Secure Name Service: A Framework for
Protecting Critical Internet Resources

Yingfei Dong!, Changho Choi?, and Zhi-Li Zhang?

! Dept. of Electrical Engineering University of Hawaii, Honolulu, HT 96822
yingfei@hawaii.edu
2 Dept. of Computer Science and Engineering University of Minnesota,
Minneapolis, MN 55455
{choi,zhzhang}@cs.umn.edu *

Abstract. We propose a novel Secure Name Service (SNS) framework
for protecting critical Internet resources from unauthorized accesses, de-
nial of service (DoS) and other attacks. The key idea is to enforce packet-
origin authentication through resource virtualization and utilize dynamic
name binding for protecting servers under attacks and improving service
availability. Different from static network-level security schemes such as
IPsec and VPN, SNS is able to dynamically bind the names of critical
resources at the service level, which allows us to actively protect the
service resources through a distributed filtering mechanism built on au-
thenticated packet forwarding paths. Our prototype implementation of
authenticated packet forwarding components on Pentium 4 Linux ma-
chines demonstrates that regular Linux platforms are sufficient to sup-
port SNS authenticated packet forwarding on 100Mbps or 1Gbps LANSs.

1 Introduction

As we become more and more reliant on the Internet for a variety of network-
ing services, the number of network security attacks with the aim to abuse or
disrupt such services has also significantly increased. Furthermore, the sophisti-
cation of cyber attacks has also increased. The emergence of massive distributed
denial-of-service (DoS) attacks is one such example. Unfortunately, because of
the decentralized and open nature of the Internet, it is nearly impossible to
protect the entire Internet from cyber attacks. In addition, the cost of such a
solution will be economically prohibitive, due to the sheer size of the Internet.
It is therefore important to selectively secure and protect Internet services that
are critical, namely, those services that provide significant values.

In this paper we propose a novel approach — Secure Name Service (SNS)
— to protect critical Internet services from cyber attacks. The proposed SNS

* This work was supported in part by the National Science Foundation (NSF)under
the Grant ITR-0085824. Any opinions, findings, conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily reflect the
views the NSF.

mechanism serves as a comprehensive “first-line of defense” against unauthorized
accesses, intrusions as well as DoS attacks. SNS is built upon and an extension
of the standard domain name service (DNS). The basic ideas behind the SNS
approach are as follows: A critical Internet service and its associated resources
(e.g., servers, databases, etc.) are placed within a (virtual) secure zome in the
network domain of the service provider, and correspondingly the names of the
service and its resources are placed within a secure name space, separate from
the standard domain name space.

Unlike DNS, where in response to a query for a host name, the corresponding
IP address of the host is returned, SNS only answers queries originated from
trusted network domains, and returns a so-called secure handle (SH) instead
of an IP address in response to a query for a secure name. In other words, the
IP addresses of protected resources such as servers are always concealed from
the requesters (even from a trusted domain), and the protected resources are
in essence “virtualized” from both trusted and untrusted users. Consequently,
a unauthorized user cannot gain access to a protected resource (say, a server)
directly via IP address spoofing. Furthermore, legitimate packets from a trusted
domain carry security authenticators generated by the trusted domain based on
secure handles — and are verified before they can enter the secure zone containing
the protected resources.

In this paper we describe the proposed SNS architecture which is comprised
of two major mechanisms: i) secure name service that consists of secure name
servers that virtualize protected resources within secure zones, set up security
associations (SAs) between domains, and perform secure name resolutions; and
ii) authenticated packet forwarding that consists of security checkpoints (SCs)
and security gateways (SGs), which verify security authenticators, filter out il-
legitimate packets, and map secure handles to the IP addresses of protected
resources. In addition to proactive protection, we also explicitly incorporate ac-
tive monitoring and rapid response mechanisms into our proposed architecture
for further securing critical services.

