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Abstract. Previously proposed wavelength scheduling algorithms in op-
tical burst switching networks process each reservation request individ-
ually and in a greedy manner. In this paper we propose a new family
of wavelength scheduling algorithms that process a batch of reservation
requests together instead of processing them one by one. When a control
burst with a reservation request arrives to a free batch scheduler, the
scheduler waits for a small amount of time, called the acceptance de-
lay, before deciding to accept or reject the reservation request. After the
acceptance delay has passed, the scheduler processes all the reservation
requests that have arrived during the acceptance delay, then it accepts
the requests that will maximize the utilization of the wavelength chan-
nels. We describe an optimal batch scheduler that serves as an upper
bound on the performance of batch scheduling algorithms. Furthermore,
we introduce two heuristic batch scheduling algorithms. The performance
of the proposed algorithms is evaluated using a discrete-event simulation
model. Simulation results suggest that batch schedulers could decrease
the blocking probability by 25% compared to the best previously known
wavelength scheduling algorithm.

1 Introduction

Optical Burst Switching (OBS) [1] has been proposed as an optical switching
technique that combines the advantages of both Wavelength-Routed (WR) net-
works and optical packet switching networks. As in WR networks, there is no
need for buffering and electronic processing for data at intermediate nodes. At
the same time, OBS increases the network utilization by reserving the optical
channel for a limited time period. The basic switching entity in OBS is a burst.
A burst is a train of packets moving together from one ingress node to one egress
node and switched together at intermediate nodes. An optical burst consists of
two parts, a header and a data burst. The header is called the control burst
(CB) and is transmitted separately from the data, which is called the data burst
(DB). The CB is transmitted first on a separate signaling channel to reserve the
bandwidth along the path for the corresponding DB. After a given delay, the
CB is followed by the DB, which travels over the same path reserved by the CB.
The delay between sending the CB and the DB is called the burst offset time.
The value of the offset time is chosen to be greater than or equal to the total



processing delay encountered by the CB. Consequently, no buffering is needed
for the DB at intermediate nodes.

Several signaling protocols have been proposed for OBS [1, 2]. Qiao et. al
have proposed a protocol called Just-Enough-Time (JET) [1]. The JET protocol
is reserve-a-fixed duration scheme that reserves resources exactly for the trans-
mission time of the burst. In JET, the CB contains the destination address, the
DB length, the wavelength on which the associated DB will arrive, and the burst
offset time. When a CB arrives at a core node, a wavelength scheduling algo-
rithm is invoked to find a suitable wavelength channel on the outgoing link for
the corresponding DB. The wavelength channel is reserved for a duration equal
to the burst length starting from the arrival time of the DB. The information
required by the scheduler such as the burst arrival time and its duration are
obtained from the CB. The scheduler keeps track of the availability of free time
intervals (voids) on every wavelength channel.

The absence of the concept of “packet queues” in OBS nodes, coupled with
the one way nature of the JET reservation protocol, drives the blocking prob-
ability to become the main performance measure in OBS networks. The burst
blocking probability is the probability that a wavelength reservation request will
not be granted due to the unavailability of a free wavelength. The blocking prob-
ability at an OBS node depends to a certain degree on how efficiently can the
wavelength scheduling algorithm handle voids on wavelength channels. This fact
has led to a growing interest in the area of wavelength scheduling in OBS net-
works. A number of wavelength scheduling algorithms have been proposed in
the literature (for a survey see [3]).The main differentiating factor between pre-
viously proposed algorithms is the wavelength selection criteria. If there is more
than one wavelength that can be assigned to the incoming burst, each algorithm
selects a wavelength according to different criteria.

In this paper we propose a new family of wavelength schedulers. The proposed
schedulers process a batch of bursts together instead of processing them one by
one as in the case of previously proposed algorithms. The rest of this paper is
organized as follows. Section 2 gives a brief overview of wavelength scheduling
algorithms. We introduce the batch scheduling class of schedulers in Section
3. Section 4 describes the optimal batch scheduler. In Section 5 we introduce
two new heuristic batch scheduling algorithms. The proposed algorithms are
evaluated in Section 6 using a discrete event simulation model. We conclude the
paper in Section 7.

