance 13, with a median degree of about 10. This leads us to
the following interpretation: the hosts have low degree, they are connected at their first
hop router to relatively high degree nodes which play the role of access points, and then
packets are routed in a core network where the degree (typically 10) does not depend
much on the distance from the source or from the destination.

Can one observe a simple local rule governing degree evolution? In particular, if
there is a choice of next hop interface along a route, is there a correlation between the
degree rank of an interface and its probability of being chosen? For instance, are higher
degree interfaces chosen preferentially over lower degree ones? Note that such a rule
could be perfectly compatible with the observed flat degree evolution.

Fig. 1(d) plots the probability that a packet travels to an interface’s i-th ranked
neighbor, where the neighbors are ranked from highest out-degree to lowest. An inter-
face’s neighbors are its possible next hops in the directed graph. In order to preserve
the greatest detail in this middle range, the figure does not show curves for degrees 2
or 3, or above 10, but the curves shown are typical. One can see a general bias towards
higher degree nodes, though this bias is rather small, and sometimes is reversed.

4 Route models

The previous section provides a set of simple statistical tools to capture some properties
of routes in the internet. We now propose three simple models (only two of which we
eventually retain) designed to capture these features. Each model is based upon one
statistical property studied in the previous section. Our approach is to model a property
in a very simple way and then use other statistics to validate or invalidate the model.

Whereas our study of route properties was in the context of the directed graphs pro-
duced by traceroute, the models in this section are proposed for undirected graphs. The
graphs available for simulation purposes, notably those produced by topology genera-
tors representing the router-level topology, are typically undirected graphs. Therefore,
our models must be suitable for use in this context.

4.1 Path length model

The path length model is the simplest and the most obvious one conceptually, but it
proves to be unusable in practice. The model aims at producing routes of the same
lengths as real ones. As discussed in Sec. 3, a real route length typically exceeds that of
the shortest known path by some small integer value δ > 0.

In order to construct a route from a source s to a destination d, the path length model
first computes the length ` of a shortest path from s to d. Then it samples a deviation
δ from a distribution such as the one shown in Fig. 1(a), and a route is generated by
choosing a path at random from s to d among the ones which are loop-free and have
length ` + δ. This ensures that the difference between shortest path lengths and actual
route lengths will be captured by the model.

To choose such a path at random implies however that one must construct all of
the loop-free paths of length ` + δ from s to d. In practice, the computation required
to generate this number of paths may be prohibitive, since even in simple cases it is



exponential in `+ δ. For example, in trying to generate all paths of length 21 between a
pair of nodes in the skitter graph, we enumerated 1,206,525 possible paths. Therefore,
despite its simplicity, we will not consider this model further.

4.2 Random deviation model

The random deviation model is based upon the idea that a route usually follows a short-
est path, but might occasionally deviate from it. Our model uses a single parameter, p,
the probability at any point of deviating from the current shortest path to the destination,
if such a deviation is possible. We tuned the value of p to generate routes of realistic
length. For the undirected version of the skitter graph, we found p = 0.2 to work well.

A random deviation route from source s to destination d is therefore based upon a
shortest path u from s to d. At each hop, with probability 1 − p, the route continues
along u. But with probability p it will, if possible, deviate off u to another path. A
deviation from current node x to a neighboring node y is deemed possible only if there
is a shortest path w from y to d that does not pass through x. Should there be a deviation,
the route continues along w to d (unless another deviation should occur). The model is
precisely described by Algorithm 1.

Note that large numbers of routes to a destination d can be efficiently generated with
the random deviation model once a shortest path tree rooted at d has been computed.

1: rand dev route (G,s,d,p)

Input : A network G, a source s, a destination d, a deviation probability p.
Output : An artificial route v from s to d in G, following the random deviation model.
Function: sp(x,y) returns the set of all the shortest paths from x to y in G.
begin1

u ← random element of sp(s,d);2
v ← empty list;3
copy the first element of u to the end of v;4
remove it from u;5
while the last element of v is not d do6

if rand[0,1] 6 p then7
C ← set of all the shortest paths from any neighbor of v to d;8
Remove from C the paths containing the last element of v;9
if C 6= ∅ then10

u ← random element of C;11

copy the first element of u to the end of v;12
remove it from u;13

return v;14
end15

4.3 Node degree model

Several previous authors [31,27,32] have tried to use the heterogeneity of node degrees
to compute short paths in complex networks. The basic idea is that a path which goes
preferentially towards high degree nodes tends to see most nodes very rapidly (a node
is considered to be seen when the path passes through one of its neighbors).



The node degree model is based upon a similar approach, as follows. Two paths
are computed, one starting from the source and the other from the destination. The
next node on the path is always the highest degree neighbor of the current node. The
computation terminates when we reach a situation where a node is the highest degree
neighbor of its own highest degree neighbor. One can show that this is the only kind of
loop can occur. Then, one of two cases applies: either the two paths have met at a node,
or they have not. In the first case, the route produced by the model is the discovered path
(both paths are truncated at the meet up node, and are merged). In the second case, we
compute a shortest path between the two loops, and then obtain the route by merging
the two paths and this shortest path, removing any loops.

In work proceeding in parallel with this paper [32], the node degree model is shown
to be an efficient way to compute short paths in complex networks in practice: the
obtained paths are very close to shortest ones. Moreover, the computation of the tree-
like structure where each node points to its highest degree neighbor is very simple and
only has to be processed once. Likewise, the shortest paths between a small number of
loops are computed only once. The overall model is described in Algorithm 2.

