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Abstract. This paper studies TCP performance focusing on the mean
flow transfer delay and the average number of concurrent flows in the
system. This is done for a dynamic population of users, rather than a
static number of permanent flows. The modeling approach relies on using
idealized processor sharing models as a starting point and modifying their
properties to take into account some of TCP’s non-ideal behavior. To this
end, a model is derived that incorporates the effect of packet losses and
RTTs on the goodput, as well as limited sending rates. Also, the unequal
sharing of bandwidth between flows with different RTTs can be treated.
The delay estimates take into account the initial slow start. Extensive
ns2 simulations are used to verify the accuracy of the models.

1 Introduction

TCP data transfers account for most of the traffic volume in the Internet. TCP
has been designed to support efficient and reliable transmission of data that
tolerates variations in the throughput. An important task in TCP performance
analysis is to study the dependence of throughput and file transfer delays as func-
tions of the traffic parameters and network parameters. Traditional approaches
to modeling TCP performance can be roughly grouped into two classes, which
we call (i) flow-level models, and (ii) packet-level models.

Flow-level models are idealized models that include flow level dynamics, but
ignore the impact of packet losses and round trip times (RTTs) on TCP per-
formance. So-called processor sharing (PS) queues can be used in this context,
see, e.g., [1] and [2]. PS queueing models and a number of their generalizations
are attractive due to their insensitivity properties. Packet-level models capture
more details of the system (RTTs, buffer size, etc.), but assume a constant num-
ber of persistent flows. Here an important result has been the “square-root-p”
formula (see, e.g., [3]), which captures the impact of RTT on the throughput,
for a given packet loss probability. By noticing that the throughput affects, in
return, the packet loss probability, fixed-point models can be used to compute
both throughput and loss probability, see, e.g., [4], [5] and [6]. The work in [7]



on modeling the conditional mean file transfer delay is also a packet-level model
as no flow-level dynamics are considered.

Work on combined flow/packet-level modeling is done by Gibbens et al. [5].
To take into account the fluctuating number of concurrent flows N , they assume
a priori N to be either Poisson or geometrically distributed. In Lassila et al.
[8], a model is presented that combines both levels by computing first, at the
packet level, the conditional throughput given the number of flows. These are
then used as input to the flow level model by using a model that is sometimes
called Generalized Processor Sharing (GPS) [9]. Hence the distribution of N
results from the model. Both approaches apply a packet-level queueing model to
obtain the throughput (as a fixed point). In Massoulié and Roberts [2], a GPS
model is utilized, as well, but no queueing model is used to obtain the packet
loss probabilities. Bu and Towsley [10] also study a single congested link and
use the idealized unequal processor sharing model in [11] to provide a model for
the mean flow transfer delays. In Ayesta et al. [4], a model for short TCP flows
with stochastic flow arrivals has been given in, where the conditional mean-delay
model is parameterized by the packet-level estimate for packet loss. To estimate
the mean number of flows in the system, an M/G/∞ approximation is used.

In this paper we develop a combined flow/packet-level model for studying
TCP performance under user-heterogeneity, in the sense of users having differ-
ent RTTs. We first consider a group of TCP users with identical RTTs, sharing
a single congested link equipped with a finite buffer, and then generalize the
model to heterogeneous RTT user groups with an access-rate limitation. Our
contribution is that our model, while being tractable, covers all above features,
whereas previous models included them only partially. The model in [10] con-
siders user heterogeneity, but not the impact of limited access rates, nor finite
buffers. On the other hand, the model in [4] considers buffer sizes and limited
access rates, but not the impact of bandwidth sharing. The GPS model in [8]
captures finite buffers and limited access rates, but can not be easily extended to
heterogeneous RTTs. Our approach is based on deriving a system of differential
equations representing the expected change per time unit in the packet sending
rate (throughput) and the number of flows in the system. Thus, it is a general-
ization of the model in [6], where the number of flows is constant. Here we add
a flow-level equation to the system. From the model we are able to obtain the
mean delay and mean number of flows in the system. To increase the accuracy of
the mean-delay estimates, additional heuristics are given to take into account the
effect of initial slow starts. The models are validated through ns2 simulations.

