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Abstract. If quality of service could be provided at the transport or the appli-
cation layer, then it might be deployed simply by software upgrades, instead of
requiring a complete upgrade of the network infrastructure. In this paper, we pro-
pose a self-admission control scheme that does not require any network support
or external monitoring schemes. We apply the admission control scheme to IP
telephony as it is an important application benefiting from admission control. We
predict the quality of the call by observing the packet loss over a short initial pe-
riod using an in-band probing mechanism. The quality prediction is then used by
the application to continue or to abort the call. Using over 9500 global IP tele-
phony measurements, we show that it is possible to accurately predict the quality
of a call. Early rejection of sessions has the advantage of saving valuable network
resources plus not disturbing the on-going calls.

1 Introduction

Quality of service in the Internet has been researched for the last twenty years, yet its in-
troduction has been extremely slow. Differentiated services [1] was originally proposed
in 1997 to overcome scalability problems of previous proposals. However, DiffServ is
still not widely offered by Internet service providers, perhaps due to the required up-
grade in network infrastructure. Our proposal offers a light QoS for multimedia stream
traffic, by a regulated admission of sessions, rather than a regulation of the flow rate
per session. In human terms it is better to block a call that has little chance of being
completed with adequate quality rather than allowing it to start and potentially degrad-
ing the system. Therefore, admitted sessions gain by having a high probability of being
completed with decent quality. All these properties can be successfully accomplished
by using admission control.

The purpose of this paper is to devise an efficient and flexible admission control
scheme for IP telephony. Although IP telephony is used as the example real-time ap-
plication in this work, it should be clear that there are no inherent restrictions on the
applicability of the admission control scheme.

The admission control can be performed without explicit support from the net-
work [2]. The procedure is in–band probing [3], in which the first seconds of the voice



transmission are used as a probe stream. A new session is established only after esti-
mating that the state of the network is acceptable. The receiver of the call measures the
packet loss ratio of the first few seconds and estimates the packet loss probability. This
estimated loss probability is compared to an acceptance threshold, which determines
whether the session should be established or not. Loss levels above the threshold result
in blocking of the new session and the sender should wait before establishing a new
session. Hence, ongoing calls are protected from new calls that could deteriorate the
overall quality to an unacceptable level by placing additional load on the network. The
admission control being proposed is related to the out-of-band probing scheme being
developed in our group [4–7].

We claim that measurements can produce data useful for predicting future quality.
However, it is important to state we use only packet loss as the quality indicator of a
VoIP session in this work. Packets arrive at a receiver 50 times per second (assuming
no loss) in our VoIP scheme [8], so we have frequent sampling and observation of
the network state. The measured loss after an initial number of seconds (zero to ten)
is compared with the loss measured over the whole session. We use the correlation
between the two measurements to determine how accurate the estimation is. This is
possible as we have the whole session recorded at the receiver stored available for post
processing1.

The structure of this paper is as follows. The next section gives some background
on how the empirical measurements were taken; we also describe how we measure the
packet loss ratio for one call. Section 3 shows the results for all considered calls and
offers a statistical analysis of the accuracy of the loss estimation for different initial time
intervals, as well as blocking and error probabilities. Section 4 gives some conclusions
of our work, some applications and pointers to future work. A preliminary version of
this work was published in [9].

2 Measurement description

This paper uses the results of previous work where approximately 23000 VoIP calls
were measured between hosts at nine academic sites [10]. The locations of the sites
are shown in Figure 1. The sites were connected as a full-mesh, allowing us, in prin-
ciple, to measure the quality of 72 different Internet paths. These paths represent large
differences in timezones, hop counts and geographic distances.

The measurements were performed over a period of 15 weeks in the following way:
A call between two hosts was initiated on an hourly basis between a sender and a re-
ceiver. The sender transmitted a sequence of pre-recorded speech samples at 64 kbps
as a stream of RTP/UDP/IP datagrams. The receiver made a detailed log of the arrival
process, recording the reception time of each datagram. The complete details of the
measurements are described in our previous work [10].

1 see also http://www.sics.se/˜ianm/COST263/cost263.html



2.1 Reducing the sample set

For the purposes of this paper, we needed a common basis for our analysis, and therefore
selected a subset of the 23000 calls. We only used calls that experience loss, since loss
free calls do not provide any extra information for our analysis: both the probing and
the total loss rate are zero giving perfect correlation. A large percentage of the calls are
in fact loss free which reduces the sample set somewhat. We attribute the large number
of loss free sessions to the fact that the sites are located on well provisioned (academic)
networks. This restriction resulted in a subset of 9683 calls. Despite this reduction, all
nine sites are represented in the subset.

