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Abstract. We consider the problem of non-bifurcated multicommodity flows 
rerouting in survivable connection-oriented networks. We focus on local resto-
ration, in which the backup route is reroutes the flow only around the failed arc. 
The origin node of the failed arc is responsible for rerouting. We introduce and 
discuss a new convex function for optimisation of primary routes. We propose 
a heuristic algorithm for assignment of primary routes employing the developed 
function. During numerical experiments we examine performance of the new 
function compared to other functions proposed previously in the literature. 

1   Introduction 

Recently, issues of network survivability become more important due to the growing 
requirements for QoS and traffic engineering. Connection-oriented network tech-
nologies like Asynchronous Transfer Mode (ATM), MultiProtocol Label Switching 
(MPLS) use comparable approaches to enable network survivability. The main idea 
of this approach is as follows. Each circuit, i.e. virtual path in ATM or label switched 
path in MPLS, has a primary route and a backup route. The primary route is used for 
transmitting of data in normal, failure-free state of the network. After a failure of the 
primary route the failed circuit is switched to the backup route. The process of 
switching is easy, i.e. the circuit’s identifier numbers are changed in network nodes. 
All backup routes have zero bandwidth. After activation there are assigned with nec-
essary bandwidth. In this work we focus on local restoration (called also rerouting or 
repair) [1], [8]. The backup route is found only around the failed arc. The origin node 
of the failed arc is responsible for rerouting. 

In modern computer networks a single-link failure is the most common and fre-
quently reported failure event [6]. Therefore, in most of optimization models a single-
link failure is considered as the basic occurrence. Spare capacity is computed to pro-
vide full restoration in case of a failure of any single-link. In networks having limited 
resources of spare capacity 100% restoration is not always possible and routes are 
designed to minimize effects of the failure, i.e. to minimize to amount of flow lost 
due to a failure.  

For the context of this work we concentrate on an existing facility network, i.e. we 
do not consider facility capacity planning and topological design. Joint optimization 



of primary and backup routes must be carried out to find a globally optimal solution 
of the lost flow due to a network failure for a projected traffic demand. Since the 
optimization is conducted jointly over primary and backup routes, the complexity of 
the problem grows tremendously. The main idea of our approach is to partition the 
problem into two simpler problems: first optimize primary routes and next find 
backup routes for already established primary routes. Since there is mutual depend-
ency between the primary routes and the backup routes assignment, the obtained 
solution cannot be claimed to be an optimum if these problems are treated separately. 
However, obtained results prove robustness of this approach [9], [10]. A key problem 
of our approach is to define an objective function for primary routes’ assignment. 
Such a function must indicate preparation of the network to the rerouting process. 
Since there are many algorithms for convex multicommodity flow problem, it would 
be convenient if the function were convex.  

In this work we define and discuss a new convex function for optimisation of pri-
mary routes in a network applying local rerouting. We also propose a heuristic algo-
rithm for assignment of primary routes using this function. Furthermore, we present 
and discuss results of extensive simulations. 

2   Definition of a New Function for Local Rerouting 

Our objective in this section is twofold: Firstly, we want to define a function that 
reflects the preparation of the network to the local rerouting. Secondly, we plan to 
discuss main characteristics of this function. 

Various network or transportation problems can be modeled as multicommodity 
(m.c.) flow problem [4], [5]. Multicommodity flows are of two types: bifurcated and 
non-bifurcated. In this work we focus on non-bifurcated m.c., in which each com-
modity flows along one route only. 

We are given a network ),( cG  where ),( AVG =  is a directed graph with n verti-

ces representing routers or switches and m arcs representing links, +→ RAc :  is a 
function that defines capacities of the arcs. We denote by VAo →:  and VAd →:  
functions defining the origin and destination node of each arc. For each Aa∈  we 
call { }akadkdAka ≠=∈= ),()(|)(in  the set of incoming arcs of d(a) except a, and 

{ }akaokoAka ≠=∈= ),()(|)(out  the set of outgoing arcs of o(a) except a.  
To mathematically represent the problem we introduce the following notations 

af  represents the total flow on arc a. 

ac  capacity of arc a. 
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in  The aggregate capacity of incoming arcs of v. 

