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Abstract. In this paper we propose a new packet classification algorithm, 
which can substantially improve the performance of a classifier by decreasing 
the rulebase lookup latency. The algorithm hierarchically partitions the rulebase 
into smaller independent sub-rulebases by employing hashing. By using the 
same hash key used in the partitioning a classifier only needs to look up the 
relevant sub-rulebase to which an incoming packet belongs. For an optimal 
partitioning of rulebases, we apply the notion of maximum entropy to the hash 
key selection. We performed the detailed simulations of our proposed algorithm 
on synthetic rulebases of size 1K to 500K entries using real packet traces. The 
results show that the algorithm can significantly outperform existing classifiers 
by reducing the size of a rulebase by more than four orders of magnitude with 
just two-levels of partitioning. Both the space and time complexity of the 
algorithm exhibit linearity in terms of the size of a rulebase, suggesting a good 
scalable solution for the packet classification with a large rulebase. 

1   Introduction 

Packet classification is one of the most fundamental building blocks in many 
networking functions such as Diff-Serv traffic conditioning, firewall, VPN, traffic 
accounting and billing, load-balancing, and policy-based routing. These functions 
need to track flows and give the same treatment to the packets in a flow. A rulebase 
stores classification rules, which define the flows and their corresponding treatments. 
Since a flow is defined by the header values of a packet, a classifier’s duty is to 
examine the header and identify the corresponding flow.  

Internet traffic is not only fast growing, but it is also diversifying both in 
applications and in protocols. New applications and protocols such as Internet 
telephony, security protocols, and peer-to-peer applications are being rapidly 



deployed in addition to the traditional Internet applications such as Web, ftp, and 
email. As a result, the rulebase size is rapidly increasing. In a recent study [9], Woo 
argues that a rulebase with over a million entries is possible in future packet 
classification applications. From the classifier’s viewpoint, this implies that for each 
packet the classifier must be able to find the matching rule with the highest priority 
amongst all the rules in the rulebase at the wire speed. Thus, there has been a renewal 
of interest [1, 2, 4, 5, 6, 7, 8, 10] in the scalability issue in terms of the size of a 
rulebase. Most of existing works, however, mainly focus on relatively small 
classifiers, e.g., with less than 20K rules [12]. To address this issue, we propose a new 
scalable packet classification algorithm that can scale well up to this size. 

The motivation of our algorithm is based on the observation that a given packet 
matches only a few rules even in large classifiers [1]. This strongly implies that most 
of rules in any given rulebase are independent. Thus, we can partition the rulebase 
into many smaller independent sub-rulebases. As long as the matching sub-rulebase 
can be identified quickly, the performance of the rulebase lookup can be substantially 
improved since the lookup needs to be performed only in the final sub-rulebase. This 
is achieved by hierarchically decomposing the original rulebase into many smaller 
independent sub-rulebases based on the rules’ definitions.  

The algorithm is carried out in two phases: preprocessing and classification. First, 
during the preprocessing phase we hierarchically partition the original rulebase into 
many smaller independent sub-rulebases by hashing on the bit fields selected from the 
classification space. The degree of the partitioning depends on the density of a sub-
rulebase in the classification space. The denser the sub-rulebase, the more partitioning 
is needed. This hierarchical partitioning stops until all the sub-rulebases are small 
enough. Then, during the classification phase a classifier inspects each incoming 
packet using the same hash key used in the preprocessing and identifies the sub-
rulebase relevant to the packet. The search to find a matching rule is performed only 
in the final sub-rulebase where any existing lookup algorithm can be employed. 

For an optimal partitioning of rulebases, we apply the notion of entropy in this 
paper, which guides us to choose the bits that most evenly divide the given rulebase. 
When the hash keys are selected to maximize the entropy, a rulebase is partitioned 
evenly into sub-rulebases under the smallest variance. As a consequence, we can 
achieve the smallest depth in the partitioning tree, which directly translates to the 
smallest number of hash table lookups. If the depth is small and the final sub-rulebase 
is small enough, we can achieve a low per-packet classification delay. 

To evaluate the performance of our classification algorithm, we have applied our 
algorithm to real-life packet traces under synthetic rulebases of size 1K to 500K rules. 
The results show that the algorithm can reduce the size of the original rulebase by 
several orders of magnitude with only two-levels of partitioning, which requires only 
a couple of memory lookups. For example, a rulebase with 100K rules can be reduced 
to a sub-rulebase with only 7.6 rules on average and 258 rules in the worst case. In 
view of memory accesses, our algorithm requires 2 or 3 times less number of memory 
lookups compared to best classification algorithms known so far. Furthermore, the 
algorithm exhibits scalability in both its memory requirement and classification 
performance as we increase the size of a rulebase. 

This paper is organized as follows. Section 2 defines the packet classification 
problem and presents the overall algorithm of our packet classification process. The 



section also introduces several partitioning algorithms including the notion of entropy 
and discusses the variations of the proposed algorithm to handle rule definitions with 
range and prefix mask description. Section 3 describes our experimentation 
methodology and summarizes the results. Section 4 concludes the paper. 

