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Abstract. Recent advances in hardware technology and wireless net-
working have made it possible to deploy large scale ad hoc networks[1].
As these networks begin to grow in size, an efficient mechanism is needed
to locate services distributed within them. Protocols such as the Service
Location Protocol (SLP)[2] and Universal Plug and Play (UPnP)[3] exist
for service discovery in static networks. These protocols are based on a
centralized server where services can register themselves and clients can
query for them. However, maintaining such a server in an ad hoc net-
work is difficult as nodes randomly join and leave the network. In this
paper we study the problems associated with service discovery by first
simulating two well known service discovery techniques and investigat-
ing their limitations for large network sizes. We then combine the best
features of each approach to present an innovative, scalable mechanism.
We simulate and analyze this mechanism and show it to scale well for
large network sizes without increasing the latencies in locating a service.
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1 Introduction

A mobile ad hoc network (MANET) is a network formed by a group of wireless
devices with limited power and transmission range[4]. These networks do not
need any existing infrastructure but can form a network on the fly, with each
device acting as a relay to forward packets for other nodes. With recent advances
in hardware technology and wireless networking, it is now possible to deploy
large scale MANETS[1]. As these networks begin to grow in size, an efficient
mechanism is needed to locate services distributed within them. A service may
be a computation, storage, a communication channel to another user, a software
filter or a hardware device[5] that can be used by a person or a software program.

There are currently a number of existing protocols for service discovery [2,
6,3,7,8]. These protocols are centralized, registration-oriented protocols, with
an assumption that a centralized database of services can be maintained and
accessed by every node. However, these existing strategies do not work well for
MANETS because of several reasons. First, in such networks a centralized server
is difficult to maintain as the nodes can join or leave the network at random and
therefore no node is part of the network permanently. Second, because of the
dynamic nature of the network, every time a service leaves or joins the network
it has to inform the centralized server about its presence and this presents a



scalability issue. Considering these and other factors, a decentralized approach
to service discovery is desirable in ad hoc networks.

Several intuitive ways to solve this problem come to mind. A straightforward
solution is a Push-based solution in which services advertise themselves in the
network by periodically broadcasting packets. A second method to locate ser-
vices is a Pull-based method where clients actively broadcast requests into the
network. In this paper we evaluate these two well known discovery techniques
for MANETSs. We then propose a model that uses the best features of each, and
add mechanisms to provide scalability.

The rest of the paper is organized as follows. In Section 2 we describe a
motivating scenario for service discovery in MANETSs. Section 3 describes the
push-based and pull-based techniques to discover services in a MANET and iden-
tifies their limitations. In Section 4 we present our Adaptive Service Discovery
Model. Section 5 presents simulation and analysis of our model and Section 6
offers our conclusions.

2 Motivation

To understand resource discovery and its requirements, we now discuss in detail
a motivating example. Consider a shopping mall, where a MANET is formed
by people carrying mobile devices. Some of those devices may be in need of
traditional services such as printing, scanning or access to the Internet, while
others may be looking for new services such as spare CPU cycles. There will
be companies advertising their services for which people may want to pay, e.g.
McDonalds offering their lunch time specials or banks offering stock quotes. Some
people may be running a peer-to-peer system such as Gnutella[9] to exchange
files or multimedia content. There may be teenagers wanting to locate friends to
chat with, or parents monitoring their children. In essence, there is a dynamic
network with a wide selection of resources available, and there are devices that
constantly need to locate these resources. As the number of devices entering
the network grows, an efficient mechanism will be required to discover these
resources. In such a network,there is a high probability that a large percentage
of the nodes will take part in service discovery.

A number of existing protocols for resource discovery exist like the Service
Location Protocol(SLP)[2,6], Jini[7], Salutation Consortium[8], and Universal
Plug and Play (UPnP)[3]. All these protocols have similar architectures, the
common feature being a centralized database that keeps track of all available
services in the network. This feature works well in static networks where a cen-
tralized database can be maintained. However, it does not work well in MANET's
because of several reasons.

First, maintaining a centralized database is difficult in MANETSs because no
node is a permanent member of the network. Nodes join and leave the network
at random. There may be no pre-existing base stations, no well-known servers
and no guaranteed Internet connectivity. This makes the centralized approach
difficult.