2: node deg route (G,s,d)

Input : A network G, a source s, a destination d.
Output : An artificial route v from s to d in G, following the node degree route model.
Function: reverse(p): returns the path obtained by reading p from the end to the beginning.

climb degrees(G,v): returns the path in G obtained from v by going to the highest degree neighbor at
each hop, until it loops.

begin1
ps ← climb degrees (G,s);2
pd ← climb degrees (G,d);3
if ps and pd meet up then4

let u be the first node they have in common;5
remove from ps all the nodes after u;6
remove from pd all the nodes after u;7
p ← (ps,reverse(pd));8
return p;9

q ← random shortest path from the last node of ps to the one of pd;10
p ← (ps,q,reverse(pd));11
remove loops from p;12
return p;13

end14

Fig. 2 is an example. There are three tree-like structures (the shaded areas). The
source s belongs to the leftmost one, which is rooted at rs, and the destination d to
the rightmost one, with root at rd. Each directed link goes from one node to its highest
degree neighbor (the dotted lines are links which do not satisfy this). When one wants
to build a route from s to d according to the node degree model, one first finds the path
from s to rs, and the one from d to rd. One then has to compute a shortest path from
rs to rd, which has length 5 in this example. The final route is obtained by merging
these paths, and then removing the loops (which leads to the removal of a link, in our
example). It has length 7 (while the shortest path has length 6).
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Fig. 2: The node degree model: example.

5 Evaluation

This section compares the performance of the random deviation and node degree mod-
els to that of the shortest path model. We use undirected version of the skitter graph
described in Sec. 2.2, considered as an undirected graph. For each model, we chose at
least 60,000 (source, destination) pairs at random from amongst the nodes of the graph
and generated an artificial route from the source to the destination. We compute the
same statistics on these routes as we had computed for actual routes in Sec. 3.

Fig. 3 shows the statistics for each model. We judge the quality of a model by how
well its statistics mirror those for actual routes, shown in Fig. 1.

Comparing the route length distributions, we find that both models generate distrib-
utions that are symmetric, average somewhat higher than the shortest path distribution,
and have tails similar to the actual route length distribution shown in Fig. 1(a). Mean
route length is 15.15 for the random deviation model and it is 14.96 for the node degree
model, whereas the mean shortest path is 12.93. (Note that, on the undirected skitter
graph, shortest paths between random sources and destinations are longer on average
than those between skitter sources and destinations, for which we had computed an
average route length of 11.21.)

Lengths of paths generated with the node degree model tail off somewhat quicker
than in reality (approaching zero closer to length 20 than length 25), but the degree of
fidelity is nonetheless remarkable given that the length distributions are not explicitly
part of the model. The random deviation model generates more routes that are shortest
paths than in reality (roughly 30% compared to roughly 20%), whereas the node degree
model generates somewhat fewer (roughly 26%). As is already known, the shortest path
model does not capture the length properties.

Looking at the hop directions for the most frequent route length, we found that
the curves for the random deviation model better match the shapes of the curves for
real routes shown in Fig. 1(b). Hops are mostly forward near the source, but dip to
around 80% roughly ten hops out (whereas in reality the portion of forward hops dips
to around 80% at eleven or twelve hops out). This is in marked contrast to hop directions
produced by the node degree model because forward hops dip much sooner and a bit
less steadily. But overall portions of forward, stable, and backward hops closely match
reality for both models: 89% forward, 7% stable, and 4% backward for the random
deviation model, and 90% forward, 6% stable, and 4% backward for the node degree
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Fig. 3: Experiments using the random deviation model (left), the node degree model (center), and
the shortest path model on the undirected skitter graph using sources and destinations chosen at
random from amongst all the nodes in the graph.

model, compared to 87% forward, 8% stable, and 5% backward for true routes. The
shortest path model fails to capture these proportions since all of its links are forward.

The node degree model does a better job than the random deviation model in cap-
turing the evolution of the out-degree close to a route’s source. Routes generated with
this model show the peak in the out-degree before settling down to a median around 20
that we noticed in Fig. 1(c), though the peak is reached at distance 2 rather than at the
first hop router. The random deviation model and the shortest path model also have a
median around 20, but they arrive there through a smooth increase, with no clear peak.

Based upon this comparison to real routes, we can state that the random deviation
and node degree models do a reasonable job of emulation, though each model captures
some aspects better than others, and their strengths are different. Both models clearly
out-perform the shortest path model.



6 Conclusion and future work

The main contribution of this paper has been to propose a new alternative for the simula-
tion of routes in the internet: the use of simple models that capture non-trivial statistical
properties of routes. The models proposed here have been found to reproduce a number
of aspects of true internet routes, though neither fully captures all of the characteristics.
Our goal was to introduce simple models that could serve as alternatives to the clearly
unrealistic shortest path model. No model can be fully faithful to reality, and the key
is to understand in what ways it is a true representation, and in what ways it diverges.
Future work along these lines might include the development of models that explicitly
incorporate some additional characteristics, such as the clustering coefficient. Other
work might involve studying whether certain variants on the models, such as a hybrid
of the random deviation and node degree approaches, would be more like real routes.
Any such work must keep in mind the desirability of keeping the models conceptually
simple, easy to implement, and computationally tractable.

Another area into which this work could be extended would be to capture something
of the dynamics of internet routes. There are effectively random choices to be made in
both the random deviation model (clearly) and the node degree model (when it comes
to choosing among two or more neighbors of highest degree, or choosing a shortest path
between two trees) but we have not touched on the timing of that variation.
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