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Abstract.  For multicast to be a viable as a dependable network service, mechanisms 
for monitoring and managing multicast flows must be developed.  Significant prior 
work exists to use receiver observations to derive properties of multicast groups, 
including the underlying distribution topology and membership size.  However, just 
as multicast is delegation of replication and distribution from the sender into the 
network, we contend that similar delegation of monitoring and management into the  
network is warranted and beneficial.  gTrace is a set of mechanisms to monitor 
multicast distribution trees that operates on routers participating in the multicast 
distribution to obtain accurate observations throughout the tree in a scalable manner.  
In this paper we present the protocol and validate its benefits through analysis, 
simulation and experimentation. 

1 Introduction 

Multicast offers scalable delivery to large number of receivers by delegating work 
from senders to the network thereby conserving sender and network resources.  
However, multicast distribution introduces new and significant challenges. Some of 
these challenges arise from the inherent properties of multicast that invalidate 
principal assumptions of unicast Internet protocols. In particular, point-to-point 
protocols generally assume a closed feedback loop from the sender to the receiver.  
With multicast this is not the case.  In IP multicast models the sender(s) are oblivious 
to the identity of the receivers and their individual capabilities and observed network 
performance. 

In [1] Sarac et al survey tools for multicast monitoring, classifying them into 
debugging tools [2,3,4,5,6], management tools [7], and modeling tools [8,9].  
Focusing on providing multicast over the MBone, these tools have significant 
drawbacks as mechanisms to provide consistent level of service quality for multicast 
sessions.  Whereas the debugging tools aim at identifying reachability and loss 
problems in the MBone, the modeling tools aim at understanding long term behavior 
of the MBone as an infrastructure, rather than the performance of individual sessions.  
The management tools again focus on managing MBone connectivity and 
performance.  Some of the problems with these tools include dependence on 
application layer data, end-to-end monitoring, implosion problems, limited 
responses, implosion and more.  We conclude that all these tools have in common of 
being infrastructure monitoring tools and do not offer valuable mechanisms for 
service management. 
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To offer multicast as a dependable network service it is essential for service 
providers to be able to monitor service delivery.  Service providers exploiting 
multicast, such as a TV station, or a gaming provider, need to be able to either 
monitor multicast delivery directly or contract the equivalent of an SLA assuring 
consistent service quality throughout the multicast tree. Knowing overall loss rate 
may enable the sender to adapt encoding to reduce bit rate.  Identifying bottleneck 
links may allow congestion adaptation over the bottleneck link, such as local 
retransmission, transcoding, or selective discard of less important packets. Multicast 
protocols that implement stochastic feedback depend on knowing (an estimate of) the 
group size.  Knowing group size may help service providers prioritize resource 
allocation; knowing properties of the distribution topology, including loss rates and 
bottleneck links helps in identifying and mitigating service delivery problems.   

Of particular interest are recent ideas on autonomic networking where a root of a 
subtree may autonomically activate local retransmission, or may increase forwarding 
priority in reaction to high losses or long delays respectively.  To facilitate, such 
local reaction, scalable approaches are needed to collect and propagate information 
such that the relevant information is available throughout the distribution tree. 

In this paper we present gTrace, a protocol and mechanisms to monitor multicast 
distribution trees, combining a request/collect mechanism with local observations at 
the routers participating in the multicast. gTrace delegates the monitoring and data 
collection to the routers participating in the multicast to obtain accurate observations 
throughout the tree while incurring minimal overhead.  In contrast to prior work, the 
protocol focuses on individual distribution trees and is applicable to any sparse mode 
multicast protocol and many application level multicast.  Using gTrace all nodes of a 
given multicast distribution tree efficiently learn key properties of the tree, including 
topology information, loss rates, the group size, and tree height.  While supporting an 
external observer, gTrace recursively propagates observations throughout the 
distribution tree.  In particular each node in the distribution tree recursively collects 
(and has at its disposal) information about the downstream subtree.  gTrace supports 
incremental deployment, and remains valuable even if only a fraction of the routers 
in the multicast distribution tree participate in the protocol. 