2.2 Measuring a single call

Figure 2 shows the loss process of a sample call as observed by a receiver. The call was
made between the Argentinian and Turkish sites. The figure shows a loss pattern that
is representative of many other calls in the subset. The plot shows the number of lost
packets on the y-axis versus time on the x-axis. It can be seen that the number of lost
packets increases almost linearly as the call proceeds.

Measurement sites

Fig. 1: Measurements were made between
nine academic sites worldwide.
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Fig. 2: Loss process of a single sample call
between Turkey and Argentina.

Figure 3 shows the cumulative loss ratio for the same call. This ratio is defined as the
number of lost packets divided by the number of sent packets. We show the cumulative
plot to clarify how long we need to measure to obtain a good estimation of the final loss
ratio. From the plot, we see that the final loss ratio for the complete call is approximately
18%.

In Figure 4 we show the first 20 seconds of the same call. From the figure, we see
that the initial loss is approximately14% after one second and19% after ten seconds.
These are early estimations of the final loss rate. We want to know how accurate such
early estimations are. Therefore we need to study the relation between the loss ratio of
an initial part of the call and the loss ratio of the whole duration.
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Fig. 3: Cumulative loss ratio of a single
sample call between Turkey and Argentina.
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Fig. 4: Cumulative loss ratio of the same
session showing only the initial portion of
the call.

3 Analysis

In the preceding section, only one call was considered. In Figures 5 and 6, the loss ratio
for the whole call is plotted versus the loss ratio of an initial interval for all calls in the
selected subset. In the figures, every point represents one call. The plots show that as
the initial interval increases, the points group closer around the liney = x. In other
words, the correlation increases and the estimation improves.
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Fig. 5: Relation between the loss ratio after
one second and the total loss ratio for all
calls
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Fig. 6: Relation between the loss ratio after
ten seconds and the total loss ratio for all
calls

The plots in Figures 5 and 6 give an intuitive measure of the correlation between
the loss ratio of the initial interval and the total call. In order to evaluate more precisely
the accuracy of the estimation, we computed the actual correlation factor as a function
of the initial interval. The result is plotted in Figure 7.

Figure 7 shows that the correlation factor increases as the probing interval increases.
From the figure, we can clearly see that the correlation stabilizes after four seconds. This
is important, because after this point no further estimates are necessary.
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Fig. 7: The correlation factor as a function of the initial probing interval

The relation between the loss ratio of an initial interval,lp, and the loss ratio of the
total call,lt can be further examined by forming an error function, such aslt − lp, and
analyzing it as a stochastic variableε.

Figure 8 shows histograms ofε for probing intervals of one, four and ten seconds.
In the histograms, positive values represent calls where the initial loss rate is smaller
than the total loss rate, i.e.,lp < lt. In other words, those calls experienced a higher
packet loss after the probing: the quality of the calls deteriorated after the initial inter-
val. Likewise, negative values represent calls where the initial loss rate is greater than
the total loss rate, i.e.,lp > lt. Note that the histograms represent probability density
functions ofε that are not normally distributed.

Based on the values in the histograms we calculated the confidence intervals by
counting the number of samples aroundε = 0 that sum up to the desired confidence
level. The result is shown in Table 1.

Level interval interval interval
(1 second) (4 seconds) (10 seconds)

0.75 [−0.0288, 0.0336] [−0.0141, 0.0187] [−0.0087, 0.0151]

0.80 [−0.0424, 0.0436] [−0.0180, 0.0260] [−0.0124, 0.0213]

0.85 [−0.0608, 0.0568] [−0.0252, 0.0344] [−0.0183, 0.0299]

0.90 [−0.0848, 0.0752] [−0.0416, 0.0496] [−0.0280, 0.0424]

0.95 [−0.1768, 0.1144] [−0.1200, 0.0800] [−0.0888, 0.0696]

0.99 [−0.4000, 0.2536] [−0.3200, 0.2216] [−0.2480, 0.2144]

Table 1: Table showing confidence levels and intervals of the error functionε = lt−lp for probing
intervals one, four and ten seconds.

Based on the table, we can express to what degree we can trust an initial observation.
For example, if we measure the loss ratiolp of a call after four seconds, we can be 80%
certain that the total loss of the call will be in the interval[lp − 1.8%, lp + 2.6%].