The remainder of this paper is organized as follows. In Section 2, we compare
the proposed SNS framework with the related work. In Section 3 we describe the
design of SNS naming scheme. We present the design of authenticated packet for-
warding components and our experimental evaluation in Section 4. In Section 5,
we devise two fast lookup schemes for secure name translation and evaluate
their performance through analysis and simulation. We conclude the paper in
Section 6.

2 Related Work and Discussion

In the SNS framework, we combine name service and network security into a
unified framework. We briefly review the related work in naming security, traffic
security, entity authentication, and proactive and reactive defense schemes. For
naming security, DNSSEC [1, 2] mostly focuses on protecting the authenticity
and integrity of DNS databases and DNS responses. Although DNSSEC is indeed

an effective way to avoid DNS forgery, it does not address the issue of protecting
services under attacks.

IPsec [3,4] supports traffic security at only the network layer with several
limitations. First, IPsec is a rather heavy-duty mechanism which poses many
preliminary requirements that hinder its deployment. Furthermore, the scalabil-
ity of IPsec is a potential issue because an IPsec server needs to negotiate and
maintain a security association for each client connection. Lastly, IPsec focuses
on traffic security at the network layer, and does not address the issue of pro-
tection of service and active defense for improving service availability. Regular
VPNs also suffer from this problem. Similarly, TLS [5] ensures the security at
the transport layer and does not address the defense issue.

Kerberos [6] is designed for entity authentication that allows a client and a
server to mutually authenticate each other across an insecure network. After the
mutual authentication, they are able to negotiate a shared secret to exchange en-
crypted messages for privacy and data integrity. Kerberos does not address the
issue of active defense for improving service availability. Existing mechanisms
to deal with DoS attacks are often classified into proactive and reactive ap-
proaches. Proactive approaches eliminate packets with forged source addresses,
such as ingress filtering, Secure Overlay Service (SOS) [7], Mayday [8], and VPN
Shield [9]. Ingress filtering uses known unambiguous traffic information to filter
out invalid packets at an ingress point, such as source addresses or destination
addresses. Therefore, it is suggested for stub domains and low-rate ingress links,
but not for transit domains and high-rate links. Ingress filtering does not pre-
clude an attacker using a forged source address within a legitimate prefix filter
range. SOS requires a wide-area overlay infrastructure with a large number of
intermediate nodes to filter out attacking traffic. VPN Shield provides a limited
capability of reacting to flooding attacks. However, it is built on the static IPsec
and requires bandwidth reservation at the ingress links of secure domains.

Reactive approaches for DoS attacks include firewalls, IP traceback [10], link
testing, input debugging [11], controlled flooding [12], logging [11], ICMP trace-
back [13], packet marking [12,10], aggregate-based congestion control, and so
forth. They all require either the coordination of human administrators of re-
lated domains or the modification of intermediate routers. The complexity of the
coordination and the slow error-prone human actions hinder the deployment of
these approaches. Furthermore, these approaches only work when attacks have
caused some damage, and are less useful to stop unknown attacks.

Compared to the related work, the proposed SNS shows several salient ad-
vantages. First, the SNS framework provides a comprehensive first-line of defense
through resource virtualization and dynamic name binding, which allows us to
apply different security policies at multiple levels and components to address
different security threats. As a result, it enhances the service availability with
low management costs. In particular, SNS distributes the security check load
over security gateways (SGs) and security checkpoints (SCs) in authenticated
packet forwarding, and therefore significantly reduces the security costs at crit-
ical servers. SCs are responsible for filtering out ingress attacking traffic, while

SGs mostly emphasize secure-packet translation. Consequently, critical servers
can sustain their service performance under attacks. In contrast, existing ap-
proaches such as IPsec or TLS does not address this issue. As a result, a critical
server could not sustain its performance under attacks because it has to devote
itself to intensive security checking. Furthermore, SNS is incrementally deploy-
able as it does not require to have a broad infrastructure in place, and it does
not require to replace application software.