The primary contribution of this paper is the specification of the gTrace protocol, 
and its validation using simulation and experimentation.  After discussing related 
work in Section 2, each of the contribution is discussed in successive section. Section 
3 describes the protocol, with Section 4 giving examples of usefulness by showing 
how some key properties can be obtained using gTrace.  In Section 5 we evaluate the 
mechanisms through simulations to show tracking capabilities and to sensitivity 
analysis of the protocol.  In Section 6 we discuss implementation and our 
experimentation with gTrace in our experimental multicast services for TV 
distribution and teleconferencing.  We then conclude in Section 7. 

2 Related Work 

As discussed above most multicast monitoring tools have focused on monitoring the 
MBone infrastructure [2,3,4,5,6,7,8,9].  For example, Mtrace [2] supports tracing the 
path from a multicast receiver to the source.  While potentially valuable, Mtrace is 
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the multicast equivalent of traceroute, does not scale, and is inappropriate for 
continuous monitoring of multicast. Same applies to MHealth [3], which uses RTCP 
information to collect the identity of session members before employing mtrace.  
Another debugging tool, RMPMon [10] relies on RTP monitoring with an SNMP 
based framework. Mantra[4] collects multicast routing information on the MBONE 
by querying multicast routers and collecting statistics.  Tracetree [11] – a tool to 
discover the topology of a multicast distribution tree – suffers from implosion as 
each router in the multicast distribution tree sends a response to the original 
requestor.  While gTrace provides a single set of mechanisms capable of providing 
all these debug functions (see Section 4), in contrast to the tools above, gTrace is 
lightweight enough to be used on a continuous basis and provides observations 
throughout the distribution tree. 

MRM [5] generates traffic on designated test groups thus employing active probing 
to identify faults.  HPMM [6] extends MRM to support passive monitoring of actual 
multicast traffic. HPMM arranges testers into a hierarchy to aggregate responses to 
faults in the multicast infrastructure to prevent implosion at the observer.  gTrace 
employs similar while more general aggregation function to prevent implosion.  
Unlike [6] gTrace does obtain information from routers directly, providing more 
accurate information. Assuming comparable deployment of HPMM and gTrace, 
gTrace can be viewed as a generalization HPMM, while significantly more 
lightweight.   

Another use of multicast and multicast monitoring is to use end-to-end 
measurement of multicast traffic as a method to infer internal network characteristics 
[12] and the logical topology of multicast trees [13].  Probes are sent from the source 
(root) to the multicast receivers (leaves).  The end-to-end loss of probes is used to 
infer the logical multicast topology and the loss rates of the logical links in the 
topology.  A significant drawback of these methods is that they only compute long 
term averages and do not adapt well to membership changes.  In contrast, gTrace 
eliminates this guesswork as is obtains observations at routers participating in the 
multicast.  Moreover, gTrace promptly tracks membership and topology changes, 
and can accurately pinpoint bottlenecks links and fate sharing subtrees.   

Sharing some of the same characteristics, is the body of work  estimating the size 
of a multicast group [14,15,16]  where members of a multicast group periodically, or 
on demand, send a probabilistic acknowledgement to an observer. In contrast in 
gTrace, rapidly tracking the number of multicast participants in every subtree of the 
multicast topology is one of the elementary variables maintained. 

3 The gTrace Protocol and Mechanisms 

GTrace consists of mechanisms and a protocol to perform three main functions: 1) 
local maintenance and information collection at the multicast routers, 2) a 
distribution mechanism to propagate requests and information from a collection point 
to the multicast nodes of the topology, and 3) information gather to propagate 
information from leaves in the topology towards a collection point applying a 
summation function at each intermediate node.  
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To simplify the discussion, in this section we will assume that the collection point 
is the root of the multicast distribution tree being monitored.  Each node in the tree 
apart from the root, has exactly one upstream neighbor and zero or more downstream 
neighbors.  The gTrace state is identified by the root of the multicast tree and a group 
identifier.  In single source multicast [17,18] this is the channel identifier.  In PIM-
SM and other shared tree approaches, the root of the multicast could be the 
rendezvous point, or the root of any of the source specific trees.  The local state at 
each node mirrors that of multicast forwarding, having a downstream state for each 
downstream neighbor.  However this state is control plane state and stored in regular 
memory and hence not size critical. 

An external management system may employ gTrace.  This is indeed how we see 
typical use by service providers, and how we have employed gTrace for service 
monitoring and management in our experimental services.  However, this can be 
achieved by periodic report requests or by establishing an association between the 
external observer and a collection point within the distribution tree, typically the root 
of the multicast distribution tree.  