Definition 1. The global non-bifurcated m.c. flow denoted by ],...,,[ 21 mffff =  

is defined as a vector of flows in all arcs. We call a flow f  feasible if for every arc 

Aa∈  the following inequality holds  

aa cfAa ≤∈∀ :  (1) 

Inequality (1) ensures that in every arc flow is not greater then capacity. This ine-
quality is called a capacity constraint. 

For the sake of simplicity we introduce the following function 
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To analyze properties of the local restoration we consider an arc Ak ∈ . We as-
sume failure of k. Recall that in the local rerouting flow on the arc k must be rerouted 
by the source node of the arc k. Therefore, spare capacity of outgoing arcs of o(k) 
except k is a potential bottleneck of the restoration process. Notice that if 
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then flow of the failed k can be restored using spare capacity of other links leaving 
the origin node of k. Otherwise if 

∑ −>
∈ )(out

)(
ki

iik fcf  (4) 

then some flow of the failed link k cannot be restored because spare capacity of other 
arcs leaving the origin node of k is too small. It means that those arcs block the 100% 
restoration and some flow of k is lost. In formulas (3-4) we assume that reroutable 
flow can be split to a number of different routes. It means that in order to define a 
function of lost flow we relax the non-bifurcated flow to bifurcated flow. It is, ac-
cording to [6], a reasonable approach for backbone networks where vary large vol-
ume of various calls are transmitted. Furthermore, such assumption makes easier the 
analysis. Recalling definition of out

)(kog  and out
)(koe  and applying formulas (3-4) we 

define the function out
kL  of the arc k flow lost in the node o(k) in the following way 

( ))()( out
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kkokok cegfL −−= ε  (5) 

Note that out
kL  denotes lost flow that cannot be restored using arcs leaving the 

node o(k) due to limited spare capacity of these arcs. The out
kL  function depends on 

the flow out
)(kog  leaving the node o(k). It is not dependent directly on the flow fk. Cor-



respondingly, we define the function in
kL  that denotes lost flow that cannot be re-

stored using arcs entering the node d(k). 
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kkdkdk cegfL −−= ε  (6) 

Definition 2. We call an arc k adjacent to an arc a if o(k)=o(a) or d(k)=d(a). If k is 
not adjacent to a we call it remote to a. 

Function  
kL  defined below is a linear combination of flow lost in arcs outgoing 

o(k) and arcs incoming d(k). This function considers only arcs adjacent to the failed 
arc a. Arcs remote to k, which can block some flow of the failed arc during the re-
routing process, aren’t taken into account. Therefore,  

kL  only estimates the flow of 

arc k lost after local rerouting. Function  
kL  is a lower bound of the flow of arc k lost 

due a failure of k. 

10)()1()(),( out in  ≤≤−+= αααα fLfLfL kkk  (7) 

Theorem 1. Function ),( αfLk  (7) is a convex function for any feasible flow f  and 

any α  such that 10 ≤≤ α . 
Due to limited space of the paper we do not present the formal proof.  
Using ),( αfLk  we can define a function ),( αfL  that shows preparation of the 

whole network to the local rerouting after a failure of any single arc. We assume that 
probability of the arc failure is the same for all arcs. Therefore, probability is not 
included in this function. 
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Theorem 2. Function ),( αfL  (8) is a convex function for any feasible flow f  and 

any α  such that 10 ≤≤ α . 
Proof. It is sufficient to notice that the function ),( αfL  is a sum of convex functions 