2 Wavelength Scheduling

In OBS networks employing the JET protocol (OBS-JET networks), a CB ar-
riving at a node represents a wavelength reservation request. The reservation
request consists of a pair of values (ta, te). The value ta is determined based on
the offset time, and te is determined based on ta and the length of the burst
b, as shown in Figure 1. A wavelength scheduling algorithm X is more efficient
than wavelength scheduling algorithm Y , if it increases the utilization of the



wavelength channels, and hence decreases the burst blocking probability. The
blocking probability is calculated as the ratio of bits blocked to bits sent.
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Fig. 1. Wavelength Scheduling

A wavelength channel is said to be unscheduled at time t when no burst
is using the channel at or after time t. A channel is said to be unused for the
duration of voids between successive bursts and after the last burst assigned to
the channel.

Xiong et al. [4] proposed a channel algorithm called LAUC-VF (Latest Avail-
able Unused Channel with Void Filling). The basic idea of the LAUC-VF algo-
rithm is to minimize voids by selecting the latest available unused data channel
for each arriving DB. Given the arrival time ta of a DB with duration b to
the optical switch, the scheduler first finds the outgoing data channels that are
available for the time period of (ta; ta + b). If there is at least one such data
channel, the scheduler selects the latest available data channel, i.e., the channel
having the smallest gap between ta and the end of the last DB just before ta.
The LAUC-VF algorithm is widely considered to be among the best wavelength
scheduling algorithms in terms of its blocking probability.

3 Batch Scheduling

Previously proposed wavelength schedulers are considered to be greedy algo-
rithms. They are greedy in the sense that they consider every request individu-
ally, and make the choice that looks best at the moment. Therefore, if the request
can be accepted (unblocked), it will be indeed accepted. When a CB arrive to
an OBS node employing a greedy wavelength scheduling algorithm, it is inserted
into a FIFO queue. When the wavelength scheduler is free, it dequeues the first
packet on the queue and processes it. Figure 2 describes this process.

In this work we pose the following question: What if we defer the acceptance
of some unblocked requests until we see more requests? The intuition behind
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this question is that it may be advisable to reject an initially unblocked request
if later requests will make better use of the wavelength channels.

To further illustrate the idea. Let the acceptance delay be d. Consider the
case of d = ∞. In this case the system will wait until all reservation requests
have been received, then it will select requests that will maximize the utilization.
Obviously the case of d = ∞ is impractical. Our proposal is to use an acceptable
value of d, such that we schedule a batch of reservation requests together, instead
of using d = 0 as in the case of greedy algorithms.

To implement the above concept, we modify the burst scheduling process by
inserting a queue before the wavelength scheduler and after the CB queue, we
call it the batch queue, as shown in Figure 3. When a CB arrives to an OBS node,
it gets inserted into the CB queue. When the wavelength scheduler becomes free,
it will wait for a small amount of delay, viz. the acceptance delay d, then it moves
all bursts that are in the CB queue to the batch queue, then processes all the
CBs in the batch queue together instead of the previously used greedy approach.
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Fig. 3. Control burst scheduling with batch queue

The benefit of the batch queue, as will be seen later, is to limit the delay
that a CB can incur during the batch processing.

3.1 Definitions

A graph is G = (V,E) consists of a finite set V of elements called vertices, and
a set E of pairs of vertices called edges. Let V (G) represent the vertex set of
G, and E(G) represent the edge set of G. We call adj(v) the adjacency set of
vertex v, and we call the pair (v, w) an edge. Clearly (v, w) ∈ E if and only if
w ∈ adj(v).

A subgraph H of G, denoted H ⊂ G, is a graph with V (H) ⊂ V (G) and
E(H) ⊂ E(G). The degree of v in the subgraph H for any v ∈ V (H), de-
noted deg(v|H), is the number of vertices of H adjacent to v, i.e. deg(v|H) =



|adj(v|H)|. An undirected graph G is called an interval graph if its vertices can
be put into one-to-one correspondence with a set of intervals on the real line,
such that two vertices are connected by an edge of G if and only if their corre-
sponding intervals have nonempty intersection (have a common point). In other
words, G is an interval graph provided that one can assign to each v ∈ V (G) an
interval Iv such that Iu ∩ Iv is nonempty if and only if (u, v) ∈ E.

An interval is defined by two points: left point (start of the interval) and right
point (end of the interval). Let l(I) and r(I) correspond to the left and right
points of interval I respectively. Intervals Iv and Iu overlap if l(Iv) ≤ l(Iu) <
r(Iv) or if l(Iu) ≤ l(Iv) < r(Iu).

