
A New Method of Primary Routes Selection
for Local Restoration

Krzysztof Walkowiak

Chair of Systems and Computer Networks, Faculty of Electronics, Wroclaw University of
Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Krzysztof.Walkowiak@pwr.wroc.pl

Abstract. We consider the problem of non-bifurcated multicommodity flows
rerouting in survivable connection-oriented networks. We focus on local resto-
ration, in which the backup route is reroutes the flow only around the failed arc.
The origin node of the failed arc is responsible for rerouting. We introduce and
discuss a new convex function for optimisation of primary routes. We propose
a heuristic algorithm for assignment of primary routes employing the developed
function. During numerical experiments we examine performance of the new
function compared to other functions proposed previously in the literature.

1 Introduction

Recently, issues of network survivability become more important due to the growing
requirements for QoS and traffic engineering. Connection-oriented network tech-
nologies like Asynchronous Transfer Mode (ATM), MultiProtocol Label Switching
(MPLS) use comparable approaches to enable network survivability. The main idea
of this approach is as follows. Each circuit, i.e. virtual path in ATM or label switched
path in MPLS, has a primary route and a backup route. The primary route is used for
transmitting of data in normal, failure-free state of the network. After a failure of the
primary route the failed circuit is switched to the backup route. The process of
switching is easy, i.e. the circuit’s identifier numbers are changed in network nodes.
All backup routes have zero bandwidth. After activation there are assigned with nec-
essary bandwidth. In this work we focus on local restoration (called also rerouting or
repair) [1], [8]. The backup route is found only around the failed arc. The origin node
of the failed arc is responsible for rerouting.

In modern computer networks a single-link failure is the most common and fre-
quently reported failure event [6]. Therefore, in most of optimization models a single-
link failure is considered as the basic occurrence. Spare capacity is computed to pro-
vide full restoration in case of a failure of any single-link. In networks having limited
resources of spare capacity 100% restoration is not always possible and routes are
designed to minimize effects of the failure, i.e. to minimize to amount of flow lost
due to a failure.

For the context of this work we concentrate on an existing facility network, i.e. we
do not consider facility capacity planning and topological design. Joint optimization

of primary and backup routes must be carried out to find a globally optimal solution
of the lost flow due to a network failure for a projected traffic demand. Since the
optimization is conducted jointly over primary and backup routes, the complexity of
the problem grows tremendously. The main idea of our approach is to partition the
problem into two simpler problems: first optimize primary routes and next find
backup routes for already established primary routes. Since there is mutual depend-
ency between the primary routes and the backup routes assignment, the obtained
solution cannot be claimed to be an optimum if these problems are treated separately.
However, obtained results prove robustness of this approach [9], [10]. A key problem
of our approach is to define an objective function for primary routes’ assignment.
Such a function must indicate preparation of the network to the rerouting process.
Since there are many algorithms for convex multicommodity flow problem, it would
be convenient if the function were convex.

In this work we define and discuss a new convex function for optimisation of pri-
mary routes in a network applying local rerouting. We also propose a heuristic algo-
rithm for assignment of primary routes using this function. Furthermore, we present
and discuss results of extensive simulations.

2 Definition of a New Function for Local Rerouting

Our objective in this section is twofold: Firstly, we want to define a function that
reflects the preparation of the network to the local rerouting. Secondly, we plan to
discuss main characteristics of this function.

Various network or transportation problems can be modeled as multicommodity
(m.c.) flow problem [4], [5]. Multicommodity flows are of two types: bifurcated and
non-bifurcated. In this work we focus on non-bifurcated m.c., in which each com-
modity flows along one route only.

We are given a network),(cG where),(AVG = is a directed graph with n verti-

ces representing routers or switches and m arcs representing links, +→ RAc : is a
function that defines capacities of the arcs. We denote by VAo →: and VAd →:
functions defining the origin and destination node of each arc. For each Aa∈ we
call { }akadkdAka ≠=∈=),()(|)(in the set of incoming arcs of d(a) except a, and

{ }akaokoAka ≠=∈=),()(|)(out the set of outgoing arcs of o(a) except a.
To mathematically represent the problem we introduce the following notations

af represents the total flow on arc a.

ac capacity of arc a.

∑=
=vioi

iv fg
)(:

out aggregate flow of outgoing arcs of v.