),( αfLk  over all arcs Ak ∈ . According to Theorem 1 the function ),( αfLk  is 

convex for any feasible flow f  and any α  such that 10 ≤≤ α . Consequently, the 

function ),( αfL  is convex. This completes the proof. ڤ 

Corollary 1. ),( αfL  is a continuous, non-decreasing, piece-wise linear function for 

any feasible flow f  and any α  such that 10 ≤≤ α . The function ),( αfL  is differ-

entiable except points for which one of the following condition holds 
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3   Related Work 

In this section we present two functions proposed in the literature for optimization of 
primary routes using the local restoration and compare these functions with the func-
tion developed in previous section. In local restoration after a failure of the k-th arc 
all circuits using the failed arc must be rerouted around the arc k. In order to estimate 
the amount of the restored flow the maximum flow algorithm can be applied. The 
maximum flow criterion denotes the theoretical maximal rerouting capacity. The 
failed arc k is removed from the network. Next, the maximum flow between the ori-
gin and destination node of the failed arc is calculated taking into account spare ca-
pacity of network’s arcs. Let MF(k) denote flow of the failed arc a restored by the 
maximum flow method. The flow lost using the maximum flow rerouting is given by 
( ))(kMFfk −ε . If the MF(k) is greater than fk, no flow is lost. Otherwise, 
( ))(kMFfk −  flow is lost. 

Another function applied for calculation of lost flow after the local rerouting is 
based on k-shortest paths (KSP) algorithm. The failed arc k is removed from the net-
work. Next, the KSP algorithm finds k-successively shortest disjoint paths between 
the origin and the destination node of the failed arc. These paths one by one are satu-
rated with flow of the failed arc and are used for restoration of flow fk. The fraction of 
the flow fk not restored during running KSP algorithm is lost. Let KSP(k) denote flow 
of the failed arc a restored by the KSP method. The flow lost after failure of arc k 
using the KSP rerouting is given by ( ))(kKSPfk −ε . Consequently, the lost flow 
after a failure of any single arc using KSP approach is calculated similarly to (8) 

))(()( kKSPffL k
Ak

KSP −∑=
∈

ε  (11) 

Some previous authors have introduced similar approach for local rerouting of 
ATM network and formulated a problem of primary routes assignment with the ob-
jective function of lost flow using the KSP rerouting [6]. 

Authors of [3] compared maximum flow and KSP strategies using simulation 
methods. KSP restoration offers performance 99.9% of that from Max Flow. The 
advantage of KSP is time complexity of O(nlogn) obtained for one link compared to 
maximum flow O(n3) using the centralized restoration by a single processor computa-
tion. Function  

kL  (7) requires only O(n) time complexity. However, as mentioned 
above, the function (8) is a lower bound of the lost flow calculated using the maxi-
mum flow or KSP method. The function L takes into consideration only arcs adjacent 
to the failed arc k. Other arcs remote to k are not considered in this function.  

Another advantage of the function ),( αfL  is convexity. There are many algo-

rithms developed for nonlinear convex multicommodity flow problems. Since the 



function L is convex, it can be easily applied for optimization of network flows in 
survivable networks. According to [5], the most popular algorithm for optimization of 
nonlinear convex m.c. flow problems is Flow Deviation (FD) - method proposed in 
[4] and applied to comparable problem in [2]. A comprehensive list of other algo-
rithms can be found in [7].  

4   Algorithm for Flow Assignment 

In order to solve the problem of static primary routes assignment using as objective 
function ),( αfL  we develop a heuristic algorithm based on the non-bifurcated FD 

algorithm proposed in [4]. 
With the purpose of making easier the consideration we define a new function 
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The FD algorithm uses an arc metric, which is a derivative of the objective func-
tion. Since according to the Corollary 1, the function ),( αfL  is not differentiable 

everywhere, we introduce the following metrics of arc k 
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10)()1()(1),( out in  ≤≤−++= αααα flflfl kkk  (15) 

Note that )()1()( out in flfl kk αα −+  is a derivative of the function ),( αfLk  (7) 

except points for which )( out
)(

out
)( kkoko ceg −=  or )( in

)(
in

)( kkoko ceg −= . In these points 

the function ),( αflk  is equal to the left-sided derivative of ),( αfLk . Note that for 

less loaded networks metrics (13) and (14) are equal to 0. Therefore, we introduce to 
the formula (15) the hop number. 