While the confidence intervals may be useful in themselves to express confidence
in an observed value, forming the cumulative distribution function (cdf ) of ε is more
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Fig. 8: Histograms of the errorε = lt − lp for initial probing intervals one, four and ten seconds.
Each histogram is shown in full view on the left, while the right plot shows an enlarged region
aroundε = 0.



useful when an upper bound on the final loss value is of interest. This is typically the
case in admission control scenarios, where we want to block calls that we believe will
experience a loss higher than a certain threshold.

Table 2 shows thecdf of ε. Using the table, we can make statements such as: Given
a probing loss and a confidence level, the final loss will be bounded by the probing loss
plus a value given by Table 2. Figures 9, 10 and 11 show thecdf of ε in graphical form.
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Fig. 9: Cumulative distribution function of
ε = lt − lp for a probing interval of one
second.
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Fig. 10: Cumulative distribution function of
ε = lt − lp for a probing interval of four
seconds.

Confidence
level 1 second4 seconds10 seconds

0.05 −0.0848 −0.0416 −0.0280

0.1 −0.0424 −0.0181 −0.0101

0.2 −0.0016 −0.0056 −0.0038

0.3 – – −0.0008

0.4 – – –
0.5 0.0018 0.0014 0.0009

0.6 0.0025 0.0020 0.0017

0.7 0.0042 0.0038 0.0030

0.8 0.0144 0.0086 0.0069

0.9 0.044 0.0260 0.0212

0.95 0.0752 0.0496 0.0424

Table 2: Table showing cumulative values of the error functionε = lt − lp for probing intervals
one, four and ten seconds.

Thecdf of ε can directly be used for admission control purposes. The table gives us
the percentage of calls that have an error less or equal to the value ofε:

P (ε < la − lp) ≥ confidence level



For example, suppose the aim of a strict admission control scheme using four sec-
onds probing is to drop calls that have a higher risk than 10% to surpass a pre-established
loss ratela. Retrieving the value ofε from Table 2 shows thatla−2.6% is a good thresh-
old. A more relaxed policy could have the aim to reject all calls that have more than90%
risk to surpassla. In that case, again using Table 2, the threshold isla+1.81%. The strict
and relaxed policies outlined above both have drawbacks. With a strict policy, most bad
calls (lt > la) will be blocked, along with a large number of good calls (lt < la). A
relaxed policy admits most good calls, while admitting many bad calls.

Table 3 shows a classification of calls with respect to an admission control strategy:
classes AG and AB represent calls that were admitted while classes RG and RB rep-
resent calls that were blocked. Further, classes AG and RB represent categories where
the admission control decision was correct. Classes AB and RG represent decisions
that were wrong. An admission control policy based on probing, needs to consider the
trade–off between classes.
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Fig. 11: Cumulative distribution function of
ε = lt − lp for a probing interval of ten
seconds.

Good callsBad calls
lt < la lt > la

Admitted AG AB
lp < lα
Rejected RG RB
lp > lα

Table 3: The table shows the different kinds
of calls based on the initial estimation and
the final outcome.lα denotes an admission
threshold applied after a probing interval,
while la is the desired upper bound on the
loss level.

If we return to the strict policy introduced above, it minimizes class AB while class
RG is large, thus protecting on–going calls in a more successful manner whilst increas-
ing the blocking probability. In the same way, the relaxed policy minimizes class RG,
thus reducing the blocking probability at the risk of a higher number of bad calls.

To obtain absolute numbers on the number of calls in the classes, a real loss distri-
bution has to be considered. By aiming at an upper bound of the loss rate and applying
thecdf to that bound, it is possible to get absolute numbers of the different classes. The
admission threshold can then be varied to find a desired optimum.

Figure 12 shows an example of a uniform loss distribution (calls can experience
any packet loss rate between 0 and 100% with equal probability) with a desired upper
bound on the loss ratela. Thecdf for four seconds in Figure 10 has been superimposed2

on the uniform loss distribution for two admission thresholds, strict policy and relaxed
policy. The number of calls belonging to each class can be determined by the areas in
the graph. The areas are bounded bylα and thecdf . For example, it can be seen from

2 Note, thecdf is reflected around x=0.



the graph that area RG (rejected calls that turned out good) is large in the strict policy,
but is small in the relaxed. Likewise, area AB (admitted calls that turned out bad) is
small in the strict and large in the relaxed policies.
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Fig. 12: Example showing the result of imposing admission control decision in the strict (left) and
the relaxed (right) admission policy with a uniform loss distribution. The desired upper bound on
packet loss isla and the imposed threshold islα.