A subgraph is called a clique, if every pair of vertices in the subgraph is
connected by an edge. A clique C is maximal if there is no clique of G that
properly contains C as a subset. Let size(C) be the number of vertices in the
clique, the maximum clique is the clique of greatest size among all maximal
cliques.

One of the most important applications of interval graphs is job scheduling.
Consider a set of n jobs to be scheduled on k servers. Finding a feasible schedule
is equivalent to finding a proper k-coloring of the corresponding interval graph,
such that no two adjacent vertices can have the same color (overlapping jobs are
assigned to different servers). Interval graphs and graph coloring problems have
been studied intensively in the literature (see [5, 6] and references within).

Batch scheduling in OBS networks can be treated as a subset of the interval
graph coloring problem. We have a set of DBs that we want to assign to a
number of wavelength channels. Each DB corresponds directly to an interval on
the real line, and assigning wavelength channels to bursts is similar to assigning
colors to intervals, where no two overlapping bursts can be assigned to the same
wavelength channel. Figure 4 gives an example for mapping batch scheduling to
graph coloring. In Figure 4a, a batch consisting of five bursts to be assigned to
three wavelength channels. Figure 4b shows the corresponding interval graph. In
Figure 4c, the interval graph is colored using three colors: 1, 2 and 3. Figure 4d
shows the wavelength assignment of the batch.
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Fig. 4. Mapping batch scheduling to graph coloring



Each CB represents a reservation request for an interval. The reservation
request for DB bi specifies a start time of the reservation l(bi), corresponding to
the arrival time of the DB, and an end time of the reservation r(bi). The weight
w(bi) of burst bi is equal to (r(bi) − l(bi)).

4 Optimal Batch Scheduling Algorithm

The batch scheduling problem can be stated as follows: Given k wavelengths and
a set of n bursts {b1, .., bn} in the batch, find a feasible schedule that maximizes
the value of the DBs accepted on the k wavelength channels. Note that n varies
from one batch to another depending on the arrivals to the CB queue. The value
of the accepted bursts is simply the sum of their weights. The weight of the burst
is defined as the length of its corresponding interval.

A number of algorithms exist in the literature for finding an optimal feasible
schedule of intervals while maximizing the total weight of the selected intervals
[6, 7]. In [6], the authors formulated the problem as an instance of the interval
graph coloring problem as explained next. Given k colors and n intervals, the
objective is to maximize the value of the legally colored graph. The problem is
then reformulated as the following binary integer linear program (ILP):

Maximize wT x
subject to Ax ≤ eT k,

x ∈ {0,1},
where w is an n-vector representing the weights of the intervals, x is a binary n-
vector in which xj = 1 implies that interval j is to be selected, xj = 0 otherwise.
A is m × n clique matrix [8], in which m is the number of the maximal cliques
in the interval graph, where Aij = 1 if interval j is in the ith maximal clique,
and Aij = 0 otherwise. Also e is an m-vector of 1’s. ILP problems are generally
NP-hard. However, for our particular problem the A matrix has the consecutive
ones property, and A is thus totally unimodular [9]. Therefore, we can relax the
integrality constraint and solve the problem as a linear program in polynomial
time.

This ILP formulation can be used to find an offline optimal schedule of bursts
after receiving all the reservation requests. This optimal schedule can serve as a
reference against which the performance of other algorithms can be compared.

Although it is tempting to use the same ILP formulation for finding the
optimal schedule for a batch of bursts, it is not possible. The reason is that
zero of more of the n bursts may not be assignable to one or more of the k
wavelength channels due to already existing assignments of bursts belonging to
previous batches. This constitute extra constraints in the problem.

To find an optimal batch schedule, we formulate our problem as an instance
of the scheduling with non-identical machines problem [7], in which we associate
with each interval (burst) a subset of servers (wavelength channels) on which it
can be processed. Some bursts can not be processed on any wavelength channel,
because all are busy in the time intervals corresponding to these bursts, these
bursts will be dropped and not included in the optimization process. The authors



in [7] have given an algorithm that finds the optimal feasible schedule for the
non-identical machines problem. The algorithm works as follows. First build a
list of events corresponding to the start and end times of the intervals being
optimized. Then, for each event construct the vertices corresponding to legal
combination of intervals and servers at the time of the event. The constructed
vertices are used to build a directed graph. It then can be shown that the interval
assignments along the longest path in the directed graph represent the optimal
interval assignment to servers.