Algorithm FDP 
Let 1f  denote a feasible flow containing routes for all p circuits to be established. 

In order to find 1f  we can apply an algorithm based on the initial phase of the FD 

algorithm [4]. Let ),( αgL  denote value of the L (8) function for a feasible flow g . 

We start with 1:=r . 



Step 1. Find a flow ( )rfSR  defined as the set of shortest routes under the metric 

),( αflk  for all circuits. Set 1:=i  and go to step 2. 

Step 2. Let rfg = .  

a) Find v  from g  by deviating flow of circuit i to the shortest route given by 

( )rfSR . Routes for other circuits except circuit i remain unchanged. 

b) If v  is a feasible flow and ),(),( αα gLvL <  set vg = . 

c) If pi =  go to step 3. Otherwise, set 1: += ii  and go to step 2a. 

Step 3. If rfg =  stop the algorithm, since the solution cannot be improved. Other-

wise, set 1: += rr , gf r =  and go to step 1. 

Theorem 3. Algorithm FDP converges in a finite number of steps and constitutes a 
feasible solution. 
Proof. The main idea of the FDP algorithm is as follows. We start with a feasible 
flow 1f . For each considered flow rf  we calculate ( )rfSR  containing the shortest 

routes according to the metric ),( αflk  (Step 1). Next, we try to improve the solution 

by deviation of one selected circuit to another route (Step 2). Since there are a finite 
number of non-bifurcated flows, the algorithm converges in a finite number of steps. 
Repetitions of the same flow are impossible due to the stopping condition (Step 3). 
We assume that the initial flow 1f  is feasible. Next, in Step 2b we check whether the 

new flow v  is feasible. If v  is not feasible it is not analyzed further. Therefore, the 
algorithm FDP constitutes a feasible solution. ڤ 

We use the FDP algorithm also for optimization using other functions: lost flow 
using the KSP rerouting given by (11) and the overall network flow given by the sum 
of all arcs’ flows. Clearly, we must modify the FDP according to these functions. For 
the former function we apply the following metric 

))((1)( kKSPflk ω+=  (16) 

For the flow function we use the traditional hop number metric 

1)( =flk  (17) 

5   Results 

The algorithm proposed in previous section was coded in C, and the program was run 
on an IBM-compatible PC with 2GHz Intel processor and 512 MB of RAM. 
Throughout the experiments, three objective functions were examined: lost flow in 
link given by (8), lost flow using the KSP rerouting (11) and the function of overall 



network flow. For the sake of simplicity in presentation of results, we refer to these 
functions in this section LFL, KSP and Hop, respectively. Also in tables and figures 
we use these names. The FDP algorithm is run for the same network and demand 
pattern three times with different objective functions. Labels FDP_LFL, FDP_KSP 
and FDP_Hop are used to denote the FDP algorithm applying functions LFL, KSP 
and Hop, respectively. In all cases the same starting solution found by the initial 
phase of the FD algorithm is applied. We assume that in function (8) α =0.5. We also 
show results given by the initial phase of the FD algorithm. Results presented in this 
section are obtained from simulations on 6 sample networks. Name of each network 
indicates the number of links in the network. 

Table 1. Parameters of tested networks 

Name of network 114 128 144 162 180 200 
Number of nodes 36 36 36 36 36 36 
Number of links 114 128 144 162 180 200 
Node degree (average) 3.17 3.56 4.00 4.50 5.00 5.56 
Node degree (minimum) 2 3 3 3 4 4 
Node degree (maximum) 5 6 6 6 7 7 
Number of tests 20 18 16 15 14 14 
Flow requirement (minimum) 45 75 77 92 108 138 
Flow requirement (maximum) 64 92 92 106 121 151 