A uniform loss distribution is evidently unrealistic, but the same methodology can
be applied for a real loss distribution. We have applied the method to the complete set
of 9683 error-free calls in the measurements in the case of four seconds probing and
calculated the percentage of calls that fall in each of the areas. The rest of this section
deals with this case.

Figure 13 gives the blocking probability (RG+RB) for the complete sample space.
From the figure it can be seen that rejecting calls that experience an initial loss rate equal
or higher than 10% gives a blocking probability of around 15%, while a more stringent
packet loss rate threshold would result in a rapidly increasing blocking probability.
Note however, since the error-free calls are omitted, the blocking probability is overly
pessimistic. We would expect a lower blocking probability with a factor of around three
if the error free calls were included.
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Fig. 13: Blocking probability as a function of the packet loss rate admission threshold.



As was previously noted, the accuracy of an admission control policy can be mea-
sured by counting the correct and incorrect decisions. Figure 14 shows the incorrect
decisions for a packet loss rate target of 2%. The plot shows both kinds (AB and RG)
as well as their sum.

The plot illustrates how the number of incorrectly admitted calls increases as the
admission threshold is relaxed, while the incorrectly rejected calls decreases. The sum
of the two functions has a minimum for a particular admission threshold at 1.8%, which
can be considered as an optimum operating point. That is, a minimal number of incor-
rect decisions were made at this threshold.

Finally, Figure 15 illustrates the sum of incorrect decisions for different target loss
rates as the acceptance threshold is varied. The results show a minimum close to the
value of the target loss rate, as was intuitively expected.
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The choice of an operating point for the admission control has to take into account
many parameters. We can always increase the accuracy by measuring for a longer pe-
riod. However, increasing the probing period reduces the advantages, since we are ex-
tending the period in which a bad call is disturbing the ongoing calls, reducing the
overall quality in the process. Also, longer probing times increase the frustration in the
case of a rejection.

To summarize, if we use our measurements, we would probe for four seconds and
use an admission threshold close to the targeted value. Assume that 2% packet loss
is acceptable. In this case, the admission threshold should also be around 2%, which
would give a blocking probability of 36%. The admission control decision would then
have failed 11% of the time, the majority would be calls that were admitted although
they turned out to be bad (9% of the total calls), a smaller fraction would be calls that
were rejected but turned out to be good (2%).



4 Conclusions and future work

This paper proposes a quality differentiation scheme based on self-admission control
without the need of infrastructure changes. The admission control is performed at the
application layer and can provide statistical bounds on the packet loss rate that stream
flows will experience in the network. We have shown how the admission control mech-
anism can be devised by blocking calls experiencing an initial loss rate exceeding an
admission threshold. An initial admission threshold is motivated by two factors: (1) it
makes sense to drop calls that will experience bad quality and thus reduce congestion
in the network so that other calls may experience better quality; (2) an audio coder may
have an upper bound on quality: exceeding a drop rate will result in unacceptable audio
quality.

We have evaluated the admission control scheme by analyzing a large number of IP
telephony calls that were made over the Internet. Based on this empirical data, we have
shown that it is possible to predict the quality of a call by making an early measurement
of the packet loss. From our particular data, we have shown that it is sufficient to make
an estimation after four seconds. The analysis we have performed offers thresholds for
call blocking probability and failure rates of the scheme.

From a practical point of view, the admission control scheme shown in the paper
could be implemented using standard RTCP [11] receiver reports. A small adjustment
of the rate that the receiver generates the reports would be enough for our probe-based
admission control scheme.

One limitation with our method is that all calls in the experimental data are in fact
admitted. The effects of dropping calls to the network as a whole has not been assessed.
We claim that this observation is irrelevant in this study for two reasons: (1) all of the
calls in the study were disjoint in time; (2) the effect could only be positive, thus our
results can be seen as worst-case.

An interesting point is whether the results based on the measured data [10] are gen-
erally valid. This is a difficult question, and we cannot claim that the results hold for all
network conditions. For example, one could claim differences in timescales (the mea-
surements were made in 2001), networks (most data were made on academic networks),
link technologies (no wireless access were available, etc). We hope that future work can
help to get a larger understanding of such conditions.
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