∑=
=vidi

iv fg
)(:

in aggregate flow of incoming arcs of v.

∑=
=vioi

iv ce
)(:

out aggregate capacity of outgoing arcs of v.

∑=
=vidi

iv ce
)(:

in The aggregate capacity of incoming arcs of v.

Definition 1. The global non-bifurcated m.c. flow denoted by],...,,[21 mffff =

is defined as a vector of flows in all arcs. We call a flow f feasible if for every arc

Aa∈ the following inequality holds

aa cfAa ≤∈∀ : (1)

Inequality (1) ensures that in every arc flow is not greater then capacity. This ine-
quality is called a capacity constraint.

For the sake of simplicity we introduce the following function

>
≤

=
0for
0for0

)(
xx
x

xε
(2)

To analyze properties of the local restoration we consider an arc Ak ∈ . We as-
sume failure of k. Recall that in the local rerouting flow on the arc k must be rerouted
by the source node of the arc k. Therefore, spare capacity of outgoing arcs of o(k)
except k is a potential bottleneck of the restoration process. Notice that if

∑ −≤
∈)(out

)(
ki

iik fcf (3)

then flow of the failed k can be restored using spare capacity of other links leaving
the origin node of k. Otherwise if

∑ −>
∈)(out

)(
ki

iik fcf (4)

then some flow of the failed link k cannot be restored because spare capacity of other
arcs leaving the origin node of k is too small. It means that those arcs block the 100%
restoration and some flow of k is lost. In formulas (3-4) we assume that reroutable
flow can be split to a number of different routes. It means that in order to define a
function of lost flow we relax the non-bifurcated flow to bifurcated flow. It is, ac-
cording to [6], a reasonable approach for backbone networks where vary large vol-
ume of various calls are transmitted. Furthermore, such assumption makes easier the
analysis. Recalling definition of out

)(kog and out
)(koe and applying formulas (3-4) we

define the function out
kL of the arc k flow lost in the node o(k) in the following way

())()(out
)(

out
)(

out
kkokok cegfL −−= ε (5)

Note that out
kL denotes lost flow that cannot be restored using arcs leaving the

node o(k) due to limited spare capacity of these arcs. The out
kL function depends on

the flow out
)(kog leaving the node o(k). It is not dependent directly on the flow fk. Cor-

respondingly, we define the function in
kL that denotes lost flow that cannot be re-

stored using arcs entering the node d(k).

())()(in
)(

in
)(

in
kkdkdk cegfL −−= ε (6)

Definition 2. We call an arc k adjacent to an arc a if o(k)=o(a) or d(k)=d(a). If k is
not adjacent to a we call it remote to a.

Function
kL defined below is a linear combination of flow lost in arcs outgoing

o(k) and arcs incoming d(k). This function considers only arcs adjacent to the failed
arc a. Arcs remote to k, which can block some flow of the failed arc during the re-
routing process, aren’t taken into account. Therefore,

kL only estimates the flow of

arc k lost after local rerouting. Function
kL is a lower bound of the flow of arc k lost

due a failure of k.

10)()1()(),(out in ≤≤−+= αααα fLfLfL kkk (7)

Theorem 1. Function),(αfLk (7) is a convex function for any feasible flow f and

any α such that 10 ≤≤ α .
Due to limited space of the paper we do not present the formal proof.
Using),(αfLk we can define a function),(αfL that shows preparation of the

whole network to the local rerouting after a failure of any single arc. We assume that
probability of the arc failure is the same for all arcs. Therefore, probability is not
included in this function.

10)()1()(),(),(out in ≤≤∑−+∑=∑=
∈∈∈

ααααα fLfLfLfL k
Ak

k
Ak

k
Ak

 (8)

Theorem 2. Function),(αfL (8) is a convex function for any feasible flow f and

any α such that 10 ≤≤ α .
Proof. It is sufficient to notice that the function),(αfL is a sum of convex functions

),(αfLk over all arcs Ak ∈ . According to Theorem 1 the function),(αfLk is

convex for any feasible flow f and any α such that 10 ≤≤ α . Consequently, the

function),(αfL is convex. This completes the proof. ڤ

Corollary 1.),(αfL is a continuous, non-decreasing, piece-wise linear function for

any feasible flow f and any α such that 10 ≤≤ α . The function),(αfL is differ-

entiable except points for which one of the following condition holds

Akceg kkoko ∈−=)(out
)(

out
)((9)