2 TCP Model with Stochastic Flow Arrivals

We model the ideal behavior of stochastically arriving Reno-type TCP flows in
the so-called congestion avoidance phase sharing the capacity of a single bottle-
neck link. Thus, timeouts are ignored and it is assumed that the sending rate of
a TCP source increases linearly as long as acknowledgements are received and
that the rate is halved for each packet loss. To this end a model is derived which



consists of two parts: a flow-level model and a window-level model. At the packet
level, we make a stationarity assumption and use a finite-buffer M/G/1 queue
model (finite M/M/1 and M/D/1 models are used in the numerical results). The
model is first derived for TCP users with the same RTT (homogeneous users)
and then the model is generalized to the case of heterogeneous RTTs.

2.1 Homogeneous TCP Users

Consider TCP flows sharing a link with capacity C (pkts/sec) and buffer size
K packets. Flows arrive according to a Poisson process with rate ν and the file
lengths are assumed to be exponentially distributed with mean 1/µ packets. The
aggregate mean packet sending rate of the TCP population is denoted by λ(t)
at time t. All flows are assumed to have the same RTT, R(·),

R(t) = R0 + d(t) ,

where R0 represents the constant packet transmission and propagation delays
and d(t) is the mean delay in an M/G/1/K buffer with arrival rate λ(t). The
mean window size of the TCP population is denoted by W̄ (t), and thus, the
mean sending rate is given by λ(t) = W̄ (t)/R(t). Correspondingly, the mean
sending rate of a single TCP flow, that we give index i, is λi(t) = w̄i(t)/R(t),
where w̄i(t) is the mean window size of flow i.

Flow-level equation: Consider a small time interval ∆t. At the flow level,
during ∆t either a flow arrives or a flow departs. As flows arrive at rate ν,
a flow arrival occurs with probability ν∆t. Given that there are flows present
in the system, a single flow in the system sends at mean rate λi(t), but the
goodput is λi(t)(1 − P (t)), where P (t) is the packet loss probability. Thus, the
probability of flow i completing its transfer during ∆t equals µλi(t)(1−P (t))∆t.
Assuming that the flows are independent, the probability that any flow finishes
is µλ(t)(1−P (t))∆t, where λ(t) =

∑
i λi(t). The change in the mean number of

flows, N̄(t), during ∆t can be expressed as

∆N̄(t) = ν∆t− µλ(t)(1− P (t))(1− π0(t))∆t ,

where (1 − π0(t)) is the probability that there are flows present in the system.
Letting ∆t → 0 we obtain

dN̄(t)
dt

= ν − µλ(t)(1− P (t))(1− π0(t)) . (1)

The dynamics of π0(t) are unknown, but at the flow level, we assume that
N(t), the process of the number of flows present in the system at time t, behaves
as in an ordinary PS queue. Even then we do not have an exact expression for
the dynamics of N(t), but we can use a similar quasi stationarity approximation
as is done at the queue level in [6]. In equilibrium, π0 is a function of the load
ρ, π0 = 1− ρ and N̄ is also a function of ρ, N̄ = ρ/(1− ρ). Eliminating ρ from
these gives 1− π0 = N̄/(1 + N̄). Thus, the differential equation (1) becomes

dN̄(t)
dt

= ν − µλ(t)(1− P (t))
N̄(t)

1 + N̄(t)
. (2)



Note that in the above λ(t)(1 − P (t)) represents the aggregate goodput of the
flows, conditional on the event that there is a positive number of flows in the
system. In an ordinary PS system this goodput is equal to C, the bandwidth
of the bottleneck, implying that the flows can utilize the capacity fully without
packet losses. In reality, TCP only approximates this ideal behavior, and packet
losses and RTTs affect the goodput of the flows. To capture this effect, we next
derive the equation describing the change in the expected value of the conditional
mean sending rate λ(t). In effect, the idea here is to compensate for the non-ideal
performance of TCP compared to PS by assuming the system to behave as a PS
system only with a smaller goodput than in the ideal PS system.

Window-level equation: In [6], for a fixed number, say n, of TCP flows,
the change in ∆t in λ(t) has been shown under some approximations to be

∆λ(t) =
∆W̄ (t)
R(t)

=
n

R(t)

(
(1− P (t))

1
w̄i(t)

− P (t)
w̄i(t)

2

)
λi(t)∆t , (3)

where λi(t)∆t is the probability of a packet arrival from flow i and the term
in brackets represents the change to the aggregate window size if a packet is
accepted (1/w̄i term) or lost (w̄i/2 term). In the setting of the present paper,
n is a random variable which evolves according to a stochastic process N(t).
However, assuming that (3) holds approximately for any n, averaging it over the
distribution of N(t) gives

∆λ(t) =
N̄(t)
R(t)

(
(1− P (t))

1
w̄i(t)

− P (t)
w̄i(t)

2

)
λi(t)∆t .

