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Abstract: A station of a mobile ad-hoc network (MANET) may selfishly refuse 
to forward transit packets as it shortens the battery life and takes up a portion of 
the bandwidth that could be used for source packets. Due to a high degree of 
station anonymity, selfishness meets with little punishment. The well-known 
watchdog mechanism can be used to check if an adjacent station forwards 
packets. We point out that a watchdog may be unable to tell source from transit 
packets, which enables undetectable manipulation of local congestion controls 
in selfish stations. We allow each station to set its source packet admission 
threshold so as to maximise a throughput- and reputation-related payoff. The 
nature of possible Nash equilibria of the resulting noncooperative game are 
examined for a generic model of packet forwarding and symmetric traffic 
flows. A novel packet forwarding protocol called F3T is proposed and the 
payoffs it yields are approximately analysed. 

1  Introduction 

A mobile ad-hoc network (MANET) consists of a number of mobile stations 
exchanging data packets over one or more wireless channels. MANETs rely on self-
organisation rather than central administration. Owing to the falling prices of wireless 
network equipment as well as the advances in protocol design, MANETs have 
abandoned their traditional niche of military and emergency communications and 
increasingly enter the field of civilian data services [6]. Logically, a MANET can be 
visualised as a (time-varying) adjacency graph, station m being adjacent to station n if 
it remains within the latter's hearing range. Each station acts both as a mobile user 
terminal and a packet forwarder. As the former, it injects source packets into the 
network and absorbs destination packets therefrom; as the latter, it forwards transit 
packets on behalf of currently non-adjacent pairs of stations. Forwarding transit 
packets is a dual liability: it shortens the station's battery life and takes up a portion of 
the channel bandwidth it could use to transmit source packets. MANETs allow a high 
degree of station anonymity and so refusal to forward transit packets may meet with 
little punishment. One can therefore envisage various types of station misbehaviour; 
[11] presents a comprehensive taxonomy. 



  

We focus on selfish behaviour whereby stations try to reap some undue benefits (as 
distinct from cooperative behaviour and from malicious behaviour meant just to do 
some damage unto others). For a taxonomy of selfish behaviour in MANETs, see 
[10]. Cooperative behaviour cannot be enforced in a MANET other than by some 
incentive-based mechanisms. Buttyan and Hubaux [2] propose a virtual currency 
called nuglets that a station earns by forwarding transit packets and then uses to buy a 
similar service from other stations. Marti et al. [9] propose to equip a station with a 
watchdog mechanism which listens to adjacent stations' transmissions and checks if 
they perform forwarding. A number of recent papers adopts game theory, whereeach 
player (station) sets her own strategy at will, but the received payoff also depends on 
the other players' strategies. The play often reaches a Nash equilibrium (NE) from 
which no player wants to deviate [5]. Michiardi and Molva [10] incorporate a 
measure of reputation into the payoffs so that rational players forward transit packets 
to avoid being excluded from existing routing paths. Urpi et al. [14] and Srinivasan et 
al. [12] relate the payoffs to throughput efficiency and battery consumption. Zhong et 
al. [15] show that honesty in handling virtual currency can be made a payoff 
maximising strategy. In the approach of Felegyhazi et al. [4], each station sets its own 
level of cooperation based on its current perception of other stations' levels.  
 
We examine the watchdog approach and argue that some of its weaknesses listed in 
[9] are not fundamental. However, we point to an unlisted one: being unable to tell 
source from transit packets, a watchdog is also unable to decide whether an adjacent 
station is misbehaving or it is backlogged due to heavy transit traffic. Undetectable 
selfish behaviour then consists in over-admittance of source packets. We address this 
issue in a game-theoretic framework. Next we propose a packet forwarding protocol 
called F3T under which the NE of the underlying game prescribes fair and 
throughput-efficient settings of local congestion controls. 
 
In Sec. 2 we formulate the network model and explain the nature of undetectable 
selfish behaviour. In Sec. 3 we define a noncooperative congestion control game and 
discuss its outcomes. In Sec. 4 we describe and approximately analyse the F3T 
protocol. In Sec. 5 we discuss the relevance of proper configuration of F3T from a 
game-theoretic perspective. Sec. 6 concludes the paper. 