Second, even if such a centralized database is somehow maintained, the nodes
are mobile and the same service may enter and leave the network multiple times.



Every time it disconnects and then connects, it has to contact the database and
send updated information. Therefore, the centralized database has to keep track
of every service in the network and has to do it every time the service joins
or leaves the network. As the number of services in the network increases, this
method does not scale well.

Third, several nodes may be providing the same service in the network and
these nodes may enter at different times. An existing node might need updated
information of all services in the network at all times. For example, there may be
several nodes in a network providing Internet connectivity, with different costs
associated to them. A node looking for an Internet connection will prefer to
be connected to the server with the least cost of service. Hence, this node has
to periodically poll the centralized database for updated information about any
new server with better costs that might have entered the network at a later time.
This continuous polling creates a serious scalability problem.

3 Architectural Considerations

We have described several scenarios where resource discovery is critical. The
network used in each of these scenarios can be reduced to a generic architecture.
This architecture is shown in Figure 1 and consists of mobile devices that fall
into three categories.

1. Mobile devices that can provide services or have content that can be ex-

changed. We call these devices servers.

Mobile devices looking for such services. We call these devices clients.

3. Nodes that are not part of this resource discovery architecture but just mem-
bers of the MANET helping in routing packets. We call them forwarders.
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Fig. 1. A generic architecture for a Mobile Ad hoc Network.

There are two intuitive methods to locate resources in the above architecture
and are discussed next.

3.1 The Push and Pull Models
A simple way to enable service discovery is for services to advertise their presence

in the network (Push model)[5]. Another method to locate services is for clients
to actively query for them (Pull model)[5]. To understand these two models and
create the motivation for our better, more scalable solution, we next simulate
them and study their characteristics and performance impact on the network.



Simulation of the Push and Pull models Simulations were performed using
the GloMoSim Network Simulator[10] developed at UCLA. In particular, we
wanted to study the traffic generated and the latencies in locating services when
the number of servers and clients varies.

To simulate a server or a client entering the network, we start it at a random
node. A server provides only one service. Each client requests only one service.
There can be several servers providing the same service and several clients inter-
ested in the same service. We keep the total number of nodes fixed to 400 but
vary the percentage of servers and clients.

To simulate the Push Model, each server advertises its service by broad-
casting packets containing the source address, the advertised service type, and
a sequence number. Each client passively waits for a particular service to be
advertised. Upon receiving the advertisement, it can determine the address of
the service and can contact the service directly. The latency is the difference
between the time a client starts looking for a service and the time it receives the
first advertisement packet from a server.

For the Pull model, the servers listen passively for service requests. When
a client wants a particular service, it periodically broadcasts a request packet
containing the node address, the required service, and a sequence number. When
a server receives a packet with a matching service type, it broadcasts a reply
back to the client with its address. In our model, we assume that several clients
may be interested in the same service and accordingly a broadcast is preferable
over unicast. The latency here is the difference between the time a client sent
out its first query packet and the time it got the first packet with the service
address.

An important point to note in the Pull model is that a client may broadcast
request packets even after it has located a server. It does this because several
nodes may be providing the same service, and may join and leave the network
at different times. By continuously broadcasting query packets, the client has
up-to-date information about all services in the network. An optimization here
could be to reduce the rate of querying after locating the first server. In our
model, we have implemented a simplified approach in which we do not reduce
the querying rate but keep it the same even after locating a service.

The number of nodes used for the simulations was 400. These nodes were
initially placed randomly within a fixed-size of a 1500 x 1500 m? field. We choose
this field size as it could be a typical shopping mall or a disaster rescue area.
The random waypoint mobility model[11] was choosen with speeds between 0
and 5 meters/second and a rest period from 0 to 10 seconds. The range of each
communicating node is 250 meters and the link bandwidth is 2 Mbits/second.
The protocol used is UDP with each advertisement or query packet having a
size of 512 bytes. We ran a number of simulations by varying the values of each
parameter. Had we chosen a higher or lower value, the shape of the graphs would
be slightly different but would still yield the same conclusion. Hence, the results
using the above parameters are representative of the entire set of simulations we
conducted.