Akceg kkoko ∈−=)(in
)(

in
)((10)

3 Related Work

In this section we present two functions proposed in the literature for optimization of
primary routes using the local restoration and compare these functions with the func-
tion developed in previous section. In local restoration after a failure of the k-th arc
all circuits using the failed arc must be rerouted around the arc k. In order to estimate
the amount of the restored flow the maximum flow algorithm can be applied. The
maximum flow criterion denotes the theoretical maximal rerouting capacity. The
failed arc k is removed from the network. Next, the maximum flow between the ori-
gin and destination node of the failed arc is calculated taking into account spare ca-
pacity of network’s arcs. Let MF(k) denote flow of the failed arc a restored by the
maximum flow method. The flow lost using the maximum flow rerouting is given by
())(kMFfk −ε . If the MF(k) is greater than fk, no flow is lost. Otherwise,
())(kMFfk − flow is lost.

Another function applied for calculation of lost flow after the local rerouting is
based on k-shortest paths (KSP) algorithm. The failed arc k is removed from the net-
work. Next, the KSP algorithm finds k-successively shortest disjoint paths between
the origin and the destination node of the failed arc. These paths one by one are satu-
rated with flow of the failed arc and are used for restoration of flow fk. The fraction of
the flow fk not restored during running KSP algorithm is lost. Let KSP(k) denote flow
of the failed arc a restored by the KSP method. The flow lost after failure of arc k
using the KSP rerouting is given by ())(kKSPfk −ε . Consequently, the lost flow
after a failure of any single arc using KSP approach is calculated similarly to (8)

))(()(kKSPffL k
Ak

KSP −∑=
∈

ε (11)

Some previous authors have introduced similar approach for local rerouting of
ATM network and formulated a problem of primary routes assignment with the ob-
jective function of lost flow using the KSP rerouting [6].

Authors of [3] compared maximum flow and KSP strategies using simulation
methods. KSP restoration offers performance 99.9% of that from Max Flow. The
advantage of KSP is time complexity of O(nlogn) obtained for one link compared to
maximum flow O(n3) using the centralized restoration by a single processor computa-
tion. Function

kL (7) requires only O(n) time complexity. However, as mentioned
above, the function (8) is a lower bound of the lost flow calculated using the maxi-
mum flow or KSP method. The function L takes into consideration only arcs adjacent
to the failed arc k. Other arcs remote to k are not considered in this function.

Another advantage of the function),(αfL is convexity. There are many algo-

rithms developed for nonlinear convex multicommodity flow problems. Since the

function L is convex, it can be easily applied for optimization of network flows in
survivable networks. According to [5], the most popular algorithm for optimization of
nonlinear convex m.c. flow problems is Flow Deviation (FD) - method proposed in
[4] and applied to comparable problem in [2]. A comprehensive list of other algo-
rithms can be found in [7].

4 Algorithm for Flow Assignment

In order to solve the problem of static primary routes assignment using as objective
function),(αfL we develop a heuristic algorithm based on the non-bifurcated FD

algorithm proposed in [4].
With the purpose of making easier the consideration we define a new function

>
≤

=
0for1
0for0

)(
x
x

xϖ
(12)

The FD algorithm uses an arc metric, which is a derivative of the objective func-
tion. Since according to the Corollary 1, the function),(αfL is not differentiable

everywhere, we introduce the following metrics of arc k

())()(out
)(

out
)(

out
kkokok cegfl −−=ϖ (13)

())()(in
)(

in
)(

in
kkokok cegfl −−=ϖ (14)

10)()1()(1),(out in ≤≤−++= αααα flflfl kkk (15)

Note that)()1()(out in flfl kk αα −+ is a derivative of the function),(αfLk (7)

except points for which)(out
)(

out
)(kkoko ceg −= or)(in

)(
in

)(kkoko ceg −= . In these points

the function),(αflk is equal to the left-sided derivative of),(αfLk . Note that for

less loaded networks metrics (13) and (14) are equal to 0. Therefore, we introduce to
the formula (15) the hop number.

Algorithm FDP
Let 1f denote a feasible flow containing routes for all p circuits to be established.

In order to find 1f we can apply an algorithm based on the initial phase of the FD

algorithm [4]. Let),(αgL denote value of the L (8) function for a feasible flow g .