3 Secure Name Service (SNS)

The main functionalities of the SNS naming system are 1) to authenticate hosts,
security gateways, and checkpoints in a domain, and manage corresponding secu-
rity keys and IDs in order to ensure intra-domain packet authentication between
hosts and security gateways (or between gateways and checkpoints); 2) to build
security associations (SAs) between SNS servers. An SA includes the IP ad-
dresses of corresponding security gateways and secret keys for generating and
verifying packet authenticators between domains; 3) to maintain a secure name
database for secure name resolutions; 4) to resolve secure name queries from
trusted hosts. To support these features, we design the SNS naming system con-
sisting of SNS servers, SNS-aware DNS servers, SH managers at SGs, and stub
resolvers at hosts. We refer readers to [14] for the details of the secure name
service mechanism and components.

In the SNS naming framework and forwarding mechanism, we add other
three identities combining with an IP address to represent a host at different
stages of packet forwarding, i.e., Secure Handle (SH), Host ID and FExternal
Identity. We use a 32-bit secure handle (SHy) in a response as the SNS identity
to represent a destination host X when a packet is sent from a host to an SG.
This SNS identity is viewed as a virtual IP address by applications, and it is
used a forwarding label in the authenticated packet forwarding in a secure zone.
When a packet is forwarded from an SG to a host, we use the host IP address
to represent the host. Because we hide each host behind an SG, to distinguish
each host, we assign a host identifier H_IDx to a host X. In addition, we define
(SG_IPx, H_IDx) as its external identity to represent X outside its home zone,
where SG_IPx is the IP address of the SG for this host X.

A secure name resolution maps a secure name into an SNS identity (an SH).
The basic process of resolving a secure name query is shown in Fig.1. An SNS
stub resolver S; at a host recognizes an SNS query @ for the identity of a secure
name X, and then forwards this query to its SNS. When this query arrives
at SG1, SG; authenticates this message and then forwards it to SNS;. SNS;
looks up its secure name database and finds the external identity of X, i.e.,
(SGIPx,H IDx). (If X is not in the database, SN.S; will obtain the external
identity of X by issuing a secure name query to SNS server SN S, that manages
secure name X.) Then SNS; passes the external identity of X to SH manager
M, at SG; in a response R’. Upon receiving R’, M1 first checks if the external
identity of X is in its SH database. If it is, M1 finds SHx from the database;

SH Manager M ,

@ 3R:SH, 2JR:SG_IP HID,

& 1IZH) 1) Q: Identity X?

Stub S SG, SNS,
SH Database Secure Name Database
SNS External N External
Identity Identity ame Identity
SH, |SG_IP,,H_ID X |SG_IP,, H_ID
Fig. 1. Resolving a query by a local SNS. Fig. 2. Two SNS-enabled Domains.

Source Destination
P

13
a) Regular IP Packet sent ‘ P_src] SH_dst] Payload ﬂ

b) Host-Secure Packet

[|l o |] IR

c) Zone-Secure Packet
Trom o1 1o C1 [ec1 [z]
o e
[sAv [z A [niosc] sau [z1D B [HiD dst] acict Payload I\
d) Domain-Secure Packet
ran-sscure paoket [ey]
--------- T
[[sav [zio.A [niDsrc| SAU | z1D B [HiD dst| Acice Payload I\
e) Zone-Secure Packet
nesscure ket o Teer] -
I .
[sav [zioA [#ipsrc] SAU |z B JHiD dst| A ceon Payload |
f) Host-Secure Packet
i i
[[sH_src [c2 ast | Payload N
9) Regular IP Packet SH_src [1p_dst | Payload N
received at an application
LEcEND Ax_y ‘Authenticator between Host x and Host y
H_ID_x Host ID of Host x
1P_x IP address of Host x
SH_x Secure handle of Host x
SA_x SA Index of Domain x
Z_D_x Zone ID of Host x

Fig. 3. Packets from Host src to Host dst.

otherwise, M; inserts an entry into the SH database for this external identity
and obtains SHx. Then, M; sends a response R to S; with the SHx as the
response to query Q.

