
Control and Forwarding Plane Interaction in
Distributed Routers

Markus Hidell, Peter Sjödin, and Olof Hagsand

KTH – Royal Institute of Technology
ELECTRUM 229, SE-164 40 Kista, Sweden

{mahidell, psj, olofh}@imit.kth.se

Abstract. The requirements on IP routers continue to increase, both from the
control plane and the forwarding plane perspectives. To improve scalability,
flexibility, and availability new ways to build future routers need to be
investigated. This paper suggests a decentralized, modular system design for
routers, based on control elements for functionalities like routing, and
forwarding elements for packet processing. Further, we present measurements
on the distribution of large routing tables in an experimental platform
consisting of one control element and up to 16 forwarding elements.

1 Introduction and Related Work

The growth of the Internet in combination with the demand for new services rapidly
increase the requirements imposed on network systems, such as IP routers. The
growing traffic volumes require higher performance of the forwarding plane, i.e., the
router’s capacity to process and forward packets. New services often require both
more operations to be performed per packet, and that new protocols are introduced in
the routers. The latter fact leads to an increased complexity in the control plane, i.e.,
the software controlling the router.

We believe that the monolithic structure of traditional routers is an architectural
limitation when it comes to meeting future requirements. Therefore we take the
approach to investigate architectures that allow network systems to be composed from
multiple modules (or elements), which communicate through open, well-defined
interfaces. Our hypothesis is that such architectures can significantly improve
scalability, flexibility, and availability of routers. However, there is a certain cost
associated with the decentralized structure, since the internal communication incurs
overhead. In this paper we investigate different aspects of the internal
communication.

A considerable amount of work has been done on modularization and
programmability of network systems in the context of active and programmable
networks [2], [3], with the purpose to dynamically modify the packet processing path.
Exploring decentralized architectures is in line with both industry and research efforts
to improve the scaling of Internet routers. Recent commercial high-performance
routers are based on distributed multi-chassis solutions, [6], [7], and the 100 Tb/s

router project at Stanford University [5] targets a distributed architecture where line
card chassis are connected to an optical switch fabric.

Within the IETF, the ForCES (Forwarding and Control Element Separation)
working group [4] aims at defining a protocol for communication between control
functions in a router and packet forwarding functions [10]. Goutadier [11] has
evaluated an early proposal of the ForCES protocol, called Netlink2.

Finally, Feamster et al. suggest an approach to separation between routing and
forwarding [9]. They propose that a Routing Control Platform (RCP) should be used
to separate interdomain routing from the individual routers, which mainly should be
concerned with route lookups and forwarding of packets.

2 System Design and Implementation

We consider a distributed router consisting of different functional elements. Using the
terminology of ForCES [4], the distributed router consists of Control Elements (CEs)
and Forwarding Elements (FEs). CEs implement functions such as routing protocols,
while FEs perform for example packet forwarding. CEs and FEs are connected to an
internal network, which can be built in many different ways, e.g., using high-speed
optics or high performance switches. In principle, the internal network could even be
a router-based IP-network!

Internal communication protocols coordinate activities between the different
elements. We have taken the approach to use the protocols emerging within the IETF
as a starting point, and added extensions for our specific purposes. We call the result
Forz – a protocol with three main parts: association, configuration, and data transfer.

The association part is related to internal element discovery and system
configuration. The purpose of the configuration part is to convey configuration
commands and event notifications between CEs and FEs. For example, if the routing
protocols in the CE compute a new best route for some destination, then the FEs need
to be informed of this so that they can change their forwarding tables. Forz
configuration is based on distributing Netlink [8] messages over the internal control
network. Netlink is an API of for Unix networking applications. The purpose of the
data transfer part is to switch data packets between FEs across the internal network.

routing s/w

Forz

IF IF

Forz
CE FE

ctl

netlink

ctl

FIB

RIB
forwarder

netlink

external links

Internal control
network

Fig. 1 Physical separation between control element and forwarding element

We have implemented a prototype version of a distributed router consisting of
regular PCs connected together by two switched Ethernets (one for control and one
for data). So far we have implemented one version of a CE, based on a UNIX system

running Zebra open source routing software [1], and one FE implementation, also
based on PCs running UNIX. The CE is implemented by extending Zebra with the
Forz protocol, and supports the manual configuration of remote network interfaces
and static routes. For example, the CE takes commands, given through Zebra’s
command line interface or a configuration file, and translates them to Netlink
messages that are distributed through the Forz protocol (see Fig. 1).