Although in this paper we focus on gTrace for a single source distribution trees, we 
have experimented with extension to gTrace for more general topologies and 
overlays [19]. 

3.1 Local information collected at intermediate nodes. 

The local information collection mechanism interfaces with the multicast topology 
management module to collect local multicast properties of interest.  The topology 
management module is queried for active multicast flows and returns a list of active 
flows, each identified by the pair <S,C>.   

For each multicast channel being monitored, gTrace maintains information about 
upstream neighbor, and set of next-hop downstream neighbors.  For each 
downstream neighbor, the local state maintained by gTrace consists of the weight (w) 
i.e., total number of nodes, number of leaves (l), the height (h) of the subtree rooted 
by that neighbor and the true height (i) measured in physical hops based on TTL.  
Space complexity at each node is therefore four integer variables times the local fan-
out of each monitored channel.  

In addition gTrace can obtain from the multicast daemon the number of bytes (b) 
and packets (p) received on the flow <S,C>.   We have defined an abstract interface 
through which the gTrace daemon queries the multicast topology module to export 
its state to the local information collection mechanism.  This interface must be 
adapted to the particular multicast protocol in use. 

3.2 gTrace protocol messages 

We have defined three types of gTrace messages, a query, a report, and an update. A 
query message is used to subscribe to periodic updates of the query result.  The 
report message is used to propagate information down the tree from the originator.  
The update is used by the gather mechanism as a response to a query. 

The format of the gTrace message consists of a message type, type header, a data 
descriptor, and data values.  The message type is one of query, report, or update, and 
is encoded as a single character.  The type headers are described in the respective 
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subsections below.  The message data descriptor is a null terminated string of 
characters, each character value corresponding to a particular variable of interest.  
The six basic local state variables – w, l, h, i, b and p – are encoded with the 
corresponding character.  In addition the messages may have two fields for IP 
address and TTL value, encoded by a and t respectively.  The values follow the string 
(at the next 32 bit boundary in our implementation) with the variables appearing in 
the same order as they appear within the string.  All variables are encoded as 32 bit 
values, except the byte and packet counts which use 64 bits.   

3.3 The distribution mechanism 

The distribution mechanism is used to distribute queries and information from the 
collection point to the nodes of the topology.  The originating node creates a 
distribution message and sends it on the multicast group. Distribution messages are 
sent with the router-alert (hop-by-hop) option down the multicast tree.  Distribution 
messages are sent unreliably, but repeated three times on each link to overcome 
losses. 1 

Query subscriptions: The query message is used to subscribe to the continually 
updated computation of results specified by the message descriptor.  The query 
message type header specifies an update period.  The update period is given in 
milliseconds between updates.  A null value in the update period cancels prior 
subscriptions if one exists.  In addition a query always has the a and t variables 
specified.  A gTrace node that receives a query sends the state values specified in the 
query message to the upstream gTrace node given as the value of the address field.  
Before forwarding the query message downstream, the node stamps its own address 
and the current TTL in the a and t fields of the message. Unless the update period is 
zero it then continues to send updates periodically, and stores the query locally. 
When a new branch joins the topology the query is forwarded on the new branch, 
extending the subscription to the newly joined downstream nodes. 

Explicit reporting: The report message is used to propagate information down the 
tree, or report to an outside observer.  The type header contains a report-to field 
containing an IP address, to which reports are to be sent, and a replace/trace flag, 
encoded as r or x respectively.  If a trace is requested (i.e., r flag set), the processing 
of the report message is similar to the processing of a record route IP option, in that 
each node in the multicast distribution tree appends its values for the variables 
specified in the option header field before forwarding it on each of the output ports of 
the channel.  Each subsequent hop in the path processes the message by appending 
one element to the array, containing the selected variables.  When the report reaches 
a leaf (or the last hop gTrace router), a single result is sent to the report-to host. 

If instead the replace flag is set, each node in the path replaces the values in the 
message with its own local values before forwarding the message downstream and to 
the report-to host.  If no trace flags are set the original values are propagated to all 
nodes below the originator in the topology. For example, this is how the root may 
announce the group size to all receivers. 

                                                      
1 If the three messages are sent sufficiently far apart, losses are independent.  Even at relatively high loss 
rates, e.g. 8%, the probability of loosing all three is insignificant.  As messages fit in a single packet, 
overhead is negligible. 