We start with 1:=r .

Step 1. Find a flow ()rfSR defined as the set of shortest routes under the metric

),(αflk for all circuits. Set 1:=i and go to step 2.

Step 2. Let rfg = .

a) Find v from g by deviating flow of circuit i to the shortest route given by

()rfSR . Routes for other circuits except circuit i remain unchanged.

b) If v is a feasible flow and),(),(αα gLvL < set vg = .

c) If pi = go to step 3. Otherwise, set 1: += ii and go to step 2a.

Step 3. If rfg = stop the algorithm, since the solution cannot be improved. Other-

wise, set 1: += rr , gf r = and go to step 1.

Theorem 3. Algorithm FDP converges in a finite number of steps and constitutes a
feasible solution.
Proof. The main idea of the FDP algorithm is as follows. We start with a feasible
flow 1f . For each considered flow rf we calculate ()rfSR containing the shortest

routes according to the metric),(αflk (Step 1). Next, we try to improve the solution

by deviation of one selected circuit to another route (Step 2). Since there are a finite
number of non-bifurcated flows, the algorithm converges in a finite number of steps.
Repetitions of the same flow are impossible due to the stopping condition (Step 3).
We assume that the initial flow 1f is feasible. Next, in Step 2b we check whether the

new flow v is feasible. If v is not feasible it is not analyzed further. Therefore, the
algorithm FDP constitutes a feasible solution. ڤ

We use the FDP algorithm also for optimization using other functions: lost flow
using the KSP rerouting given by (11) and the overall network flow given by the sum
of all arcs’ flows. Clearly, we must modify the FDP according to these functions. For
the former function we apply the following metric

))((1)(kKSPflk ω+= (16)

For the flow function we use the traditional hop number metric

1)(=flk (17)

5 Results

The algorithm proposed in previous section was coded in C, and the program was run
on an IBM-compatible PC with 2GHz Intel processor and 512 MB of RAM.
Throughout the experiments, three objective functions were examined: lost flow in
link given by (8), lost flow using the KSP rerouting (11) and the function of overall

network flow. For the sake of simplicity in presentation of results, we refer to these
functions in this section LFL, KSP and Hop, respectively. Also in tables and figures
we use these names. The FDP algorithm is run for the same network and demand
pattern three times with different objective functions. Labels FDP_LFL, FDP_KSP
and FDP_Hop are used to denote the FDP algorithm applying functions LFL, KSP
and Hop, respectively. In all cases the same starting solution found by the initial
phase of the FD algorithm is applied. We assume that in function (8) α =0.5. We also
show results given by the initial phase of the FD algorithm. Results presented in this
section are obtained from simulations on 6 sample networks. Name of each network
indicates the number of links in the network.

Table 1. Parameters of tested networks

Name of network 114 128 144 162 180 200
Number of nodes 36 36 36 36 36 36
Number of links 114 128 144 162 180 200
Node degree (average) 3.17 3.56 4.00 4.50 5.00 5.56
Node degree (minimum) 2 3 3 3 4 4
Node degree (maximum) 5 6 6 6 7 7
Number of tests 20 18 16 15 14 14
Flow requirement (minimum) 45 75 77 92 108 138
Flow requirement (maximum) 64 92 92 106 121 151

Table 1 summarizes the parameters of all sample networks. The first column speci-

fies the name of the parameter, next columns includes values of these parameters for
each network. Let bandwidth unit (BU) denote an arbitrary unit of bandwidth, for
instance 1 Mb/s. We assume that for all networks capacity of each link is 5000 BU.
Since, according to theoretical analysis presented above, the function of link lost flow
depends on the node degree; we selected to numerical experiments networks with
different values of the average node degree. In the experiment it is assumed that there
is a requirement to set up a connection for each direction of every node pair. Thus,
the total number of demands is 1260. Each demand is defined by: the source node,
destination node and flow requirement. To make clear the effectiveness of function
LFL in response to a varying traffic demand, several demand patterns are examined
for each network. The flow requirement for all demands is the same. For instance, for
network 114 we perform 20 simulations starting with flow requirement of each de-
mand equal to 45 BU, the biggest value of flow requirement is 64 BU.