Unfortunately, the above algorithm has a O(nk+1) computational complex-
ity, which is high when k is large, rendering this algorithm impractical for use as
an online batch scheduler. However, the algorithm is useful for comparison pur-
poses since it serves as an upper bound on the performance of batch scheduling
algorithms in terms of blocking probability.

5 Heuristic Batch Scheduling Algorithms

Because finding the optimal batch schedule has high computational complexity,
we have to turn our attention to heuristic algorithms. In this section we propose
a number of batch heuristic algorithms for wavelength channel scheduling in
OBS networks. All of the proposed heuristic algorithms are based on performing
the following two steps:

1. Impose a certain linear order on the control bursts in the batch queue.
2. Traverse the bursts in this linear order, and assign the corresponding data

bursts to wavelength channels using a greedy void filling wavelength schedul-
ing algorithm.

Although the ordering process imposes a small additional delay on the bursts
in the batch queue, this delay is limited since the number of bursts in the batch
queue is bounded by the acceptance delay value. If we were to order the bursts
directly in the FIFO queue shown in Figure 2, then it is possible that a CB will
be delayed past the arrival time of the corresponding DB because the number
of bursts involved in the ordering process will not be bounded, and this shows
the importance of the batch queue.

In the following we propose two batch ordering algorithms: Smallest-Last
Vertex Ordering, and Maximal Cliques First Ordering.

5.1 Smallest-Last Vertex Ordering (SLV)

The SLV heuristic algorithm orders the vertices of the interval graph according to
the smallest-last ordering [5]. The vertices v1, v2, . . . , vn of a graph are said to be
in smallest last order whenever vi has minimum degree in the maximal subgraph
on the vertices v1, v2, . . . , vi for all i. Let δ(H) = minv∈V (H){deg(v|H)} be the
minimum degree of graph H. A formal description of the SLV algorithm is given
in Algorithm 1.



input : G on n vertices
output: An ordering v1, v2, . . . , vn of vertices of G,

where deg(vi|Hi) = δ(Hi) for 1 ≤ i ≤ n;
initialize i← n, H ← G

while i ≥ 1 do
Let vi be a vertex of minimum degree in H;
H ← H − vi, i← i− 1;

end
Report sequence v1, v2, . . . , vn;

Algorithm 1: SLV algorithm

The SLV algorithm works as follows. Let vn be chosen to have minimum de-
gree in G. For i = n−1, n−2, . . . , 2, 1, let vi be chosen to have minimum degree
in Hi = 〈V (G) − vn, vn−1, . . . , vi+1〉. From the resulting sequence v1, v2, . . . , vn,
where vn has the minimum degree in G, vertex v1 will be colored first. Which
means that the burst corresponding to v1 will be assigned first to the first avail-
able wavelength. The process repeats until each burst is either assigned to a
wavelength channel or dropped.

Choosing the largest degree vertices first for coloring would minimize the total
number of colors required to produce proper coloring of the graph. This means
that bursts which overlap the largest number of other bursts will be assigned
first to wavelengths, which will lead to minimizing the number of bursts to be
dropped. The algorithm does not consider the weight of the bursts, and it only
attempts to minimize the number of dropped bursts.

5.2 Maximal Cliques First (MCF)

The basic idea behind the MCF algorithm is that since the maximum clique that
can be colored is of size k, then our problem is equivalent to that of deleting a
subset of intervals such that all remaining cliques are of size k or less. To this
end, the MCF algorithm finds all the maximal cliques in the interval graph, then
orders them in an increasing order according to time. Let {C1, C2...Cm} be the
set of maximal cliques in G ordered such that Ci ≺ Cj for i < j. The algorithm
processes intervals belonging to Ci before intervals belonging to Cj for i > j. A
formal description of the algorithm is given in Algorithm 2.

The MCF algorithm works as follows. It finds the list of maximal cliques in
the interval graph with size larger than the number of available wavelengths.
The algorithm then finds the clique with the latest occurrence time among this
list. Thereafter, the algorithm removes the intervals with the smallest finish time
from the maximal clique (and from the graph) such that the size of the maximal
clique becomes equal to the number of the available wavelengths. This process is
repeated until the size of all maximal cliques in the graph are less than or equal
to the number of wavelengths. All vertices remaining in G are appended to the
output list first, then the vertices removed by the algorithm are appended to the
end of the output list.