Doing so means that the arrival and departure of flows are not modelled at the
window level. Instead, we assume the time scale of changes in N(t) to be much
slower than that of the changes to the window sizes, i.e., that the file transmission
times are long (cf. the separation of time scales principle). Thus, upon a change
in N(t), the window of a new flow quickly reaches the new stationary value and
the other flows also adapt to the situation quickly (similarly for flow departures).
Then, by noting that λi(t) = w̄i(t)/R(t) and that λi(t) = λ(t)/N̄(t), and letting
∆t → 0, we obtain

dλ(t)
dt

= (1− P (t))
N̄(t)
R(t)2

− P (t)
λ(t)2

2N̄(t)
. (4)

At the packet level in the queue, it is assumed that the window level always
observes packet losses and queuing delays resulting from a stationary M/G/1/K
system with arrival rate λ(t).

Complete model and steady-state solution: Combining (2) and (4), the
complete model is given by





dN̄(t)
dt

= ν − µλ(t)(1− P (t))
N̄(t)

1 + N̄(t)
,

dλ(t)
dt

= (1− P (t))
N̄(t)
R(t)2

− P (t)
λ(t)2

2N̄(t)
,

(5)



where R(t) = R0 + d(t), d(t) is the mean delay in an M/G/1/K system with
arrival rate λ(t) and P (t) equals the loss probability in an M/G/1/K system
with arrival rate λ(t).

The steady-state solution of (5) is obtained by setting its right hand side
equal to zero. From the second equation for λ(t), we get N̄ = αRλ, where
α =

√
P/(2(1− P )). Inserting this in the first equation results in a second order

equation, for which the only positive solution equals

λ =
ν

2µ(1− P )

(
1 +

√
1 +

4µ(1− P )
ναR

)
. (6)

Note that to solve the above one needs to solve a fixed point equation since by
(5) both P and R depend on the value of λ. Although confirmed by extensive
numerical experiments, we have not succeeded in formally proving uniqueness of
the fixed point.

The mean-delay model: The above model would already enable us to
model the mean delay by simply using Little, i.e., the mean delay equals N̄/ν.
However, this is not a very accurate model of reality as it assumes that the mean
goodput rate of a single flow λ(1−P )/N̄ is available instantly, whereas in reality
there is a certain time how long it takes for the TCP’s sending rate (window
size) to grow up to the estimated steady-state rate.

Our basic idea is to approximate the total mean delay of a file transfer, D̄tot,
by taking into account how much of the file is sent during the time it takes
to reach the estimated steady-state goodput rate (initial slow start), D̄ss, and
the remaining file size is then sent at the steady-state goodput rate, D̄eq, i.e.,
D̄tot = D̄ss + D̄eq. Observe that often it can also happen that the file size is so
small and/or the bandwidth-delay product is so large that the predicted goodput
rate is never reached, and the whole file is transmitted during the initial slow
start. From our above model, the following performance measures are obtained:
packet loss probability P , total goodput rate λ(1−P ), and mean RTT including
the queuing delay R. The mean goodput rate equals approximately λ(1−P )/N̄ ,
except for cases where the mean number of flows in the system is so low (i.e.,
load is low) that λ(1 − P )/N̄ > C, in which case we simply approximate that
the goodput rate per flow equals C. Thus, the goodput rate of the TCP flows, r̄,
equals r̄ = min(C, λ(1− P )/N̄), which corresponds to a window size w̄ = r̄ ·R.