 
Table 1 summarizes the parameters of all sample networks. The first column speci-

fies the name of the parameter, next columns includes values of these parameters for 
each network. Let bandwidth unit (BU) denote an arbitrary unit of bandwidth, for 
instance 1 Mb/s. We assume that for all networks capacity of each link is 5000 BU. 
Since, according to theoretical analysis presented above, the function of link lost flow 
depends on the node degree; we selected to numerical experiments networks with 
different values of the average node degree. In the experiment it is assumed that there 
is a requirement to set up a connection for each direction of every node pair. Thus, 
the total number of demands is 1260. Each demand is defined by: the source node, 
destination node and flow requirement. To make clear the effectiveness of function 
LFL in response to a varying traffic demand, several demand patterns are examined 
for each network. The flow requirement for all demands is the same. For instance, for 
network 114 we perform 20 simulations starting with flow requirement of each de-
mand equal to 45 BU, the biggest value of flow requirement is 64 BU.  

We introduce the following parameters to present results. Since the simplest per-
formance indicator to show preparation of the network to the local rerouting is the 
KSP function given by (11) defined in section 4, in order to compare performance of 
three tested functions we use the normalized loss (NL) function calculated using the 
KSP function. NL is defined as a unit of a normalized flow where 100 NL is equal to 
the total flow in the network. For instance, if LKSP=100 and the total flow in the net-
work is 500, the normalized flow equals 20 NL. Also the concept of average link 
utilization (AVLU) is used to describe the simulation results. The AVLU parameter, 
which indicates the network load, is defined as the proportion of the total flow in the 
network summed over all links and the total capacity of all networks links.  



Table 2. The aggregate normalized loss obtained for various functions 

Networks FDInit LFL KSP Hop 
All 12.47 12.19 11.99 13.36 
114 12.68 10.88 10.97 13.80 
128 28.16 27.95 26.81 30.33 
144 15.80 15.72 15.59 16.90 
162 12.52 12.44 12.38 13.49 
180 7.55 7.55 7.55 7.70 
200 6.71 6.71 6.71 6.96 

 
In Table 2 we report performance of the initial phase of FD and three functions: 

LFL, KSP and Hop in terms of the normalized loss. Results are aggregated over all 
tests performed for a given network. Generally, we found the KSP approach to be 
superior to the other approaches. However, for the network 114 the LFL function 
gives better results. Summary for all networks shows that the difference between LFL 
and KSP is lower then 1.7%. FDInit and Hop yield much worse solutions. 

Fig. 1. Performance of various approaches in terms of the normalized flow for network 114 

Fig. 1 shows the detailed performance of the three functions for network 114. The 
x-axis represents the flow requirement and the y-axis represents the normalized loss. 
The general trend is that both the LFL and KSP functions yield similar results while 
the Hop function provides much worse performance. Apparently, when the flow 
requirement increases, more flow is lost due to failure of any single arc. 

In Table 3 we report CPU time taken for running algorithm FDP for all three func-
tions. The time does not include time to do I/O for input of various files and design 
output. For each network we sum times over for all tested traffic patterns. Times are 
given in seconds and do not include the calculation time of the initial phase of the FD. 
We can see that the FDP_LFL performs 37 times faster then the FDP_KSP. This can 
be easily explained by the time complexity of both approaches discussed in Section 4. 
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To calculate the KSP function we must find k-shortest paths, which is much more 
time consuming then the calculation of the LFL function. 