4 Authenticated Packet Forwarding

The secure packet forwarding mechanism consists of secure IP layers at end
hosts, security gateways (SGs) of secure zones, and security checkpoints (SCs)
of secure domains. We use an example as shown in Fig.2 to explain how the
SNS framework achieves the secure communication between Host src in Zone
A of Domain U and Host dst in Zone B of Domain V', without revealing their
IP addresses. Assume an application on host src first obtains a secure handle
SH _dst of host dst, and it then constructs a regular IP packet using SH_dst as

the destination address, as shown in Fig.3.a. Before this packet is passed the link
layer at src, it is intercepted by the sIP layer at src. The sIP layer recognizes
this packet by its secure handle, and then translates it into a host-secure packet,
as shown in Fig.3.b. The packet is then forwarded as a regular IP packet. When
the packet reaches gateway G1 of Zone A, G1 translates the IP packet into a
zone-secure packet, and forwards it to checkpoint C'1, as shown in Fig.3.c. Based
on security parameters between G1 and C'1, G1 generates and inserts a zone
authenticator (A_G1_C1) into the packet. As shown in Fig.3.c, the destination
host ID H_ID_dst and the remote zone ID Z_ID_B are also inserted into the
packet to ensure this packet is correctly routed to the host dst. Moreover, the
source host ID H_ID_src and the source Zone ID Z_ID_A are also inserted into
the packet in order to provide sufficient routing information for return packets
to be routed back to host src when they return to G1.

At C1, we first check the zone authenticator A_G1_C1. If invalid, the packet
is dropped. Otherwise, we compute a domain authenticator A_C1_C2 to replace
A_G1.C1, as shown in Fig.3.d. We use BGP announcements to direct packet
routing between domain U and V such that the above domain-secure packet is
forwarded from Checkpoint C1 to Checkpoint C2 across regular IP networks
in between. At C2, we first check the domain authenticator of a packet using
its remote SA Index SA_U. If invalid, the packet is dropped. Otherwise, we
then generate a zone authenticator A_C2_G2. As shown in Fig.3.e, we replace
A_C1_C2 with A_C2_G2 in the packet and forward it to G2. Upon receiving the
zone-secure packet, G2 first checks if its zone authenticator is valid. If valid, G2
translates the packet into a host-secure packet as shown in Fig.3.f; otherwise,
G2 drops the packet. Furthermore, G2 looks up its remote IP address database
to check if it needs to insert a new entry in the database because it needs to
remember how to route a return packet from Host dst to Host src.

When the host-secure packet arrives at host dst, the secure IP layer recognizes
it as a secure packet based on the protocol field in its IP header. It first translates
the host-secure packet into a regular IP packet, and then puts this new packet
into the TP input queue. Consequently, an application at Host dst receives a
regular IP packet as shown in Fig.3.g.

We have implemented the prototypes of sIP layer, SG and SC on Linux kernel
2.4.20 using Linux Netfilter for evaluating authenticated packet forwarding of
SNS. We refer readers to [15] for the details of the implementation and introduce
the performance results in the following. Utilizing the time stamp counter (TSC)
of Pentium CPUs to directly read CPU clock cycles, we can measure the delay
at each step of our implementation in clock cycles. We use three Linux machines
such as H1, H2, and H3. H1 and H2 houses a 2GHz Pentium 4 processor,512
MB memory, 8KB L1 cache, and 512KB L2 cache. H3 is a 2.8GHz Pentium 4
processor machine with 1GB memory, 8 KB L1 cache, and 512KB L2 cache.