We introduce the following parameters to present results. Since the simplest per-
formance indicator to show preparation of the network to the local rerouting is the
KSP function given by (11) defined in section 4, in order to compare performance of
three tested functions we use the normalized loss (NL) function calculated using the
KSP function. NL is defined as a unit of a normalized flow where 100 NL is equal to
the total flow in the network. For instance, if LKSP=100 and the total flow in the net-
work is 500, the normalized flow equals 20 NL. Also the concept of average link
utilization (AVLU) is used to describe the simulation results. The AVLU parameter,
which indicates the network load, is defined as the proportion of the total flow in the
network summed over all links and the total capacity of all networks links.

Table 2. The aggregate normalized loss obtained for various functions

Networks FDInit LFL KSP Hop
All 12.47 12.19 11.99 13.36
114 12.68 10.88 10.97 13.80
128 28.16 27.95 26.81 30.33
144 15.80 15.72 15.59 16.90
162 12.52 12.44 12.38 13.49
180 7.55 7.55 7.55 7.70
200 6.71 6.71 6.71 6.96

In Table 2 we report performance of the initial phase of FD and three functions:

LFL, KSP and Hop in terms of the normalized loss. Results are aggregated over all
tests performed for a given network. Generally, we found the KSP approach to be
superior to the other approaches. However, for the network 114 the LFL function
gives better results. Summary for all networks shows that the difference between LFL
and KSP is lower then 1.7%. FDInit and Hop yield much worse solutions.

Fig. 1. Performance of various approaches in terms of the normalized flow for network 114

Fig. 1 shows the detailed performance of the three functions for network 114. The
x-axis represents the flow requirement and the y-axis represents the normalized loss.
The general trend is that both the LFL and KSP functions yield similar results while
the Hop function provides much worse performance. Apparently, when the flow
requirement increases, more flow is lost due to failure of any single arc.

In Table 3 we report CPU time taken for running algorithm FDP for all three func-
tions. The time does not include time to do I/O for input of various files and design
output. For each network we sum times over for all tested traffic patterns. Times are
given in seconds and do not include the calculation time of the initial phase of the FD.
We can see that the FDP_LFL performs 37 times faster then the FDP_KSP. This can
be easily explained by the time complexity of both approaches discussed in Section 4.

0

5

10

15

20

25

30

35

45 48 51 54 57 60 63
Flow Requirement

N
L

LFL
KSP
Hop

To calculate the KSP function we must find k-shortest paths, which is much more
time consuming then the calculation of the LFL function.

Table 3. The aggregated decision times of the FDP algorithm obtained for various functions

Networks FDP_LFL [s] FDP_KSP [s] FDP_Hop [s]
All 222 8119 207
114 60 1057 33
128 70 1585 39
144 30 1198 31
162 28 1432 34
180 17 1195 32
200 18 1653 39

Fig. 2. The LFL/KSP ratio obtained for various functions for the network 114

One of the most interesting questions raised during the simulation on all networks
was how the LFL function approximates the KSP function. As mentioned above, the
LFL function given by (8) is a lower bound of the lost flow using the KSP rerouting
(11). In Fig. 2 we compare performance of functions LFL, KSP and Hop. The x-axis
represents the flow requirement. The y-axis represents the LFL/KSP ratio calculated
for each traffic demand pattern. The data for each point in the figure are obtained by
running the FDP algorithm using one of three functions for a given demand pattern in
network 114. We studied the performance of the functions for increasing traffic load,
examining the evolution of the network status toward a saturation condition. We can
see that for the FDP_Hop algorithm values of LFL/KSP are the largest. It is due to the
fact that the Hop function does not optimize the network in terms of the lost flow for
local rerouting. Therefore, the FDP_HOP yields values of LFL and KSP functions far
from minimal values. Since there is a correlation between these two functions, the
ratio LFL/KSP for FDP_Hop function is relatively large. Under low load conditions,

0.00

0.10

0.20

0.30

0.40

0.50

0.60

45 48 51 54 57 60 63
Flow Requirement

LF
L/

K
SP

LFL
KSP
Hop

algorithm FDP_LFL and FDP_KSP give much lower values of LFL/KSP then the
FDP_Hop. This implies that optimization of network flow according to LFL or KSP
functions significantly reduces the lost flow, especially for low congested networks.
Under high, near saturation, loads, all functions tested have similar performance. This
is because for all functions, the FDP algorithm uses the same starting solution and for
high loaded networks only a small part all possible solutions are feasible. Conse-
quently, all three functions produce similar results.