Evaluation Figure 2 shows the latency and overhead of the Push and Pull
models. The left side of the x-axis has 0% servers and 100% clients and it varies
linearly to 100% servers and 0% clients. The total number of nodes is kept
constant at 400.
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Fig. 2. Average latency and overhead for the Push and Pull models with varying
distributions of Servers and Clients.

From Figure 2 it can be observed that the average latency in the Push model
increases as the number of servers in the network increases. This can be explained
by the overhead graph in Figure 2. As the number of servers increases, there is
a corresponding rise in advertisement traffic. When the traffic increases beyond
a certain limit, collisions start to occur and packets are lost. This results in
the observed rise in latency to locate services. For example, suppose a server
advertises a service every 10 seconds. If a packet is lost due to congestion, a new
client entering will hear another advertisement only after 20 seconds.

One consideration then is how often should services advertise their presence.
Advertising too often just increases the network traffic and redundant advertise-
ments are flooded through the network. Advertising too infrequently results in
high latencies. There is a fine balance between the number of services in the net-
work and their frequency of advertisement so as to keep the number of collisions
minimum. Achieving this balance is nearly impossible because the topology and
membership of the network is dynamic.

Similarly, from Figure 2 it can be observed that the average latency in the
Pull model increases as the number of clients in the network increases. This
can also be explained from the overhead graph in Figure 2. When the number
of clients in the network increases, the control traffic increases proportionately.
This rise in control traffic causes congestion, and control packets are lost. This
results in latencies becoming higher. For example, suppose a client queries the
network every 10 seconds. If a packet gets lost due to congestion, the client will
not get a reply. Clients then have to issue a request multiple times before they
receive a response.

Like in the server Push case, the challenge is finding the appropriate interval
for clients to query the network for a service. After sending out a query packet,
how should the client decide when to query again? Sending it after a long interval
of time will result in high latencies. Querying too often will result in more traffic



being generated. There is a fine balance between the number of clients and their
frequency of querying so as to keep the number of collisions minimum.

The simulations so far show that neither of the above methods is scalable to
large networks. We need a mechanism that combines the good features of both
methods, is scalable, and can limit the control traffic. The next section presents
our scalable model for resource discovery.

4 Adaptive Service Discovery Model

Our model for resource discovery uses a combination of the Push and Pull meth-
ods plus additional mechanisms for scalability. A key feature in our model is that
the percentage of bandwidth to be utilized for resource discovery can be set so
as not to exceed a given upper bound.

In our model, a server and a client both actively try to locate each other.
The goal of a server is to periodically advertise its services while the goal of
the client is to query for a needed service. A client can locate a service in two
ways. It can either receive a periodic advertisement by a server, or can receive
a response to a query. In either case, this is done in an adaptive manner in
order to keep the control traffic below a threshold limit. Every time a server is
scheduled to advertise, it first listens for other control packets in the network. It
listens for a time interval to estimate the number of members that advertised or
queried within that period. If this number is below a threshold, the server sends
an advertisement; otherwise it exponentially backs off. This is shown in Figure 3.
At the end of the backoff period, it again senses the network and repeats the
process. If it has backed off a maximum number of times, it ceases backing off
and advertises forcefully. This forceful advertisement is special in that it forces
others to back off, and lets it advertise. This is used to prevent starvation. This
happens because other members also sense the traffic before advertising, and
hear the forceful advertisement and back off themselves.
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Fig. 3. State diagram for the server and client.

Along with advertising its presence, a server also listens for queries from
clients. If it hears a query and can provide the requested service, it sends a re-
ply immediately. This reply could be unicast to the client or could be a general
broadcast into the network. In our model, the server broadcasts a reply to the
client. This is because we assume that several clients may be interested in locat-
ing the same service and so a broadcast is preferable. To limit response scaling
problems, a server only replies to a query if it has not heard from the client in
one scheduled advertisement interval®.

! This, and other security concerns will be dealt with in Section 5.3.



Similarly when a new client wants to locate a service, it first transmits a
query packet to announce its presence. Before it broadcasts the next packet into
the network, it listens to the control traffic and estimates the number of members
in the network. It accordingly queries for services or backs off similar to the way
a server adapts its rate. This is shown in Figure 3.

We now describe our model more formally. The parameters used are described
in Table 1. The method to select an appropriate value for each parameter will
be discussed in Section 5.2 and 5.3.

Table 1. Parameters used in our simulations.