2  Network and packet forwarding model 

We assume that the stations use omnidirectional antennae so that the watchdogs can 
hear all adjacent stations' transmissions. The adjacency graph is assumed 
bidirectional. MAC and multihop routing protocols are not relevant to our 
considerations and will not be specified. MAC addresses need not be trustworthy. 
Data privacy and station anonymity can be achieved via a public-key cryptosystem, 
such as RSA (with off-line encryption and decryption), and a public hash function 
such as SHA-1 or MD-5  [13]. Public keys need not be permanent or unique per 
station. Packet forwarding can now be outlined as follows (Fig. 1): 



  

• a pair of adjacent stations, n and m, establish a neighbourhood relationship by 
exchanging their public keys, keyn and keym, and routing tables, 

• to transfer a packet to a destination station d, a source station n first looks up the 
next-hop neighbour station m in the routing table, then uses keyd to encrypt the 
packet body along with keyn, next appends hn = hash(keyn), hm = hash(keym) and 
hd = hash(keyd) and finally transmits the packet, 

• if the packet is received error-free, station m acks it and compares hn, hm and hd 
with locally stored hashes of public keys to check that it has a neighbourhood 
relationship with station n and to recognise itself as the receiver and (possibly) 
destination; if m = d is detected, the packet body is decrypted using the private 
key 1−

mkey , otherwise hm is replaced by hl = hash(keyl) with l determined by 
station m's routing table, and the forwarding continues, 

• if m ≠ d, station n performs a watchdog check: upon reception of station m's 
transmission with hl appended, it compares the packet body with a copy it has 
retained to check that the packet has indeed been forwarded by station m, 

• based on the check statistics, a neighbourhood relationship may be terminated. 
 
 
 
 
 
 
 
 

Fig. 1. Anonymous forwarding with public keys and a hash function 

Packet collisions on a wireless channel may cause some ambiguity e.g., the watchdog 
at station n may not receive a packet being forwarded by station m or may be 
uncertain if the packet has been received at station l [9]. This danger is not serious if a 
powerful enough MAC protocol is employed e.g., CSMA/CA with RTS/CTS or 
multiple-channel CDMA. Also, most types of selfish behaviour can be countered 
under the above model. Refusal to forward a packet claiming transmission errors is 
counterproductive since the neighbour stations are likely to monitor the channel 
quality. Assumption of a new identity (new keym) with a 'clean record' can be 
countered by requiring an initial silent period for each neighbourhood relationship. 
False deleting a neighbour from the routing table would not pay off if 'rich enough' 
routing tables were required to maintain a neighbourhood relationship. Finally, 
collusion between a pair of neighbours tolerating each other's misbehaviour is risky 
as either of them might use it for not forwarding the other's packets. 
 
Note that the watchdog at station n must allow station m to transmit a number of 
packets prior to one being listened for, up to a public-knowledge deadline B beyond 
which a failed check occurs. Station m can legitimately refuse to receive a packet (via 
a Receive-Not-Ready frame) claiming a current backlog in excess of B. To prove its 
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claim, station m appends to the RNR frame the hashes of B backlogged packets, to be 
subsequently listened for at station n. Pretending to have a large backlog implies 
appending fake hashes and subsequently transmitting dummy packets which compute 
to the same hashes. This could only be productive if the dummy packets were 
unusually short; an obvious remedy is to define some minimum packet size. 
 
The encryption of a source station’s public key (for reasons of privacy and 
anonymity) precludes the watchdog at station n from distinguishing between station 
m's source and transit packets. This leaves a possibility of undetectable selfish 
behaviour. Namely, the necessity to keep the backlog low mandates a local 
congestion control mechanism at each station. E.g., a simple Drop-and-Throttle 
(D&T) mechanism [7] permits a station to admit source packets only if its current 
backlog is below a, where a is called the D&T threshold. Since a is set locally, 
nothing stops station m from unrestrained admission of source packets and 
subsequent issuing of RNR frames. Such misbehaviour will go unnoticed as the 
watchdog at station n, listening to station m's transmissions, is unable to tell source 
packets from transit packets; legitimate refusal to receive packets is indistinguishable 
from selfish behaviour. A packet forwarding protocol is therefore needed that offers 
incentives to set a so as to achieve fair and efficient use of the channel bandwidth. 