We summarize the delays at the components of authenticated packet for-
warding in Table 1. For the testing of sIP layer, we send 10,000 UDP packets of
1024 bytes over a direct link between H1 and H2. We also use HMAC-MD5 for
MAC generations. The overall delay of the sIP layer is 6879 cycles (3.44us). We

Table 1. Delays of Forwarding Components(in clock cycles)

Authenticator| MAC |Secure Packet MAC Total| Effective
Initialization [Check| Translation |Generation Bandwidth

sIP 3067 - - 3812 6879 291 MB
SG - 4463 450 3587 8500 (329 MB
SC - 4455 - 3869 8324 [337 MB

r
Pool_Entry 1 [x
1

hash_vuale | > Pool_Entry 2 | 1

Pool_Entry_3 —]
i
Single-Level

Hash Directory,

Pool_Entry_1

Pool_Entry_2

(P_GID_H)

[
v

/Iookup

HASH(P_G, ID_H)

Pool_Entry_3

Multi-level
Dynamic
Directory

NULL_entry

Entry Pool

Entry Pool

(a) Multi-Level. (b) Single-Level.

Fig. 4. Two Types of Address Translation Table.

also measure the effect of sIP on end-to-end bandwidth using Iperffrom NLANR
(www.nlanr.net). On a 100Mbps link, we can achieve a transmission rate of 93.9
Mbps over regular IP and a transmission rate of 91.9Mbps over sIP, which is
98% of the rate using IP.

To evaluate the performance of an SG, we measure the delays of packet
authentication (MAC check), secure packet translation, and MAC generation, as
shown in the second row of Table 1. We connect host H1 to H2 through H3, which
acts as an SG. Again, we send 10,000 UDP packets of 1024 bytes from H1 to H2.
We use the similar setting of SG to test H3 as an SC. The results are also shown
in the third row of Table 1. The last column in Table 1 shows that our prototype
can support a transmission rate around 300 MBps, which is sufficient for a LAN
environment with a 100Mbps or 1Gbps link. The experimental measurements on
the prototype of sIP layer, SG and SC on regular Linux machines have shown
the feasibility of the SNS authenticated packet forwarding schemes.

5 Dynamic Table Management at an SG

In the process of secure address translation at an SG, we need to authenticate
and translate an incoming secure packet based on its address pair (IP_G, ID_H)
or an outgoing packet based on its SH, where IP_G is the 32-bit IP address
of a remote security gateway and ID_H is a 16-bit remote host ID. To ensure
the correct mapping in both incoming and outgoing directions, we need both
an SH and a (IP_G, ID_H) pair of the same flow to point to the same entry in
the address table. Different from traditional dynamic table mechanisms, which
only access tables through a primary key, we need to use both a (IP_G, ID_H)

pair and an SH to access an address entry. Therefore, we design a two-layer
structure to address this issue. At the lower layer, we use an Address Entry Pool
consisting of address entries, which allows us directly to access address entries
using its indexes as SH’s. At the upper layer, we build a dynamic directory for fast
lookups based on a primary key, i.e., (IP_G, ID_H) pair. For fast lookups based
on (IP_G, ID_H) pairs, we design a multi-level directory scheme and a single-
level directory scheme described in the following. The corresponding structure
of entry pools is shown in Figure 4.

We first propose a Multi-Level Directory Scheme. Let us denote a 48-bit
primary key, a (IP_G, ID_H) pair, as k4rkae - - - ko. At the first level, we use the
first 16 bits, kq7k4e - - - k32, as the index. We use the next 8-bit k31 kg - - - koy as
the index of the second-level directory. Similarly, at level three, four and five, we
use corresponding 8 bits as the index of subdirectories.

We also design a Single-Level Hashing Scheme to reduce potential delays and
memory cost in the above scheme, because the total number of hosts is assumed
to be smaller than 232 and using 48 bits as a primary key may result in an
uneven directory tree, which causes unnecessary delays in operations. In this
scheme, we need to search through a list by comparing the primary keys of a list
to find an SH, because we allow collisions on a table entry. We use hash value v
to find the header of a list, where v = Hy(IP_G,ID_H), and hash function H; is
implemented using Knuth’s multiplication method [16], which can be computed
in less than 100 clock cycles on Pentium-4.

