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Abstract. The requirements on IP routers continue to increase, both from the 
control plane and the forwarding plane perspectives. To improve scalability, 
flexibility, and availability new ways to build future routers need to be 
investigated. This paper suggests a decentralized, modular system design for 
routers, based on control elements for functionalities like routing, and 
forwarding elements for packet processing. Further, we present measurements 
on the distribution of large routing tables in an experimental platform 
consisting of one control element and up to 16 forwarding elements. 

1 Introduction and Related Work 

The growth of the Internet in combination with the demand for new services rapidly 
increase the requirements imposed on network systems, such as IP routers. The 
growing traffic volumes require higher performance of the forwarding plane, i.e., the 
router’s capacity to process and forward packets. New services often require both 
more operations to be performed per packet, and that new protocols are introduced in 
the routers. The latter fact leads to an increased complexity in the control plane, i.e., 
the software controlling the router. 

We believe that the monolithic structure of traditional routers is an architectural 
limitation when it comes to meeting future requirements. Therefore we take the 
approach to investigate architectures that allow network systems to be composed from 
multiple modules (or elements), which communicate through open, well-defined 
interfaces. Our hypothesis is that such architectures can significantly improve 
scalability, flexibility, and availability of routers. However, there is a certain cost 
associated with the decentralized structure, since the internal communication incurs 
overhead. In this paper we investigate different aspects of the internal 
communication.  

A considerable amount of work has been done on modularization and 
programmability of network systems in the context of active and programmable 
networks [2], [3], with the purpose to dynamically modify the packet processing path. 
Exploring decentralized architectures is in line with both industry and research efforts 
to improve the scaling of Internet routers. Recent commercial high-performance 
routers are based on distributed multi-chassis solutions, [6], [7], and the 100 Tb/s 



router project at Stanford University [5] targets a distributed architecture where line 
card chassis are connected to an optical switch fabric. 

Within the IETF, the ForCES (Forwarding and Control Element Separation) 
working group [4] aims at defining a protocol for communication between control 
functions in a router and packet forwarding functions [10]. Goutadier [11] has 
evaluated an early proposal of the ForCES protocol, called Netlink2. 

Finally, Feamster et al. suggest an approach to separation between routing and 
forwarding [9]. They propose that a Routing Control Platform (RCP) should be used 
to separate interdomain routing from the individual routers, which mainly should be 
concerned with route lookups and forwarding of packets. 

2 System Design and Implementation 

We consider a distributed router consisting of different functional elements. Using the 
terminology of ForCES [4], the distributed router consists of Control Elements (CEs) 
and Forwarding Elements (FEs). CEs implement functions such as routing protocols, 
while FEs perform for example packet forwarding. CEs and FEs are connected to an 
internal network, which can be built in many different ways, e.g., using high-speed 
optics or high performance switches. In principle, the internal network could even be 
a router-based IP-network! 

Internal communication protocols coordinate activities between the different 
elements. We have taken the approach to use the protocols emerging within the IETF 
as a starting point, and added extensions for our specific purposes. We call the result 
Forz – a protocol with three main parts: association, configuration, and data transfer.  

The association part is related to internal element discovery and system 
configuration. The purpose of the configuration part is to convey configuration 
commands and event notifications between CEs and FEs. For example, if the routing 
protocols in the CE compute a new best route for some destination, then the FEs need 
to be informed of this so that they can change their forwarding tables. Forz 
configuration is based on distributing Netlink [8] messages over the internal control 
network. Netlink is an API of for Unix networking applications. The purpose of the 
data transfer part is to switch data packets between FEs across the internal network. 
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Fig. 1 Physical separation between control element and forwarding element 

We have implemented a prototype version of a distributed router consisting of 
regular PCs connected together by two switched Ethernets (one for control and one 
for data). So far we have implemented one version of a CE, based on a UNIX system 



running Zebra open source routing software [1], and one FE implementation, also 
based on PCs running UNIX. The CE is implemented by extending Zebra with the 
Forz protocol, and supports the manual configuration of remote network interfaces 
and static routes. For example, the CE takes commands, given through Zebra’s 
command line interface or a configuration file, and translates them to Netlink 
messages that are distributed through the Forz protocol (see Fig. 1). 

3 Performance Evaluation 

The purpose of our performance evaluation is to investigate how different transport 
mechanisms affect the cost in terms of time spent on internal communication. We 
study a communication-intensive operation, where a large routing table of 100K 
entries is distributed from the CE to the FEs. We only measure the communication 
time between the CE and the FEs. Table updates in the FEs are not included. 

Forz can run on top of UDP as well as TCP. The choice of transport protocol 
depends on the type of information that is communicated over the internal network. 
The distribution of a routing table means that information is duplicated from a sender 
(CE) to many receivers (FEs). Thus, it appears to be an ideal candidate for multicast 
transmission. To investigate this, we compare UDP multicast to two unicast 
mechanisms: UDP unicast, and TCP (which is always unicast). 

In contrast to TCP, UDP lacks mechanisms for flow control, congestion control, 
and segmentation. So in order to use UDP, we have to add support for those 
mechanisms in Forz. For example, we quickly discovered that if we use UDP without 
any flow control, a large portion of the route updates are lost since the receivers (the 
FEs) cannot process the incoming messages fast enough. Furthermore, we also found 
that the packet size has significant influence on UDP performance. However, 
congestion control has not been needed in our measurements, since they have been 
performed in a controlled environment without congestion. 

 
Fig. 2 Total routing table distribution time for different transport mechanisms 

We study how the routing table distribution time varies with the number of FEs, 
and the results are shown in Fig. 2. We observe that, for unicast transport, there is a 
linear increase in the time it takes to distribute the routing table to all FEs when the 



number of FEs increases. For UDP multicast, the time is constant, independently of 
the number of FEs. The value is roughly the same as for UDP unicast with one FE. 
Thus, in this experimental set-up, the system can distribute roughly 50,000 route 
updates per second when UDP multicast is used as the transport mechanism. 

For comparison, we also measure TCP. Thus, the transport is reliable and there is 
no need for Forz level ACKs and segmentation. The drawback is that multicast 
transfers cannot be used. The results show that the total time to distribute the routing 
table is slightly lower for TCP than for UDP unicast, which can be explained by 
TCP’s more efficient flow control mechanism and more optimal segmentation. 

4 Conclusions and Further Work 

We have examined how the time for internal communication depends on the number 
of FEs. From a scaling perspective, the ideal result is an internal communication time 
that is independent of the number of FEs, as in the case with UDP multicast. Further, 
mechanisms such as flow control and segmentation are crucial for the performance. 
For the unicast-based transport mechanisms, the total distribution time increases 
linearly with the number of FEs. Such an increase is far from ideal, but it is 
predictable and may in some cases be manageable even for large systems. The 
implementation of flow control and segmentation is specific to the configuration we 
have measured. A more general solution would be to use a reliable multicast protocol. 
Evaluating such protocols for transport of Forz messages is ongoing work.  
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