On the other hand, the mean time m (expressed in the number of RTTs) to
send out a file of size 1/µ assuming that the entire file is sent during slow start,
is obtained from

∑m
i=0 2i = 1/µ yielding m = dlog2(1/µ − 1)e − 1. Note that

the numbering of rounds starts from index 0 (actual number of rounds equals
m+1). If 2m ≤ w̄ the file is sent during the slow start before the system reaches
equilibrium, i.e., D̄ss = (n + 1)R. If 2m > w̄, the flow reaches equilibrium in
a = blog2 w̄c rounds (indexing starts from 0 again) during which (1−2a+1)/(1−
2) = 2a+1 − 1 packets are sent. The time to transmit the file equals the sum of
the mean delay from slow start, D̄ss = (a+1)R, and the equilibrium delay D̄eq =
(1/µ−2a+1+1)/r̄ (time it takes to send the remaining packets at the equilibrium
goodput rate). Putting the above pieces together gives us the following model



for the mean transfer delay of files of size 1/µ,

D̄tot =

{
D̄ss = (m + 1)R , if 2m ≤ w̄ ,

D̄ss + D̄eq = (a + 1)R + (1/µ− 2a+1 + 1)/r̄ , otherwise ,
(7)

where m = dlog2(1/µ− 1)e − 1 and a = blog2 w̄c.

2.2 Heterogeneous TCP Users and Limited Access Rates

Here we present heuristics to extend the model to the case of M heterogeneous
user groups, each with their own flow arrival rate νk and constant link delays
R0,k, for k = 1, . . . , M . Each TCP user group may also have a limitation in their
sending rate, λk

max, caused, e.g., by an access link. The GPS model [9] does not
apply under user heterogeneity and hence the approach in [8] can not be used. An
idealized model for unequal bandwidth sharing is the so-called DPS model [11]
(and applied in [10]). However, in its full generality it allows the mean file size
to be different among the user groups and this model cannot be easily modified
to take into account the effect of packet losses on goodput. Here we utilize the
properties of the DPS model under the natural assumption of a common mean
file length for all user groups and aim to give a simple approximate model that
captures both the effect of a limited access rate, packet losses and different RTTs.

To model the above, observe that when the load of the system is low enough
such that the number of flows in the system rarely exceeds the limit at which the
bottleneck fills up, the system behaves as an M/G/∞ system where the flow is
only constrained by its access link rate and the behavior of TCP slow start. When
the load is high enough to fill the bottleneck link, the system becomes a processor
sharing system where the flows share the bandwidth. In this case, the total arrival
rate of flows equals

∑
k νk and the aggregate goodput is

∑
k λk(t)(1 − P (t)),

where λk(t) is the mean sending rate of population k at time t. Now it is easy
to see that for any work conserving service discipline (such as DPS), assuming
exponential file lengths with a common mean 1/µ for all classes, the total number
of flows in the system is a Markov process with the same properties as the number
of users in an ordinary PS system. Hence, we can use the same model for the
time evolution of the mean total number of fl0ows in the system N̄(t) as earlier,

dN̄(t)
dt

=
∑

k

νk − µ
∑

k

λk(t)(1− P (t))
N̄(t)

1 + N̄(t)
. (8)

For each TCP user group, the sending rate λk(t) is determined by

dλk(t)
dt

= (1− P (t))
N̄k(t)
Rk(t)2

− P (t)
λk(t)2

2N̄k(t)
, (9)

where Rk(t) = R0,k + d(t) and Nk(t) is the mean number of population k flows.
Given (8) and (9), we need a model for N̄k(t) that captures the unequal shar-

ing of the bottleneck bandwidth among heterogeneous users. In our system, the



load caused by population k equals νk/(C ·µ). However, according to our model,
each population obtains a goodput equalling λk(t)(1−P (t)), which includes the
effects of packet loss and RTT. Thus, the effective load caused by population k
is given by νk/(µ · λk(t)(1−P (t))), and we approximate N̄k(t) by dividing N̄(t)
in proportion to the effective load of each class,

N̄k(t) =
νk/(µ · λk(t)(1− P (t)))∑
k νk/(µ · λk(t)(1− P (t)))

N̄(t) =
νk/λk(t)∑
k νk/λk(t)

N̄(t) . (10)

Complete model and steady-state solution: Combining (8) and (9), the
complete model is given by





dN̄(t)
dt

=
∑

k νk − µk

∑
k λk(t)(1− P (t))

N̄(t)
1 + N̄(t)

,

dλk(t)
dt

= (1− P (t))
N̄k(t)
Rk(t)2

− P (t)
λk(t)2

2N̄k(t)
, k = 1, . . . , M,

(11)

where N̄k(t) is given by (10).
The steady-state values are again obtained by setting the right hand sides

of (11) equal to zero. By solving N̄ from the first equation as a function of λk,
and solving from the rate equation for λk, the steady-state solution for λk can
be expressed in the form

λk = Nk(λ1, λ2, . . .) ·
√

2(1− P (
∑

k λk))
P (

∑
k λk)

· 1
R(

∑
k λk)

,

i.e., in the form of a fixed point equation. To prove the uniqueness of the fixed
point is not easy but numerical experiments indicate a unique solution exists.