We analyze the performance of the above directory schemes in the following,.
Let us first define the traffic model used in evaluation. Assume we have N clients,
each has an on-period T?" seconds with a rate of r; packets/sec, and an off-

period Tioff seconds, where 1 < ¢ < N. Then the average number of active flows
. . N ™
generated by clients will be N, qtine = Zi:l T T -N
For a packet j, the probability that it belongs to an existing flow i is P[j €

flow i] = W We assume that an address entry is expired after each
k

=1
on-period. Then we need to insert an address entry for a flow in each on-
off cycle. The probability that packet j causes a table insertion for flow i is

P[j causes an insertion] = ﬁ Therefore, for packet j, the probability that it
causes an insertion for flow i is Pi(,?sert = P[j € flow i]-P[j causes an insertion)].

We first analyze the performance of the multi-level directory scheme under
the above traffic model. Figure 5 shows the lookup algorithm that decides the
action for a packet of flow i, whose address is fallen into directory entry e.
Consider level | directory with 2% entries, where k = 16 when [= 1, and k =
8, when 2 < | < 5. Let N; be the current flow population in level | and its
sub-directories. We know N1 = N,ctive. Assume client addresses are uniformly
distributed across the whole directory, the expected population in the level [is
Ni = sroradr, 2 <1< 5.

Assume packet j arrived at directory level [is fallen into an entry e with a
uniform probability of 2% Let pl, = P'[e = 0] be the probability that entry e is
not occupied currently (i.e., flag F = 0); p} = P![e = 1] is the probability that

if (entry e is empty)
INSERT(i); // imsert client i into entry e
return a secure handle;
. else

if (i is the same as the client in entry e)

1.

2

3

4

5. if (exact ome client is in entry e)
6

7 return a secure handle;

8

else // collision

9. EXPAND(); // expand a next-level directory 1. if Hj(key) > p
10. INSERT(i); INSERT(i’); // insert both into the mext level 2. index = Hj(key);
11. return a secure handle; 3. else
12. else // at least two clients are in entry e 4. index = H; i1 (key)
13. step down into the mext level directory. 5. access the entry at the index;
6. search through a overflow list if necessary;
Fig. 5. Lookup of Multi-Level Directory Fig. 6. Lookup in Linear Hashing.

entry e is currently occupied by a single flow (i.e., flag F' = 1), and p}, = P'[e = 2]
is the probability that entry e is currently occupied by more than one flow (i.e.,
flag F = 2), and thus it is expanded into the next level I + 1 (for [< 5). Then
we have pf) = (1 — 55)™, p} = (1 — 55)™ 1 55, and ph =1 — p}, — p}. Because
of no collisions in the fifth level, we have p§ = 1, p} = 0, and p3 = 0. Therefore,
the expected delay of inserting a new entry into a directory at level | and its

sub-directories, denoted by D! is given recursively by Equation 1.

insert?

Dinseri = dflag + pf) * Binsert +pl1 [dcompwe + dezpand + Eé:,_slert (i, Z’)]
+pl2 [dd(mm + Dzjlslert] : (1)

where dyjq4 is the delay to determine the flag value of a directory entry, dinsert
is the delay to insert client information into an entry, decompare is the delay to
compare the destination of a packet with that of an existing entry, despand is
the delay to expand a sub-directory in the next level, dg,.n is the delay to step
down into the next-level sub-directory, and E'F! (i,4') is the delay to insert

two distinct entries, ¢ and ¢’, into a newly-expanded sub-directory at level I + 1,
as defined in Equation 2.

1
1 .. 1+1 ..

Elsert(1,1") = gramsa Bintaers (6:1) +(1 = W) 2 dingert - (2)
where 2 < [< 4. For E} ..., (i,7) = 2 - dinsert because no collision occurs at
the fifth level. The expected delay of searching an entry at level [and its sub-
directories, denoted by D! is given recursively by Equation 3.

lookup?
Dfookup = dflag + pll : dcompare +p12 [ddown + Dll:olkup] . (3)
In summary, for the packets of flow 7, the expected delay of an address insertion
is D} ..., and the expected delay of an address lookup is Dlloak'u.p‘ Then the
expected delay of a directory lookup/insertion is thus:
D(Z) = Pi('rzz)sert) Dz'lnsert + (1 - Pi(:L?sert)Dllookup . (4)