3 Game-theoretic model 

In this section we describe a noncooperative 'D&T game' that arises when each 
station sets its D&T threshold so as to maximise the local source packet admission 
rate while keeping failed checks at neighbour stations tolerably rare. Following game 
theory [5], we presume that a set of selfish stations reach a Nash equilibrium. We 
show that even if the traffic flows are symmetric and the D&T thresholds are initially 
identical, the outcome at  equilibrium may be unfair to some stations. 

3.1 The D&T game 

Let us view all stations as players in a nonzero-sum game. Station n's feasible actions 
are the values of D&T threshold it sets locally. A D&T threshold profile has the form 
[an (a)−n], where an is station n's D&T threshold and (a)−n = (am, m ≠ n) is the 
opponent profile. The payoff to any station n is determined by the D&T threshold 
profile. We define two payoff components: 
• a throughput measure S[an (a)−n] − the local source packet admittance rate, and 
• a deadline violation measure V[an (a)−n] − the station n-related rate of failed 

checks at a neighbour station i.e., the rate of reception of packets in whose 
presence station n will have transmitted at least B other packets.  

The former component gives incentives to increase an, whereas the latter gives 
incentives to keep an moderate lest station n's selfish behaviour be detected. We take 

V[an (a)−n] ≥ V*  (1) 



  

as the condition of termination of all neighbourhood relationships involving station n, 
where V* is a  public-knowledge tolerance level. V* should be set distinctly above the 
station malfunction rate. Also, it should be large enough for (1) to be detected with 
statistical credibility. V* should be upper bounded in relation to the average route 
length; e.g., with 5-hop routes and V* ≤ 10−3, over 99.5% of traffic reaches 
destination. To include reputation effects in the payoffs we assume that 
 
(i) Any station is interested in maintaining all its neighbourhood relationships for 
which (1) is false and none for which it is true.  
 
Station n therefore wants to maximise 
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i.e., no station has incentives to change its D&T threshold unilaterally. 
 
The exact form of the payoffs (2) is determined by a packet forwarding protocol. The 
following assumption states the payoff structure needed for the D&T game to be 
nontrivial. The first two parts imply that when increasing its D&T threshold, station n 
faces a conflict between the increased S[an (a)−n] and V[an (a)−n]; the third part 
implies that unrestrained admission of source packets does not pay off: 
 
(ii) If D&T threshold profiles are ordered in the sense of vector inequality then 
• S[an (a)−n] increases in an and decreases in (a)−n, 
• V[an (a)−n] increases in both an and (a)−n, and 
• V[an (a)−n] ≥ V* for a large enough [an (a)−n] . 
 
In response to changes in (a)−n, station n can adjust its D&T threshold. To capture the 
game dynamics while keeping the model simple, we assume that 
 
(iii) The underlying D&T threshold adjustment mechanism is 
• locally adaptive i.e., an is adjusted based on observed changes in 

payoff[an (a)−n],  
• gradual i.e., a change of an by ±∆ causes a payoff change to any other station 

equivalent of ∆ consecutive changes of an by ±1, and 
• prompt i.e., any other station becomes aware of and can react to each of these ∆ 

changes before the next one takes effect. 
The first part reflects the distributed nature of ad-hoc network protocols, whereas the 
second part is motivated by the fact that S[an (a)−n] and V[an (a)−n] are medium-term 
statistics, so do not change abruptly. The third part implies unit changes of the D&T 
thresholds: each station n moves sequentially; each move consists in changing an by 



  

±1 and immediately yields payoffs corresponding to the new D&T threshold profile; 
and no station lags more than one move behind the other stations. 

3.2 Nash equilibria of a symmetric D&T game 

Suppose that the traffic flows are symmetric and a D&T threshold profile 
[a0 (a0 ... a0)] currently prevails, yielding fair nonzero payoffs. The following 
proposition categorises possible Nash equilibria of the D&T game (see [8] for proof 
and Sec. 5 for illustration). 
 