The mean-delay model: The model for the mean delay developed in the
previous section can be used in this case with a simple modification. The model
above provides estimates of the following performance measures: packet loss
probability P , total goodput rate λk(1−P ) of each population, and mean RTT
including the queuing delay Rk. At the equilibrium, the goodput rate of a single
flow is limited either by its access link rate, λmax

k , or, if the mean number of flows
in the system is high enough, by the sharing of the bottleneck link. Thus, the
goodput rate of the TCP flows of population k, r̄k, equals r̄k = min(λmax

k , λk(1−
P )/N̄k). With this modification the rest of the model for the file transfer delay
is the same as given by (7).

The mean number of flows in the system: Here we can use similar ideas
as in [4]. In the case, where the bottleneck load is high enough, the model above
provides an estimate of the mean number of flows, N̄k. However, when the load is
below the threshold for sharing, the system operates as an M/G/∞ system with
arrival rate equal to νk and mean service time equal to D̄tot,k, as given by (7).
In an M/G/∞ system, the distribution of the number of flows obeys a Poisson
distribution with parameter νkD̄tot,k, and the mean also equals νkD̄tot,k. Thus,
the mean number of flows is obtained from N̄k,final = max(N̄k, νkD̄tot,k).



3 Numerical Results

Here we present numerical results obtained from our models, and compare them
against simulation results, which have been produced using the ns2 simulator
version 2.1b9a. We experiment with different TCP variants (TCP Reno and
TCP SACK), buffer sizes, RTTs and flow size distributions. In the simulations,
the packet size for all TCP sources is 500 bytes, and the mean file size is 500
packets. We also experiment with different queuing models, namely M/M/1/K
and M/D/1/K, which are used as part of our packet-level model.

3.1 Examples with Homogeneous TCP Users

We first consider tests with TCPs having identical RTTs and illustrate the im-
pact of the access rate limitation and the scaling of bottleneck capacity on the
performance. By introducing an access rate limit on the flows the packet arrivals
can be made less bursty, hence making our Poisson assumption more plausible.
By scaling the bottleneck capacity our system becomes more like an M/G/∞
system with constant mean delays and linearly increasing mean number of flows.
This is illustrated in Figure 1 for the mean delays and in Figure 2 for the mean
number of flows. In all figures, results are shown as a function of the load of the
bottleneck link. Each figure has two sets of curves corresponding to results for
two different RTTs (R0 = 20 ms and R0 = 200 ms) to assess the effect of the
bandwidth delay product. In each set of curves, solid lines represent solutions to
our analytical models and dashed lines are simulation results.

In Figure 1 (left), the bottleneck capacity C = 10 Mbps, the access links of
the flows have the same capacity, λmax = 10 Mbps, and the buffer size K = 10.
To evaluate the effect of the TCP variant, results for TCP Reno and TCP SACK
sources are shown. The system is, in a sense, a processor sharing system where
any flow can utilize the full link capacity. This produces rather bursty packet
arrivals and to compensate for this we have used the M/M/1/K model as our
packet level model (as opposed to M/D/1/K, which would be the more ‘realistic’
model). As seen from the results, TCP SACK is able to avoid time outs more
effectively than TCP Reno (and thus has lower delays), especially at low loads.
Thus, in the following we only use TCP SACK sources. Results for R0 = 200 ms
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Fig. 1. Mean file transfer delays for three different scenarios.
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Fig. 2. Mean number of flows for three different scenarios.

are acceptable but for R0 = 20 ms the model underestimates the delays. One
reason for the inaccuracy is the very bursty nature of the packet arrivals.