T is the period of time that a server or client listens for other control
packets in the network. This should be at least equal to the
NET_TRAVERSAL_TIME[12], which is a conservative estimate of
how long it should take a message to traverse the entire MANET.
Nehreshold is the maximum number of members that can advertise or query in
T time. The amount of bandwidth taken up by the resource
discovery protocol depends on this variable.

SAdvertisement| 18 the number of advertisements packets a member

hears from unique sources.

CQuery is the number of query packets a member hears from unique sources.
5 is the number of times a member has backed off.
Braz & Burin | is the maximum and minimum values of the backoff counter.

Model

1. When a new server (or client) enters the network, it advertises (or queries) once
to announce its presence in the network?. It sets B to Barin.

2. It listens for a time 7 to the control traffic to estimate the number of members A
that advertised within that time period. N is calculated as

N = Z(SAdvertisement + CQuery)

— IF N <= NThreshold then
Advertise (or Query).
Set B to Buin
ELSE

IF ,3 < ,BMaz
Increment 3 by one.
Backoff for 2° x T seconds

ELSE
Advertise(or Query) forcefully.
Set B to ,BMin

3. Goto step 2.

2 The problem of traffic explosion, i.e. when a large number of members suddenly
enter the network at the same time, may occur but the impact is not significant.
The reason for this will be explained in Section 5.2.



5 Simulation and Analysis

We simulate our Adaptive model to achieve several goals. First, we compare the
performance of our model with both the Push and Pull models. Through this
comparison we evaluate the improvements provided by our model. Second, we
investigate the performance of our model in different scenarios to understand its
characteristics and determine possible optimizations.

5.1 Simulation Environment
The Adaptive model is simulated in GloMoSim and works as described in Sec-
tion 4. Servers and clients enter the network at random times advertising or
querying for a service. The advertisement or query packets contain fields similar
to the fields used in the Push and Pull models. Each server (client) then listens
for T seconds to sense the channel. It advertises (queries) if it senses the number
of members below Nrp,eshota; Otherwise it backs off exponentially. Every server
(client) backs off a maximum of Sz, times. After these many unsuccessful at-
tempts, it forcefully broadcasts a packet to tell others to back off and let it
advertise (query).

The range of parameters used for the simulation of the Adaptive model is
given in Table 2. The nominal values are the default value used in the simulations
when the particular parameter is not varied.

Table 2. Range of parameters for the Adaptive model.

| Parameter |Min| MaX|Nominal|

Number of nodes| 10 | 400 400
NThreshold 2 10 5

7T (ms) 150{1000/ 1000
Burtin 0 0 0
,BMaz 3 6 5

5.2 Results

Our simulations begin by comparing the latency and overhead of the Adaptive
model to the Push and Pull models. We then fine tune our model to determine
the optimum range of values used for the various parameters.

To compare the latency and overhead, we run two different sets of simula-
tions. In the first set, we keep the total number of nodes fixed at 400 but vary
the percentage of servers and clients in the network. In the second set, we run
simulations by varying the number of nodes from 10 to 500 and observe how
overhead increases for the three models.

Figure 4 shows the same result as in Figure 2 but with additional lines for
the Adaptive model. The distribution of clients and servers varies as explained
in Section 3.1.

The Adaptive model performs significantly better in terms of latency and
bandwidth utilization. Due to better bandwidth utilization, collisions are mini-
mized and this results in lower latencies to locate services. However, this comes
at a certain cost. The tradeoff is that the overhead in using our model for a 400
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Fig. 4. Average latency and overhead for the Push, Pull and the Adaptive models with
varying distributions of Servers and Clients.

node network is greater than the push model if the number of servers is less than
40 servers. Similarly the overhead in our model is greater than the pull model
if the number of clients is less than 35. This happens because the traffic is low
when there are few clients in the Pull model and few servers in the Push model
and there is a lot of free bandwidth available. In the Adaptive model, servers
and clients both advertise and query, hence more traffic is generated.
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Fig. 5. Overhead of the Pull, Push and the Adaptive models with varying number of
nodes.