3 Performance Evaluation

The purpose of our performance evaluation is to investigate how different transport
mechanisms affect the cost in terms of time spent on internal communication. We
study a communication-intensive operation, where a large routing table of 100K
entries is distributed from the CE to the FEs. We only measure the communication
time between the CE and the FEs. Table updates in the FEs are not included.

Forz can run on top of UDP as well as TCP. The choice of transport protocol
depends on the type of information that is communicated over the internal network.
The distribution of a routing table means that information is duplicated from a sender
(CE) to many receivers (FEs). Thus, it appears to be an ideal candidate for multicast
transmission. To investigate this, we compare UDP multicast to two unicast
mechanisms: UDP unicast, and TCP (which is always unicast).

In contrast to TCP, UDP lacks mechanisms for flow control, congestion control,
and segmentation. So in order to use UDP, we have to add support for those
mechanisms in Forz. For example, we quickly discovered that if we use UDP without
any flow control, a large portion of the route updates are lost since the receivers (the
FEs) cannot process the incoming messages fast enough. Furthermore, we also found
that the packet size has significant influence on UDP performance. However,
congestion control has not been needed in our measurements, since they have been
performed in a controlled environment without congestion.

Fig. 2 Total routing table distribution time for different transport mechanisms

We study how the routing table distribution time varies with the number of FEs,
and the results are shown in Fig. 2. We observe that, for unicast transport, there is a
linear increase in the time it takes to distribute the routing table to all FEs when the

number of FEs increases. For UDP multicast, the time is constant, independently of
the number of FEs. The value is roughly the same as for UDP unicast with one FE.
Thus, in this experimental set-up, the system can distribute roughly 50,000 route
updates per second when UDP multicast is used as the transport mechanism.

For comparison, we also measure TCP. Thus, the transport is reliable and there is
no need for Forz level ACKs and segmentation. The drawback is that multicast
transfers cannot be used. The results show that the total time to distribute the routing
table is slightly lower for TCP than for UDP unicast, which can be explained by
TCP’s more efficient flow control mechanism and more optimal segmentation.

4 Conclusions and Further Work

We have examined how the time for internal communication depends on the number
of FEs. From a scaling perspective, the ideal result is an internal communication time
that is independent of the number of FEs, as in the case with UDP multicast. Further,
mechanisms such as flow control and segmentation are crucial for the performance.
For the unicast-based transport mechanisms, the total distribution time increases
linearly with the number of FEs. Such an increase is far from ideal, but it is
predictable and may in some cases be manageable even for large systems. The
implementation of flow control and segmentation is specific to the configuration we
have measured. A more general solution would be to use a reliable multicast protocol.
Evaluating such protocols for transport of Forz messages is ongoing work.

References

1. GNU Zebra, URL=http://www.zebra.org
2. Computer Networks Special Issue on Programmable Networks, Vol. 38, No. 3, Feb. 2002.
3. IEEE Journal on Selected Areas in Communications on Active and Programmable

Networks, Vol. 19, No. 3, Mar. 2001.
4. ForCES (Forwarding and Control Element Separation) IETF Working group,

URL=http://www.ietf.org/html.charters/forces-charter.html.
5. I. Keslassy, et al, “Scaling Internet Routers Using Optics”, ACM Sigcomm 2003,

Karlsruhe, Germany, 2003.
6. Juniper, “T-Series Routing Platforms: System and Packet Forwarding Architecture”,

White paper, 2002.
7. Cisco, “Next Generation Networks and the Cisco Carrier Routing System”, White paper,

2004.
8. J. Salim, A Kleen, and A. Kuznetsov, “Linux Netlink as an IP Services Protocol”, Internet

RFC 3549, Jul. 2003.
9. N. Feamster, et al, “The Case for Separating Routing from Routers”, ACM SIGCOMM

FDNA Workshop, Portland, Oregon, USA, Aug. 30, 2004.
10. A. Doria et al, “ForCES Protocol Specification”, IETF Internet Draft draft-ietf-forces-

protocol-01.txt, Oct. 2004.
11. G. Goutaudier, “Enhancements and Prototype Implementation of the ForCES Netlink2

Protocol”, IBM Research Report RZ 3482 (# 99522), Sep. 2003.