Under assumptions (ii) and (iii), a symmetric D&T threshold profile [a (a ... a)] will 
eventually be reached whereupon 
• each station receives a nonzero payoff and has no incentive to change its D&T 

threshold (a symmetric efficient NE), or 
• all neighbourhood relationships will be terminated since each station receives a 

zero payoff, but has no incentive to change its D&T threshold (a symmetric 
inefficient NE), or 

• a timing game (a 'war of preemption' or 'war of attrition') starts, leading to an 
asymmetric NE with unfair payoffs. 

 
Remarks: 
• In a timing game, a player moves at most once and initially all players have 

incentives to move. In a 'war of preemption,' moving early yields higher payoffs 
than moving late or not at all, whereas in a 'war of attrition,' moving late or not at 
all yields higher payoffs. 

• Of the above outcomes, the first one (a symmetric efficient NE) is the only 
desirable; in the following sections we will show how it can be attained by 
proper design and configuration of the packet forwarding protocol. 

• Fairness is somewhat difficult to define in the case of asymmetric traffic flows; 
for the purpose of this paper we consider a packet forwarding protocol 
satisfactory if it yields a symmetric efficient NE for the symmetric D&T game. 

4 F3T protocol 

Any packet forwarding protocol ought to include mechanisms of 1) provably 
legitimate refusal to receive packets (otherwise a station may be unduly punished for 
increased transit traffic), and 2) provably legitimate override of 1) (otherwise 
V[an (a)−n] need not increase in an or (a)−n, contrary to assumption (ii)). We present a 
protocol called Fair Forwarding with Forced Transmissions (F3T) and approximately 
analyse the D&T game payoffs under F3T for a symmetric network model. 



  

4.1 Protocol description 

Depending on its current backlog x, a station operates in the NORMAL mode (when 
x < e) and the CONGESTED mode (when x ≥ e). The parameter e is public 
knowledge. In the CONGESTED mode, station n can legitimately refuse to receive 
packets. This it does by announcing the hashes of e backlogged packets, appended to 
an RNR frame or a transmitted packet. Let the current backlog at a neighbour station 
m be y. If y < e, station m suspends further packet transmissions to station n until 
x < e, as announced by the latter via a Receive-Ready frame or a suitable indication in 
a transmitted packet. On the other hand, if y ≥ e and station m has a packet ready for 
station n, it forces a packet transmission and appends to it the hashes of e backlogged 
packets as proof of the CONGESTED mode. Thus a CONGESTED station requests 
that inbound packet transmissions be suspended, which NORMAL neighbour stations 
comply with and CONGESTED ones disregard. Note that the protocol operation for 
e > B is the same as for e = 1. 
 
A backlogged packet at station n whose next-hop station is m remains enqueued if 
• x < e and y ≥ e i.e., a packet transmission to station m cannot be forced, or 
• no channel is available for a packet transmission to station m, or 
• some packet received prior to the packet in question remains enqueued. 
Thus packets at a station form a common FIFO queue regardless of the selected next-
hop stations. FIFO queuing is known to reduce channel utilisation; on the other hand 
it enables correct F3T protocol operation in the following way: 
• with per next-hop station queues it would be unclear whether a failed check is 

due to selfish behaviour or the fact that the neighbour station keeps transmitting 
packets from other queues, 

• a packet received when x = B is certain to cause a failed check; as such it can be 
immediately discarded instead of unproductively increasing the backlog, and 

• a claim of the CONGESTED mode at a neighbour station can be verified within 
a definite time horizon by comparing the hashes of e subsequent packets 
transmitted by that station with the previously received hashes. 

 
A neighbourhood relationship is terminated if a claim of the CONGESTED mode is 
not verified (the other condition is (1)). The goal is to configure B, V* and e such that 
the D&T game has a symmetric efficient NE. 