Figure 5 shows the overhead as the number of nodes in the network is in-
creased. The x-axis shows the number of nodes where each run consists of 50%
servers and 50% clients. We varied the number of nodes to 500; however Fig-
ure 5 only presents our results till 200 nodes. This is because nothing unusual is
observed after 200 nodes and the trend continues. We wanted to emphasize the
breakeven points and hence, we only present simulation results till 200 nodes.
Initially the overhead for the Adaptive model is slightly greater than for the
Push and Pull model. However, when there are more than 60 nodes, the over-
head for the Pull model becomes greater than the overhead for the Adaptive
model. This is because when the number of nodes in the network exceeds 60,
the overhead for 30 servers advertising every 10 seconds becomes higher than 60
members advertising or querying adaptively. Similarly, for the Push model this
limit is 81 nodes.
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Figure 6 shows the variation of overhead with time when a number of servers
suddenly enter the network. In this simulation we start 50 servers at uniform
times in the network. At around 220 seconds we simulate a sudden burst of 20
new servers entering the network. In the push model these servers immediately
start advertising and hence there is a sharp rise in overhead. The adaptive model
performs better under the same scenario as it is able to keep this overhead
under control. This is because when new servers enter and advertise the first
time, existing members in the network backoff to let these new servers advertise.
This happens because in our model, every member listens for an interval 7
for advertisements or queries in the network. Existing members hear the new
members and back off. If members suddenly enter the network within a time
period of 7 seconds, there will be a noticeable rise in control traffic in the
adaptive model. Hence, the value of 7 should be set to an interval such that
the probability of several members suddenly entering the network within that
interval is very low. Our model performs in a similar manner when there is a
sudden burst of clients entering the network because clients follow the same
mechanism to limit the overhead. Hence, our model is able to limit the overhead
when there is a sudden burst of servers or clients entering the network.
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Figure 7 shows the variation in overhead as Nrpreshora 18 varied. Nppreshotd

is the number of members allowed to advertise or query in 7 seconds. Setting
NThreshota t0 a high value results in more members being able to advertise or



query and hence more traffic is generated. As the value of Nrpyesnorq is reduced,
the control traffic decreases. The amount of bandwidth utilized by our resource
discovery model depends on this variable and is an essential feature in our model.

5.3 Discussion

The Adaptive Service Discovery Model performs significantly better than the
Push and Pull models. However, there are several practical considerations that
need to be dealt with before our model can be deployed. First, how should
parameters such as Nrp eshora and 7 be communicated to new members entering
the network? A simple mechanism to do this is to piggyback these two parameters
in the dynamic address configuration packet which assigns an IP address to the
node[13] when it first enters the network. Another method to set Nrpreshord iS
to set it to be a fixed percentage of the maximum bandwidth available in the
MANET(14]. This maximum bandwidth value will be unambiguous and known
to every member in the network. To set the value of T, it should at least be equal
to the NET_TRAVERSAL_TIME [12] and can be experimentally determined by
a node in the network.

Second, there are several security concerns in our model. A server immedi-
ately replies with an advertisement when it receives a request packet. A mali-
cious node can flood the network with query packets and force a server to keep
replying, thereby causing a denial-of-service attack[15]. To prevent this, every
server replies only to the first query it receives from a node within its sched-
uled advertisement interval. It ignores duplicate queries that it receives between
two of its periodic advertisements. Another security concern is if a node cheats
and advertises or queries at a higher rate. A node can do this by increasing its
value of N7preshota- There has to be a mechanism for neighboring nodes to sense
this discrepancy and suppress the additional traffic generated by the cheating
node. Techniques such as Watchdog and Pathrater{16] are likely to be useful if
customized for this scenario.

6 Conclusions

As MANETS begin to grow in size, an efficient mechanism is needed to locate
services in them. There are currently a number of existing protocols for service
discovery. However, these are centralized protocols and do not scale well for
MANETS. In this paper we study the problems associated with service discovery
for MANETS by simulating the Push and Pull models. We then combine the best
features of each approach to present an innovative model. Simulation results
show that this model scale wells for large network sizes without increasing the
latencies in locating a service. A further improvement can be achieved by setting
priorities for services. Generally, 10% of services are used by 90% of clients. This
90-10 rule can be used to further reduce overhead and latency by setting up
higher priorities for those 10% services used more often. We also need a formal
model to define services in a network in order to let clients accurately define
the services they require. All of these are interesting issues that need further
research.
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