 6 

3.4 The gather mechanism – processing subscriptions 

The gather mechanism propagates information from the leaves of the topology 
towards the root by periodically sending updates upstream.  At each node the gather 
involves two functions: a) Receiving and processing update messages from 
downstream, and b) preparing and sending of an update result upstream.  The two 
functions are performed asynchronously. 

The values in a gather message received from downstream on a given channel is 
simply stored as part of the channel gather state, and override any previous updates 
from the same downstream node.  The message format of the update is the same as of 
the originating query subscription. 

Periodically, for each multicast flow, each router computes a new local state and 
sends an update to its upstream router.  The new local state is computed from local 
observations and from the state updates from downstream neighbors of the multicast 
topology.  The number of bytes and packets, b, and p, received on the multicast from 
source S are observed locally.  The remaining values, w, l, h, and i are computed by 
applying an appropriate summation function respectively as    
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where out(v) denotes the set of output ports for the multicast, and ∆(TTL) is the 
difference in TTL of the IP header of the message and the t value in the message.  

For each active flow, gTrace includes a timer field that denotes the time when the 
next local update is to be sent upstream, and for the output ports denotes the time 
when a state update was last received.  If the state update is managed as part of 
refreshing the multicast forwarding state these timers are superfluous, and omitted. 

To economize on message processing, the state update may be sent as part of the 
message(s) for refreshing the multicast forwarding state.  Alternatively, the state 
updates of multiple multicast groups may be combined and reported in a single 
message.  For a particular flow the updates are sent asynchronously and 
independently.  The update messages are sent upstream on the incoming port of the 
multicast flow. 

The gather process starts at the leaves or at last-hop routers.  If the end-systems do 
not participate in gTrace the last-hop router sets h = i = 1 and may attempt to 
estimate the appropriate values to w and l, depending on the information that it has 
available from the local collection mechanism (which may be protocol dependent).  
Without superior information, the router sets l to its local outdegree (for the group), 
and w to l + 1.  To gracefully leave a session when a node leaves the multicast group 
the node sends a last gTrace message with w = l = h = i = 0. 

An important tradeoff in the realization of the gather mechanism is the length of the 
update period.  A short update period gives better state estimates at the increased 
overhead cost of bandwidth and processing at the nodes.  The update period can be 
adjusted by the collection point by resending the query with a new update period. In 
Section 5 we evaluate the gTrace gather mechanism through simulation to evaluate 
the effect of the update period on the estimation lag and error. 

All gTrace messages are sent unreliably.  However since an upstream node simply 
maintains the last received update as its current best estimate (as long as the multicast 
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branch is active), under reasonable loss rates, losses merely delay the propagation of 
information updates.  Of course this contributes to errors in the estimates of the 
various values, as discussed in the next two sections.   

3.5 Incremental deployment 

Initially during the deployment of the gTrace mechanisms, one cannot assume that 
all multicast routers participate in the protocol.  A router that does not implement the 
gTrace protocol will simply forward report messages without processing. This is not 
a major issue as the distribution messages are forwarded on the multicast group, and 
thus all routers and receivers will receive the message.  Updates are sent point-to-
point to the address of the closest upstream gTrace router learned from the query 
message.  In fact, by comparing the TTL value of the message to that of the current 
TTL in the IP header of the packet containing the query message the downstream 
gTrace nodes can determine how many non-cooperating routers there are between it 
and the next upstream gTrace enabled router.   

4 Computing Multicast Attributes 

In this section we describe how to use gTrace to compute a number of interesting 
properties of multicast. We consider two types of applications, group centric, and 
network centric.  The former is used by application level protocols or a group 
manager to adapt and optimize the behavior of the application level protocols.  The 
latter is used by network and service management systems to monitor and manage 
resources allocated to the multicast groups, and apply network policies for resource 
sharing. The application sets the gTrace options depending on the needs of the group.  
Note that although the data collection is coordinated, it is still an estimate due to 
staleness caused by protocol delays and the group dynamics. 

Estimating group size: The leaf count l, at the collection point (root of the 
distribution tree) is the current estimate of the group size.  More generally, the leaf 
count at any intermediate node is the down-stream group size.  For some applications 
(e.g. applications using RTP) it is important for the leafs to know the group size. This 
information can be propagated to the receivers by sending a gTrace  report from the 
multicast root.  The source records its own information, source address, weight, 
height and number of bytes sent.  Without any flags set the intermediate routers 
simply forward the message on the multicast tree.  On receipt, receivers learn the 
current estimated group size.   