Next we introduce an access rate limitation to smoothen the packet arrival
process, and hence our Poisson assumption at the packet level should be more
appropriate. As TCP actually sends constant size packets, the queue model is
M/D/1/K (using M/M/1/K overestimates the packet losses). The result can
be seen in Figure 1 (center), where C = 10 Mbps, access rate λmax = 1 Mbps
and K = 10. In the figure it can be seen how the results become more accurate.
Finally, we scale the bottleneck capacity to C = 100 Mbps and also increase the
buffer size to K = 100 in an attempt to have the system behave as an M/G/∞
system with constant mean delays. The result is shown in Figure 1 (right). It can
be seen that our model, indeed, predicts that the mean delays stay constant but
in the high load region the delays in the simulated system are not quite constant
and our model underestimates the simulation results somewhat.

Figure 2 contains the results for the mean number of flows in the system for
the three cases described above. The accuracy of the results is similar to those
of the mean delays. The right figure nicely shows how the system approximates
the M/G/∞ system with linearly increasing mean number of flows.

In general the accuracy depends on the numerous parameters of the system,
but due to lack of space a systematic evaluation of the accuracy of the model
can not be presented. Shortly, the dependencies are such that smaller buffer
sizes give more accurate results; for larger buffers the model underestimates the
loss probabilities. For smaller file sizes, our model does not estimate the available
goodput for flows accurately, as our assumptions on the time scale decomposition
between the rate adaptation time and flow interarrival times does not hold.
Moreover, our TCP model does not take into account timeouts, which are more
important the smaller the file sizes are.

System dynamics and effect of different file size distributions: Here
we explore the insensitivity of the steady-state solution and the effect of the
distribution on the dynamics. The main emphasis here is on the results con-
cerning system dynamics under different distributions. Similar results on the
insensitivity of the steady state have appeared elsewhere in the literature, see,
e.g., [8], and they are shown here mainly for the sake of completeness. We study
first the effect of different file size distributions on the mean file transfer delays.
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Fig. 3. Mean steady-state file transfer delays for R0 = {20, 200} ms (left) and the
length of the transient period for different distributions (right).

The distributions that are used are: exponential, Pareto with shape parameter
α = 2.0 and α = 1.8. In the simulation, the constant parameters are: K = 10
and C = λmax = 10 Mbps. The varied parameters are the bottleneck link load
and R0 = {20, 200} ms. As can be seen in Figure 3 (left), the steady-state mean
file transfer delays are hardly affected by the distribution. In Figure 3 (right)
the accuracy of our dynamical model is illustrated for exponential file lengths.
Additionally, we show the impact of the type of the distribution on the time
to reach stationarity. In the figure, the transient evolution for mean number of
flows in the system is plotted in a system where R0 = 200 ms, K = 10 and
bottleneck load ρ = 0.9. Three file size distributions are considered: exponential
and Pareto with shape parameters 1.8 and 1.6. The averages have been obtained
by averaging over 50 sample paths for each case. As can be seen, the dynam-
ics of the simulation with exponential file sizes nicely match the results of our
analytical model. Regarding the effect of the distribution on the dynamics, for
Pareto with shape parameter 1.8 the transient time is still manageable, though
longer than for exponential. However, for Pareto with shape parameter 1.6 the
transient to reach stationarity is much longer than for exponential.

3.2 Experiments with Heterogeneous RTTs

Next we experiment with four TCP populations with different RTTs that share
a single bottleneck. Only results for the mean delays are presented due to lack
of space (results for the mean number of flows are similar in accuracy). The
bottleneck link bandwidth C = 10 Mbps and each TCP source has an ac-
cess rate λmax = 1 Mbps, and the link delays were chosen such that R0,i =
{30, 70, 150, 230} ms. The bottleneck buffer size is either K = 10 or K = 100
and for the analytical results the queue model is M/D/1/K. To explore the im-
pact of the distribution, the file length distributions were exponential and Pareto
with shape parameter 2.0. The results for the mean delays are given in Figure 4.
We can observe a rather good match between the simulation and analytical re-
sults, especially for the small buffer cases. For larger buffers the analytical model
gives results that somewhat underestimate the simulated results. Note that the
distribution type does not greatly affect the mean delays.
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Fig. 4. Mean transfer delays with different RTTs for ρ = 0.8 (left) and ρ = 0.9 (right).
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Fig. 5. Mean transfer delays with random RTTs for K = 10 (left) and K = 100 (right).