input : G on n vertices, k
output: A list of vertices L
initialize H ← G

while true do
Let C = list of all maximal cliques in H with size > k;
if C is empty then

break;
end
Let cmax = clique with latest occurrence time in C;
z = size(cmax)− k;
for i← 0 to z − 1 do

vi = vertex with smallest finish time in cmax;
H ← H − vi;
cmax ← cmax − vi;
S ← S ∪ vi;

end

end
L← L ∪ vj , ∀vj remaining in G;
Append S to the end of L;
Report sequence L;

Algorithm 2: MCF algorithm

6 Performance Evaluation

This section presents experimental results on the proposed algorithms: SLV and
MCF, and their comparisons with the optimal batch algorithm (BATCH-OPT),
and the greedy LAUC-VF algorithm. Our main concern in the following simu-
lations is the blocking probability.

6.1 Simulation Setup

Figure 5 shows the simulation model used in this section, which is based on the
OPNET [10] simulation tool. It consists of a single OBS node connected to traf-
fic sources and a sink node. Each input link carries two separate wavelengths,
one for data and one for control. The output link carries five wavelengths, four
for data and one for control, and each wavelength has transmission speed of
approximately 2.5 Gbps (OC-48). We assume that sources generate control and
data bursts. Sources generate bursts according to Poisson process, and burst size
has a mean value equal to B bits. The offset time has a uniform distribution
over [Amin, Amax]. Let ∆ be the transmission time of 1024 bits on one of the
wavelengths, i.e. ∆ = 1024/2377728000 = 4.3e-7 seconds. We express the ac-
ceptance delay and the offset time in terms of ∆. In the following simulations,
unless otherwise stated, we set the acceptance delay d to an arbitrary value of
100∆ second which is approximately 40µsec. The greedy wavelength algorithm
used in conjunction with the batch algorithms is the LAUC-VF algorithm.
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6.2 Blocking Probability vs. Offered Load

In this section we study the effect of the proposed algorithms while varying the
OBS node load. We study two scenarios. In the first scenario we use exponentially
distributed burst sizes with mean value B = 81920 bits. The values of Amax and
Amin are set to 150∆ second and 130∆ sec. respectively.
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Fig. 6. Blocking Probability vs. Offered Load with exponential burst size

Figure 6 shows that the performance of batch algorithms is upper bounded
by the optimum batch algorithm as expected, and lower bounded by the greedy
LAUC-VF algorithm. The figure shows that the MCF algorithm performs better
than the SLV algorithm in this scenario, and its performance is close to the
BATCH-OPT algorithm. In addition, the figure shows that the SLV algorithm
performs slightly better than the LAUC-VF algorithm, however its results are
not as significant when compared to the MCF algorithm.

In the second scenario we use constant burst size equal to 81920 bits. Figure 7
shows that the SLV algorithm is the best performing algorithms in this scenario.
Moreover, the MCF algorithm in this scenario performs significantly better than
the LAUC-VF algorithm, but not as good as the SLV algorithm.
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Fig. 7. Blocking Probability vs. Offered Load with constant burst size

6.3 Blocking Probability VS. Offset Time Range

We define the offset time range to be Amax −Amin. In this section, we vary the
value of Amin to study effect of the offset time range on the performance of the
batch scheduling algorithms. We use exponentially distributed burst sizes with
mean B = 81920 bits. The value of Amax is set to 200∆, and offered load is set
to 99% of the link capacity. The value of Amin is varied between 10∆ and 150∆.
Figure 8 plots the blocking probability against the offset time range value.

Figure 8 illustrates that generally the blocking probability increases as the
offset time range increases. Additionally, the rate of the increase in the blocking
probability is approximately equal for all algorithms. This increase is due to
the “retro-blocking” phenomena [11] of the JET signaling protocol, in which, a
reservation request can be blocked by another reservation starting after its own
time. Obviously this phenomena becomes more significant as the offset time
range becomes larger.

7 Concluding Remarks

In this paper we have introduced a novel class of wavelength scheduling algo-
rithms in OBS networks called batch scheduling algorithms. We have described
an optimum batch scheduler that serves as an upper bound for the performance
of the batch scheduling algorithms. Moreover, we have introduced two heuristic
batch scheduling algorithms: SLV, MCF. The MCF algorithm was shown to be
superior in scheduling variable size bursts. In case of constant size bursts, the
SLV algorithm was shown to perform better than the MCF algorithm. Both
algorithms reduce the blocking probability considerably with respect to greedy
scheduling algorithms.
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