Generally the experimental results are consistent with theoretical analysis. The
LFL function is a lower bound of the KSP function. However, when the average node
degree of tested network grows, the ratio LFL/KSP decreases. In networks 180 and
200 for all traffic demand patterns the LFL is 0, while values of KSP are larger than
0. Hence, the LFL function should be rather applied for networks with average node
degree lower than 4.5. For highly connected networks, the LFL function does not
estimate KSP function properly.

Due to limited paper space, other important results of our study are described
briefly as follows:
1. Each function tested gives the best results calculated by the FDP algorithm apply-

ing this function. Values of KSP and Hop functions obtained for various versions
of FDP are quite similar. However, the FDP_LFL can find values of LFL function
50% better in average than the FDP applying one of two other functions.

2. Minimizing overall network flow does not guarantee good restoration perform-
ance; sometimes demands should use longer routes in order to omit highly con-
gested areas of the network.

3. If we split each demand to 2, 3 or 4 demands, the performance gain of any of three
functions is relatively small.

4. The curves of the LFL function obtained during simulations are similar to analyti-
cally plotted curves.

6 Conclusion

The two main contributions in this paper are the definition of a new function for op-
timization of m.c. flows in survivable connection-oriented networks and experimental
simulations performed to examine this function. We have studied how to simplify the
optimization of m.c. flows in survivable networks using the LFL function given by
(8). Moreover, we have compared this function with other functions proposed by
previous authors.

We found the KSP approach to be superior to the LFL and Hop functions. How-
ever, the calculation time for the KSP function is much greater then the calculation
time for two other functions. In addition, the gap between results of KSP and LFL is
very small. Concluding, the function (8) developed in this work can be effectively
applied for design of primary routes in order to prepare the network for local rerout-
ing. The performance evaluation reveals that the LFL function yields results close to
the KSP approach proposed in previous works. However, the time complexity is
much lower and consequently, the calculation time is shorter.

There are also several shortcomings of the LFL that are worth to be mentioned.
First, the presented approach relies on the information adjacent to the failed link.
Therefore, it is a local metric that does not take into account global information on the
network flows. Second, as shown in previous section, the LFL performs well for
networks with the average node degree lower than 4.5 .

For design of computer networks we can use offline or online algorithms. The
function),(αfL is applicable in both types of algorithms. The application for offline

algorithms is shown above. In online algorithms, e.g. dynamic routing algorithms, we
can use),(αflk (15) as an arc metric for computation of shortest routes.

References

1. Ayanoglu, E., Gitlin, R.: Broadband Network Restoration. IEEE Comm. Magazine, 7 (1996)
110-119

2. Burns, J., Ott, T., Krzesinski, A., Muller, K.,: Path selection and bandwidth allocation in
MPLS networks. Performance Evaluation, 52 (2003) 133-152.

3. Dunn, A., Grover, W., MacGregor, M.: Comparison of k-Shortest Paths and Maximum Flow
Routing for Network Facility Restoration. IEEE JSAC, 1 (1994) 88-99

4. Fratta, L., Gerla, M., Kleinrock, L.: The Flow Deviation Method: An Approach to Store-and-
Forward Communication Network Design. Networks (1973) 97–133

5. Kasprzak, A.: Exact and Approximate Algorithms for Topological Design of Wide Area
Networks with Non-simultaneous Single Commodity Flows. Lectures Notes In Computer
Science, LNCS 2660, (2003) 799-808

6. Murakami, K., Kim, H.: Virtual Path Routing for Survivable ATM Networks. IEEE/ACM
Transactions on Networking, 2 (1996) 22-39

7. Ouorou, A., Mahey, P., Vial, J.-Ph.: A survey of algorithms for convex multicommodity
flow problems. Management Science, 1 (2000) 126-147

8. Sharma, V., Hellstrand, F. (ed.): Framework for MPLS-based Recovery. RFC 3469 (2003)
9. Walkowiak, K.: A New Approach to Survivability of Connection Oriented Networks. Lec-

tures Notes In Computer Science, LNCS 2657, (2003) 501-510
10. Walkowiak, K.: A Branch and Bound Algorithm for Primary Routes Assignment in Surviv-

able Connection Oriented Networks. Computational Optimization and Applications 2
(2004) 149-171