Tests with random RTTs: Here we present results from experiments where
the delay on access link of each flow is drawn from a distribution separately for
each new flow. We consider the same scenario as earlier with access rates being
equal to 1 Mbps and the bottleneck link rate 10 Mbps. The bottleneck link is
set to have a constant two-way delay of 10 ms. The two-way delay of the access
link is drawn independently for each file transfer from a uniform distribution in
the range [0, 390] ms. Hence, the mean RTT without queuing delay equals 200
ms and the variation in the RTTs of flows is significant. Two different buffer
sizes are studied, K = 10 and K = 100 packets, respectively. We compare the
results against simulation results with a constant two-way delay of 200 ms and
the results from our model with the M/D/1/K queuing model. The results are
shown as a function of the bottleneck load in Figure 5 for the mean delays. As
can be seen, perhaps even slightly surprisingly, the means are not really affected
by the randomness of the access link delays (variability did increase, though).
This suggests that from the point of view of just modeling overall mean delays,
a model accounting just for the mean RTT seems enough.

4 Conclusions

This paper studies TCP performance, with a specific focus on the mean flow
transfer delay and the average number of concurrent flows in the system. This
is done for a dynamic population of users, rather than the situation of a static



number of permanent flows. The modeling approach relies on using idealized PS
models as a starting point and modifying their properties accordingly to take into
account some of TCP’s non-ideal behavior. A model has been derived that can
incorporate the effect of packet losses and RTTs on the obtained goodput, as well
as limited sending rates. Also, the unequal sharing of bandwidth between flows
with different RTTs can be treated. The delay estimates additionally consider
the impact of the initial slow start. Ns2 simulations have been used to verify
the accuracy of the models. In general, the accuracy is better for systems where
the ratio of the access link rate to the bottleneck link rate is relatively small,
which corresponds to a higher degree of multiplexing on the bottleneck. It is
also under such circumstances that the assumption of Poisson arrivals (at the
packet level) may be assumed to be more applicable. However, the accuracy is
in general dependent on the parameters; small buffer sizes usually give more
accurate results. Future research topics include the derivation of more accurate
packet-level models, modeling the effect of Web mice that share the capacity
with longer flows, and extending the models to a multi-hop context.
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2. Massoulié, L., Roberts, J.W.: Arguments in favour of admission control for TCP
flows. In: Proc. of 16th International Teletraffic Congress, Edinburgh, UK (1999)
33–44

3. Mathis, M., Semke, J., Mahdavi, J., , Ott, T.: The macroscopic behavior of the
TCP congestion avoidance algorithm. Computer Communication Review 27 (1997)
67–82

4. Ayesta, U., Avrachenkov, K., Altman, E., Barakat, C., Dube, P.: Multilevel ap-
proach for modeling short TCP sessions. In: Proc. of 18th International Teletraffic
Congress, Berlin, Germany (2003) 661–670

5. Gibbens, R.J., Sargood, S.K., Eijl, C.V., Azmoodeh, F.P.K.H., Macfadyen, R.N.,
Macfadyen, N.W.: Fixed-point models for the end-to-end performance analysis of
IP networks. In: Proc. of 13th ITC Specialist Seminar, Monterey, CA, USA (2000)

6. Kuusela, P., Lassila, P., Virtamo, J., Key, P.: Modeling RED with idealized TCP
sources. In: Proc. of IFIP Conference on Performance Modeling and Evaluation of
ATM & IP networks, Budapest, Hungary (2001) 155–166

7. Cardwell, N., Savage, S., Anderson, T.: Modeling TCP latency. In: Proc. of IN-
FOCOM 2000, Tel Aviv, Israel (2000) 1742–1751

8. Lassila, P., van den Berg, H., Mandjes, M., Kooij, R.: An integrated packet/flow
model for TCP performance analysis. In: Proc. of 18th International Teletraffic
Congress, Berlin, Germany (2003) 651–660

9. Cohen, J.W.: The multitype phase service network with generalized processor
sharing. Acta Informatica 12 (1979) 245–284

10. Bu, T., Towsley, D.: Fixed point approximations for TCP behavior in an AQM
network. In: Proc. of SIGMETRICS 2001, Cambridge, MA, USA (2001) 216–225

11. Fayolle, G., Mitrani, I., Iasnogorodski, R.: Sharing a processor among many job
classes. Journal of the ACM 27 (1980) 519–532