Identifying and locating bottleneck links: Since number of packets received is 
collected and exchanged, gTrace can be used to identify a bottleneck link in a 
multicast distribution tree. Each node periodically transmits upstream the number of 
packets it receives on a flow.  By comparing the local receive rate to the receive rate 
on a given downstream branch (from the gather update), a node can determine if the 
losses on the downstream link are “excessive.” This information could be used to 
activate local retransmissions on that particular link or employ other forms of local 
congestion adaptation [20]. 

A more thorough analysis of losses and in fact topology can be obtained by using a 
report message with the record flag to propagate and collect the addresses and 
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received packets of every node at a service management host (specified in the report-
to field) for analysis.  

Determining the number of receivers sharing a bottleneck link: Using the 
above and including the weight, and/or leafs in the subscription the nodes above the 
bottleneck knows the number of node and/or leafs below that link.  A similarly 
augmented report message, i.e. requesting weight and leafs, can be employed to 
deliver that information to an external observer. 

Topology discovery: We can use gTrace to discover the topology of the multicast 
in a number of ways.  Sending a report with the trace flag set and address field 
selected, propagates the traceroute from the root to each node in the tree.  By 
specifying a report-to this information will be sent from each leaf to an external 
observer.  To appreciate the underlying topology, including the TTL value as well is 
valuable. Using  the same with the replace flag implements essentially the same 
semantics as [11]. 

5 Evaluation 

Although the protocol is based on direct measurements the aggregate values seen at 
the collection point are the result of a distributed computation by the gather 
mechanism with information exchanged over an unreliable channel.  Consequently 
the values at the root are (random) estimates of the true values.  There are three 
sources of errors: staleness – since the values are observed at the root some time after 
the observations were collected; inconsistent observations – since the aggregate is 
computed from observations made asynchronously; and losses of update messages.  
In this section we use simulations to examine the dynamic behavior of gTrace, in 
particular its ability to track dynamic changes in topologies. For this purpose we have 
built a simulation model of gTrace mechanisms using the ns2 network simulator.  
Analysis of the steady state distributions is found in [21]. 

5.1 The basic model 

In each simulation run we construct a multicast topology and a finite set of potential 
receivers.  Receivers are either busy, or idle, becoming busy by joining a multicast 
group and idle when leaving the group.  We use a two phase model with exponential 
holding times to model client activity.  

We have used both regular topologies (binary- and k-ary trees) and random 
topologies.  The random distribution trees are constructed in a recursive manner as 
follows: Each node has some probability αleaf of being a leaf.  If not a leaf, the fan-
out of the node is determined as a random variable.  We use a geometric distribution 
with mean 1.8 to generate sparse trees, and a normal distribution with mean 2.5 to 
generate more dense trees. To limit the size of the tree we limit the maximum height 
of the tree. 

In our simulations we assume an end-to-end loss rate of approximately 4% from the 
deepest leaf to root.  Each link has the same loss rate and losses are independent and 
identically distributed. Ignoring the processing overhead at nodes we use the same 
propagation delay for all links, 20 ms.  While this is rather long, it is still an order of 
magnitude smaller than the smallest update period we consider. 
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5.2 The ability to track dynamic changes in topology 

To evaluate how gTrace handles dynamic topology we use the model described 
above with expected idle time of 100 sec, and expected active time of 200 sec.  Each 
receiver joins and leaves according to this process repeatedly throughout the entire 
simulation. 

Figure 1 shows a simulation run for a full binary tree of height 8 (thus having 256 
leafs).  The figure plots four curves, the true number of active receivers and the 
corresponding gtrace estimate (leafcount) at the root of the topology for three 
different update periods: 1, 3 and 10 seconds.  To facilitate comparison with other 
figures, the y-axis is normalized to show the fraction of potential receivers active. As 
is evident form the figure, gTrace tracks the actual value excellently even with the 10 
second update periods. 

Figure 2 shows the same for a random tree of maximum height 10 having 72 nodes, 
thereof 21 leafs, created using αleaf = 0.5 and a geometrically distributed fan-out.  
The significantly fewer leaves result in substantially less activity, accounting for the 
steps in the curves.  Again, we see that gTrace accurately tracks the actual 

  
Figure 1: Dynamic tracking of gTrace using 
update period of 1, 3 and 10 seconds, over a full 
binary tree of height 8. 