Now let us analyze the expected memory cost in the multi-level directory scheme.
First, we always allocate the top level directory with 2'6 entries. Then, for each
collision on an entry, we allocate a sub-directory of 2% entries. For each flow 4,

it may cause an expansion of a sub-directory at level [+ 1 if it is collided with
another address entry at level [(i.e., when flag F = 1),1 <1 < 4. The probability
that flow 7 is collided with another entry at level [is m(i,l) = (Hk " pE) - p

Therefore, the potential memory cost due to flow ¢ is m; = Zl 1 m(z 0). The

potential memory cost of N7 flows is denoted as M, where M = ZZ 1 M.

We now analyze the performance of the linear hashing directory scheme.
Assume we initialize the directory with Ny entries, say Ny = 28. Assume we have
a perfect hashing function, then the memory cost of the single-level directory for
a population of Ny is denoted as My, = Ny - 2k where k = LloggNl/Noj such
that 2¥=1. Ny, < N; < 2% . N,. We only expand the directory after 251 - Ny
collisions.

For each packet, we need to first search the table to check if it has a cor-
responding entry there. If not, we then insert an address entry. The probabil-
ity that the address of the packet is hashed into an empty directory entry is
po = P[X = 0] = (1 — 55)™, while the probability that its address is hashed
into an occupied directory entry is p; = 1 — pg. The search procedure of linear
hashing is shown in Figure 6.

Dlookup = dhash + dp + Dlist . (5)

where dpqsp, is the delay of computing the hashing function, d, is the delay to
compare with a splitting pointer p, and Dj;,; is the expected delay of searching
through the overflow list. For a good hashing function, we assume that the
average length of the list is less than two. As a result, the upper bound of the
delay of searching the list is Djjs; < 1.5 - deompare + 0.5 - dneqt, Where deompare
is the delay to compare the address of the packet with the address in a name
entry, and d,..; is the delay to access the next entry on a list. We then have

Dinsert =Po- dinsert +p1 . (dhash + dp + Dlist + dinsert) . (6)

And the expected lookup/insertion delay of packets of flow i is

D() Pz(:z)sert Dipsert + (1 - Pi('r?sert)) DlOOkUP . (7)

We measure the delay of memory read/write and hashing computation in Linux

kernel and plug in these parameters into our models. Figure 7 shows the com-
parison of the multi-level approach with a perfect linear hashing approach. For
a uniform distribution of addresses, although the multi-level approach does well
for a small population, its delay grows as the population increases. We also test
the multi-level approach with a skewed input, in which all address entries are
in a single directory entry at the first level and they are uniformly distributed
below the first level. In this case, the delay of multi-level approach is increased
significantly. While the linear hashing approach keeps a constant delay under
the assumption of a perfect hashing function. In addition, the memory cost of
the hashing approach is less compared with the multi-level approach, as shown
in Figure 7.b.

450
= Mulii-Level with Skewed Input
i ¢ Multi-Level with Uniform Input 2400] —=— Linear Hashing
0300 —v— Pefect Linear Hashing o
% %350 .
250
> >
z 300 .
Q o o o
Se00 T o e
(o} a @ o
© P A S ©200)
855 a
g [5150)
[o
100
= =100
2 4 6 8 10 50 2 4 6 8 10
Pantilation Size (957 Panuilation Size (95
(a) Mean Delay. (a) Mean Delay.
o Multi-Level with Skewed Input
900 o Multi-Level with Uniform Input 900f | —— Linear Hashing
800 —~— Perfect Linear Hashing 800)
& 700 & 700
% 600| % 600
< <
> 500| S 500
S 400| S 400
: :
300] . N s 300
200| 200
100 100
2 6 2 4 6 8 10
Pantilation Size (98 Paniilation Size (93
(b) Memory Cost. (b) Memory Cost.
H s . . .
Fig. 7. Analytical Models. Fig. 8. Simulations.