4.2 D&T game payoffs under F3T 

Assumption (iii) in Sec. 3.1 restricts our interest to payoffs to D&T threshold profiles 
of the form [a' (a  ... a)] with |a' − a| ≤ 1. These will be calculated assuming that: 
(A1) all stations synchronise to fixed-size time slots, a slot accommodating a packet 

transmission along with related acks, RNR and RR frames, 
(A2) each station has M neighbour stations, 
(A3) the average source-to-destination path length is H hops, 
(A4) the next-hop station for a backlogged packet is selected at random, 



  

(A5) the network operates under heavy load i.e., in each slot a station admits as 
many source packets as its D&T threshold permits, and 

(A6) a station can simultaneously and error-free transmit to and receive from all its 
neighbour stations, at most one packet per slot per neighbour station. 

Assumption (A4) simplifies the calculation; it reflects, in a somewhat exaggerated 
way, the path variability in ad-hoc networks. Assumption (A5) factors out traffic 
generation characteristics. Finally, assumption (A6) implies a powerful multipacket 
reception scheme e.g., CDMA. We stick to this assumption to avoid shifting the focus 
from packet forwarding to multiple access and physical transmission. 
 
Following the 'isolated node' approach [1], we shall focus upon an arbitrarily chosen 
station n, where the current backlog x will be modelled as a homogeneous Markov 
chain. The transition probabilities depend on the current backlog y1, ..., yM at the 
neighbour stations n1, ..., nM. The approximation consists in regarding y1, ..., yM in 
each slot as drawn from the steady-state probability distribution (p(x), 0 ≤ x ≤ B) of 
the above Markov chain. This leads to a fixed-point relationship of the form 
p(⋅) = f[p(⋅)], which can be solved iteratively for p(⋅). Let )(X s and )(Y s

m  denote the 

backlog at station n and nm, respectively, at the start of the sth slot. The )(Y s
m  will be 

treated as iid with respect to s and m; let ]YPr[)( )(
Y yyp s

m ==  for 0 ≤ y ≤ B and 

1 ≤ m ≤ M. We will express the transition probabilities for )(X s through pY(⋅). 
 
Given X(s) = x and y== )...()Y...(Y 1

)()(
1 M

s
M

s yy , denote by T|x,y and Rm|x,y 
respectively the random number (between 0 and min[x, M]) of packet transmissions 
out of station n and the number (0 or 1) of non-destination packets received from 
station nm in the sth slot. Let PY(e) = Σ0≤y<e pY(y). Recalling assumption (A6) and the 
conditions for a packet to remain enqueued (Sec. 4.1), one has 
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The second part accounts for various positions (1st,..., min[ym, M]th) the packet to be 
transmitted to station n may occupy in station nm's FIFO queue. The random variable 

yyy ,1 ,, |T|R|I xMm xmx −= ∑ ≤≤   (6) 



  

represents the net influx of transit packets at station n per slot. Its probability 
distribution is obtainable via (4) and (5) since T|x,y and Rm|x,y are independent. 
Unconditioning on y gives 

]|IPr[)()...(]|IPr[ ,},...,0 Y1Y
1

iypypi xByy Mx
M

=⋅== ∑ ≤≤ y .  (7) 

Note that there are (B+1)M summands in (7), each of which involves numerical 
inversion of a probability generating function for (6); this makes (7) the most tedious 
part of the calculation. Given X(s) = x one has 

]|I)( ,min[X )1(
x

s xaxB +−+= ++ ,  (8) 

where (a−x)+ = max[0, a−x] is the number of source packets admitted in the sth slot. 
Hence, the calculation of the transition probabilities of interest as well as the steady-
state probabilities p(x) = lims→∞Pr[X(s) = x] is straightforward, assuming that pY(⋅) is 
known. Since by symmetry p(⋅) = pY(⋅), one can calculate p(⋅) based on an assumed 
pY(⋅), and in the next iteration substitute p(⋅) for pY(⋅) until the two differ 
insignificantly. Thereupon one obtains 
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To calculate payoff[a' (a ... a)], put a := a' in (9) and (10) while retaining p(⋅). 