Figure 2: Dynamic tracking of gTrace over a 
random tree of height 10 with 21 potential 
receivers. 

 

  

Figure 3: Dynamic tracking of height in gTrace 
over a random tree of height 26 with 150 
potential receivers. 

Figure 4: Dynamic tracking of over a random 
tree of height 8 with 279 potential receivers. 



 10 

membership. 
gTrace ability to track the height of a tree is evident on Figure 3 which shows a 

simulation run for a random tree of having 447 nodes, thereof 150 leafs, the furthest 
leaf having height 26.  The tree was created using αleaf = 0.3 and a geometrically 
distributed fan-out. The client behavior is  the as before except using expected idle 
time of 200 sec, and expected active time of 100 sec to get more dynamic in the 
height. While the significant height results in appreciable lag for the 10 second 
update time, the figure shows that gTrace accurately tracks the height. 

5.3 Insensitivity to the underlying topology 

Figure 4 shows again the dynamic tracking of gTrace for a denser tree topology.  The 
tree was created with αleaf = 0.5 and a normally distributed fan-out with expected 
value of 3, and maximum height set to 8, yielding a tree with comparably many 
receivers as the full binary tree in Figure 1, namely having 279 leafs out of a total of 
690 nodes.  Comparing Figure 1 and Figure 4 we see how gTrace is indifferent to the 
underlying topology as the figures are almost identical.    

5.4 Effect of tree height on estimates 

Figure 5 and 6 show the effect of height on the lag in information updates, depicting 
two scenarios with equal number of clients but with different height.  For Figure 5 
the tree topology is a full binary tree with 512 receivers and thus height of 9. Figure 6 
shows a full 8-ary tree topology with 512 clients and a height of 3.  For the binary 
tree and update period of 10 seconds the lag is clearly visible while the difference for 
the 8-ary tree is negligible.  

6 Implementation and Experimentation 

We have prototyped and experimented with gTrace for monitoring and managing 
multicast services, such as TV distribution and teleconferencing that we are 

  

Figure 5: Dynamic tracking of gTrace over 
a full binary tree of height 9 with 512 
potential receivers. 

Figure 6: Dynamic tracking of gTrace over 
a full 8-ary tree of height 3 with 512 
potential receivers. 
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experimenting with over the Internet.  Our multicast services are offered over our 
own novel single source multicast protocol, SLIM [18].  Initiated from our service 
management center we use the gTrace mechanisms to collect statistics about use and 
to monitor changes in membership and topology. 

Local information collection at intermediate nodes: A gTrace local collection 
object communicates with the topology management daemon of SLIM to collect the 
local state information.  We have implemented the abstract interface using shared 
memory minimizing IPC overheads.   

The distribution and gather mechanisms: On receiving a query the daemon sets 
up the appropriate measurement state and an update timer value as specified by the 
message descriptor.  When a new branch joins the multicast tree the daemon 
forwards the last query out on the branch.  When a report message arrives the 
daemon serves the report by appending appropriate values, forwards the message and 
sends a copy to a report-to host if applicable. A gather message from a downstream 
node triggers the daemon to update its estimates for that particular sub-tree. On 
update timer expiration for a particular group the local state is collected from the 
SLIM daemon as well as the current estimates from downstream nodes and are then 
sent to the upstream router. 

Experimentation with multicast services: We have been offering multiple 
multicast based services based on our SLIM protocol, including TV distribution, 
radio and conferencing on experimental basis for over two years.  In particular we 
offer popular TV channels not available in remote areas in Iceland, at times received 
by hundreds of concurrent users outside of our campus.  gTrace is proving 
lightweight and efficient in supporting the monitoring of multicast in this setting. 

7 Conclusion 

In this paper we have introduced gTrace, a control plane mechanism for measuring 
and monitoring multicast topologies.  The gTrace control plane protocol consists of a 
distribution and gather mechanism, and three types of messages.  Collectively the 
protocol allows for observations from inside of the multicast topology to be 
combined in a scalable manner to compute a flora of interesting attributes of 
multicast distribution trees.  Our simulations show that gTrace is able to track key 
attributes accurately and is relatively insensitive to topology and dynamic member 
changes.  This we have indeed verified in our own use of the protocol in our 
experimental multicast service for TV distribution and teleconferencing. 
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