Table 3. The aggregated decision times of the FDP algorithm obtained for various functions 

Networks FDP_LFL [s] FDP_KSP [s] FDP_Hop [s] 
All 222 8119 207 
114 60 1057 33 
128 70 1585 39 
144 30 1198 31 
162 28 1432 34 
180 17 1195 32 
200 18 1653 39 

 

Fig. 2. The LFL/KSP ratio obtained for various functions for the network 114 

One of the most interesting questions raised during the simulation on all networks 
was how the LFL function approximates the KSP function. As mentioned above, the 
LFL function given by (8) is a lower bound of the lost flow using the KSP rerouting 
(11). In Fig. 2 we compare performance of functions LFL, KSP and Hop. The x-axis 
represents the flow requirement. The y-axis represents the LFL/KSP ratio calculated 
for each traffic demand pattern. The data for each point in the figure are obtained by 
running the FDP algorithm using one of three functions for a given demand pattern in 
network 114. We studied the performance of the functions for increasing traffic load, 
examining the evolution of the network status toward a saturation condition. We can 
see that for the FDP_Hop algorithm values of LFL/KSP are the largest. It is due to the 
fact that the Hop function does not optimize the network in terms of the lost flow for 
local rerouting. Therefore, the FDP_HOP yields values of LFL and KSP functions far 
from minimal values. Since there is a correlation between these two functions, the 
ratio LFL/KSP for FDP_Hop function is relatively large. Under low load conditions, 
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algorithm FDP_LFL and FDP_KSP give much lower values of LFL/KSP then the 
FDP_Hop. This implies that optimization of network flow according to LFL or KSP 
functions significantly reduces the lost flow, especially for low congested networks. 
Under high, near saturation, loads, all functions tested have similar performance. This 
is because for all functions, the FDP algorithm uses the same starting solution and for 
high loaded networks only a small part all possible solutions are feasible. Conse-
quently, all three functions produce similar results.  

Generally the experimental results are consistent with theoretical analysis. The 
LFL function is a lower bound of the KSP function. However, when the average node 
degree of tested network grows, the ratio LFL/KSP decreases. In networks 180 and 
200 for all traffic demand patterns the LFL is 0, while values of KSP are larger than 
0. Hence, the LFL function should be rather applied for networks with average node 
degree lower than 4.5. For highly connected networks, the LFL function does not 
estimate KSP function properly. 

Due to limited paper space, other important results of our study are described 
briefly as follows: 
1. Each function tested gives the best results calculated by the FDP algorithm apply-

ing this function. Values of KSP and Hop functions obtained for various versions 
of FDP are quite similar. However, the FDP_LFL can find values of LFL function 
50% better in average than the FDP applying one of two other functions. 

2. Minimizing overall network flow does not guarantee good restoration perform-
ance; sometimes demands should use longer routes in order to omit highly con-
gested areas of the network. 

3. If we split each demand to 2, 3 or 4 demands, the performance gain of any of three 
functions is relatively small. 

4. The curves of the LFL function obtained during simulations are similar to analyti-
cally plotted curves.  

6   Conclusion 

The two main contributions in this paper are the definition of a new function for op-
timization of m.c. flows in survivable connection-oriented networks and experimental 
simulations performed to examine this function. We have studied how to simplify the 
optimization of m.c. flows in survivable networks using the LFL function given by 
(8). Moreover, we have compared this function with other functions proposed by 
previous authors. 

We found the KSP approach to be superior to the LFL and Hop functions. How-
ever, the calculation time for the KSP function is much greater then the calculation 
time for two other functions. In addition, the gap between results of KSP and LFL is 
very small. Concluding, the function (8) developed in this work can be effectively 
applied for design of primary routes in order to prepare the network for local rerout-
ing. The performance evaluation reveals that the LFL function yields results close to 
the KSP approach proposed in previous works. However, the time complexity is 
much lower and consequently, the calculation time is shorter.  



There are also several shortcomings of the LFL that are worth to be mentioned. 
First, the presented approach relies on the information adjacent to the failed link. 
Therefore, it is a local metric that does not take into account global information on the 
network flows. Second, as shown in previous section, the LFL performs well for 
networks with the average node degree lower than 4.5 . 

For design of computer networks we can use offline or online algorithms. The 
function ),( αfL  is applicable in both types of algorithms. The application for offline 

algorithms is shown above. In online algorithms, e.g. dynamic routing algorithms, we 
can use ),( αflk  (15) as an arc metric for computation of shortest routes. 
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