5 F3T configuration and performance  

The approximate analysis outlined in Sec. 4.2 assumes a rather idealised network 
model and only yields to numerical calculation. Yet its results are instructive as they 
capture the possible outcomes of the D&T game under F3T. Provided that B, e and V* 
are set properly, increasing an unilaterally backfires in terms of V: a larger backlog at 
station n initially reduces the local packet reception rate, but ultimately drives the 
neighbour stations CONGESTED and causes them to force packet transmissions into 
n. Without incentives to increase a, the adjustment mechanism mentioned in 
assumption (iii) of Sec. 3.1 remains dormant and a fair and throughput-efficient D&T 
threshold profile persists. The results also illustrate the difference in performance 
prediction compared to the classical cooperative paradigm. 
 
A series of numerical experiments confirmed the validity of assumption (ii) of Sec. 
3.1 under F3T. For various a and a' = a−1, a and a+1, payoff[a' (a ... a)] was 
calculated from (9) and (10) as a percentage of the maximum attainable value M/H. 
Sample results are depicted in Fig. 2a-c, assuming B = 8, M = 3, H = 5 and V* = 10−3. 

 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2. payoff[a' (a…a)] (%) under F3T ( : a'=a+1, O: a'=a, ∆: a'=a−1) 

 

 
Fig. 3. Robustness of symmetric efficient Nash equilibria under F3T 
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One sees that e =3 yields a symmetric efficient NE with S[3 (3 ... 3)] = 51.2%: no 
station has incentives to increase or decrease its D&T threshold. With e = 6, at the 
profile [4 (4 ... 4)] all stations have incentives to increase a, ending up at the profile  
[5 (5 ... 5)] with no incentive to move further. This leads to the termination of all 
neighbourhood relationships. With e = 7, at the profile  [3 (3 ... 3)] all stations benefit 
from moving to a = 4. Supposing they do not do so at one time, a 'war of preemption' 
follows: early movers end up at point A, while late movers end up at B with no 
incentive to move further (since the payoff corresponding to [3 (4 ... 4)] exceeds that 
corresponding to [4 (4 ... 4)]). Had all the stations moved from a = 3 to a = 4 
simultaneously, they would have to consider retreating to a = 3, but early movers now 
end up at B and late movers end up at A. This is in effect a 'war of attrition.' The 
(unfair) payoffs thus may range from 71.4% (at A) to 41.8% (at B). Note that fair 
payoffs of 56.7% could be attained for e = 7 if the stations were cooperative and 
stuck to a = 3.  
 
The outcome of the D&T game varies with V*, cf. Fig. 2d-f. Given B and e, a choice 
of V* yielding a symmetric efficient NE is always possible, though may result in 
different robustness. Suppose that a NE occurs at [a (a ... a)]. Then it must be that 
V[a (a ... a)] < V* and V[a+1 (a ... a)] ≥ V* (cf. Fig. 2a,e). Since V is a statistical 
average and V* is typically low in magnitude, the values of V[a (a ... a)], V* and 
V[a+1 (a ... a)] ought to be quite distinct so that each station can avoid accidental 
departure from the NE. Therefore, the lesser of their relative differences, 
r = min{V*/V[a (a ... a)]−1, V[a+1 (a ... a)]/V*−1}, measures the robustness of the 
NE. Fig. 3 shows the ranges of V* yielding a symmetric efficient NE with r ≥ 50% 
(the corresponding B, e, a and S are indicated). Thus that a proper setting of B and e 
guarantees a desirable and robust outcome for various magnitudes of V*. However, 
the received payoffs are relatively invariant and under 45%. 

5  Conclusion and future research 

We have defined and analysed a noncooperative 'D&T game' played by anonymous 
MANET stations. For symmetric flows and a novel protocol called F3T we have 
shown how the stations can be given incentives to reach a fair and throughput-
efficient NE in  terms of local congestion control settings. Possible improvements and 
extensions of the presented work include: 
 simulative analysis of asymmetric D&T games under various dynamic scenarios, 
 detailed calculation of the transmission overhead related to F3T operation and the 

employed hash function, 
 other e.g., rate-based mechanisms of source packet admission, 
 single-channel MAC protocols e.g., IEEE 802.11, 
 per next-hop station queueing to improve the channel utilisation (a suitable 

extension of F3T is possible under source routing schemes e.g., DSR [3]), and 
 individual negotiation of B, e and V* for each neighbourhood relationship. 
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