We also conduct simulations to evaluate the two schemes. We use a multipli-
cation approach for fast computing hash values, and generate a random set of
address lookups. Figure 8.a shows the mean delay of the hashing scheme is sig-
nificantly better than the multi-level scheme. Figure 8.b shows that the memory
cost of the hashing scheme is also better than the multi-level scheme.

6 Conclusion and Ongoing Work

We have proposed the SNS framework to protect critical resources from unau-
thorized accesses and DoS attacks. Through the resource virtualization of SNS,
we build a distributed filtering scheme to enforce packet-origin authentication.
We have described the basic design of the SNS framework, and addressed the
performance bottleneck in its authenticated packet forwarding. Based on our
prototype on Linux, we have shown the feasibility of implementing SNS on reg-
ular Linux machines. We have also designed two fast secure-handle schemes to
address the scalability issue in fast address translation.

To fully exploit the advantages of the SNS framework, we face several chal-
lenges in the design of the SNS framework, i.e., scalability, reliability, efficiency,
and easy deployment. For reliability, we need to protect security gateways from

attacks (such as packet replay and flooding) because these gateways are ex-
posed to attackers. We will address this issue from two perspectives. First, we
will evaluate the tradeoffs between computation costs and probabilities that in-
valid packets penetrate an ingress filtering mechanism using Bloom Filter [17].
Furthermore, we will investigate the effect of reconstructing dynamic packet for-
warding paths to defeat attacks. Currently, we are working on these issues and
implementing the complete SNS framework for further investigation.

References

10.

11.

12.

13.

14.

15.

16.

17.

R. Arends and et.al, “DNS security introduction and requirements,” Internet
Draft, draft-ietf-dnsext-dnssec-intro-03, IETF, Oct. 2002.

G. Ateniese and S. Mangard, “A new approach to DNS security (DNSSEC),” ACM
Conf. on Computer and Communications Security, 2001.

S. Kent and R. Atkinson, “Security architecture for the internet protocol,”
RFC2401, Internet Engineering Task Force, Nov. 1998.

D. Harkins and D. Carrel, “The internet key exchange (IKE),” RFC2409,Internet
Engineering Task Force, Nov. 1998.

E. Rescorla T. Dierks, “The TLS protocol,” Internet Draft, draft-ietf-tls-rfc2246-
bis-02.txt, Oct. 2002.

B. Neuman and T. Ts’o, “Kerberos: An authentication service for computer net-
work,” IEFEE Comminucation Magazine, Sept 1995.

A. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure overlay services,” In
Proc. of ACM SIGCOMM’02, 2002.

David Aderson, “Mayday: Distributed filtering for internet services,” 4th Usenix
Symposium on Internet Technologies and Systems, Seattle, Washington, March
2003.

R. Ramanujan and et. al., “Organic techniques for protecting virtual private net-
work (vpn) services from access link flooding attacks,” International Conference
on Networking’02, 2002.

Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson, “Practical
network support for IP traceback,” Proc. of the 2000 ACM SIGCOMM Conference,
Stockholm, Sweden, Aug., 2000.

R. Stone, “Centertrack: An IP overlay network for tracking DOS floods,” Proc. of
2000 USENIX Secuirty Symposium, July, 2000.

H. Burch and B. Cheswick, “Tracing anonymous packets to their approximate
source,” Unpublished Paper, Dec. 1999.

“IETF ICMP traceback working group,” http://wwuw.ietf.org/html.charters/itrace-
charter.html.

Y. Dong, C. Choi, and Z.-L. Zhang, “Design of secure name service,” Techincal
Report, CS, UMN, 2003.

C. Choi, Y. Dong, and Z.-L. Zhang, “Implementation of SNS authenticated packet
forwarding mechanism,” Techincal Report, CS, UMN, 2003.

Thomas Cormen, Charles Leiserson, and Ronald Rivest, “Introduction to algo-
rithm,” MIT Press, ISBN 0262031418, 1986.

B. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commu-
nications of the ACM, 13 (7). 422-426.