2   The Proposed Classification Algorithm 

2.1   Problem Definition 

We can define the packet classification problem as follows. Given a rulebase, 
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, which is a set of rules, a packet classifier needs to identify the rule that 

an incoming packet matches to by looking up one or more fields of the packet header. 
Each rule is specified by the range of values in one or more fields of a packet header. 
Specifically, in d-dimensional packet classification, each rule ri is defined over d 
fields. Formally, ri is defined by a tuple (Ci, Ai) where Ci is called a classification 
space and Ai is the associated action of rule ri. The classification space is defined by 
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kF  is a range of values 

the field k must take. A rule ri match a packet p = {b1,b2, .. bd} if for i
kk Fbk ∈∀ ,  

where bk is a singleton. Multiple rules can match a packet. Thus, a classifier must 
identify the highest priority rule among all the matching rules. Intuitively, this 
requires the classifier to lookup the header fields of an incoming packet and to 
compare them against the rules in the rulebase one by one in order of decreasing 
priority. When n, i.e. the number of rules, is large or the arrival rate λ of incoming 
packets is high, this is a time-consuming serial process, which will limit the speed of 
the classifier. Thus, the essence of the problem is to find a fast yet scalable 
classification function both in time and in space. 

2.2   Proposed Algorithm 

Our classification algorithm is based on the conjecture that, in a rulebase, only a few 
rules have the possibility of matching a given packet. Let’s look at the rulebase 
example of a typical firewall [15] shown in Table 1 where inner network serves 
several application services such as HTTP, telnet and FTP. Rules R1, R2, and R3 
represent grant of these connection requests while R0 protects inner network against 
spoofing attacks. D is the default deny rule for all other communications. The 
protocol field in Table 1 suggests that a packet using UDP protocol can be matched 
only to R0 or D. Thus, R1, R2 and R3 need not be matched against a UDP packet.  

The algorithm consists of two phases: preprocessing and classification. The idea is 
to use divide-and-conquer approach. First, during the preprocessing phase we divide 



the original rulebase into many smaller independent sub-rulebases based on the values 
of classification fields where each rule is defined. Then, during the classification 
phase a classifier looks up the same header fields of an incoming packet and identifies 
the sub-rulebase where the relevant rules are stored. Thus, when the ratio (s/n) of the 
size of the sub-rulebase (s) over the size of the original rulebase (n) is small, then we 
can overcome the scalability issue by a single memory lookup to the hash table, which 
is constructed during the preprocessing phase. If a sub-rulebase is still large, then the 
sub-rulebase can be re-partitioned until the final sub-rulebase is small enough. 

Table 1. A rulebase example of a firewall. †Inner side: protected local network by the firewall. 
‡Outer side: network separated from inner side network by the firewall 

Rules Protocol Src. Port Dst. Port Src. IP Dst. IP Action Description  

R0 * * * 
Inner 
side† 

Inner 
side† 

Deny 
Protection against 
Spoofing Attacks 

R1 TCP 1024~65535 80  
Outer 
side‡ 

Inner 
side† 

Accept HTTP Service 

R2 TCP 1024~65535 23  
Outer 
side‡ 

Inner 
side† 

Accept Telnet Service 

R3 TCP 1024~65535 21  
Outer 
side‡ 

Inner 
side† 

Accept FTP Service 

D * * * * * Deny Default Rule 
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k ≠ ∅. Intuitively, two rules overlap if there exists any instance of a 
packet that matches both rules. Since sub-rulebases differ at least in those bits that are 
selected as the hash key, a packet cannot match both sub-rulebases at the same time. 
Thus, the independence among sub-rulebases is guaranteed. Therefore, we need to 
look up only the relevant sub-rulebase after inspecting a packet on the same bit fields. 

2.2.1 Preprocessing Phase: Rulebase Partitioning and Hash Table Construction 

In preprocessing phase, we partition the original rulebase into many independent sub-
rulebases. For example, the rules governing HTTP, FTP, and SMTP traffic can be 
partitioned into separate sub-rulebases. Then, by looking up the protocol field of an 
incoming packet, we only need to look up the sub-rulebase with the same protocol.  

We can choose any of the bits in the classification fields as a hash key. If we select 
8 bits, then we create a hash table with 28=256 entries, each of which points to a sub-
rulebase. Intuitively, two rules may overlap if they map to the same sub-rulebase 
while rules mapped to different sub-rulebases would never overlap, which implies 
that they are independent. Sub-rulebases larger than a threshold value, such as 16 
rules, can be repartitioned with another hash key, which must be different from the 
first hash key. This hierarchical partitioning stops until all the sub-rulebases are small 
enough. However, our experimentation results show that two levels of partitioning are 
enough for a rulebase under 500K rules. 



Both the space and time complexity of our classification algorithm depend on the 
number of nodes and the depth of the partitioning hierarchy. To reduce the number of 
partitioning we need to partition a rulebase into sub-rulebases as evenly as possible so 
that the number of empty sub-rulebases is minimized and the number of rules in sub-
rulebases must follow uniform distribution. This partitioning efficiency depends on 
the hash key selection algorithm, which we will discuss in detail in Section 2.3. 

Table 2. A rulebase example and its hash tables. * denotes a don’t care bit. 

Classification space 
(b0b1b2b3…………b103) 

Rule 
 Hash Key 8MSBs

(b0b1b2b3b4b5b6b7)
Sub-

rulebase 
Hash Key 

b3b5 
Sub-

rulebase 
 0000 0000 Null Entry 

0000 0110……....... R0 
 0000 0001 R3 

00 R3 

 : Null Entry 
0000 0110…….….. R1 

 0000 0110 R0, R1 
01 R0, R1 

 : Null Entry 
0001 0001…….….. R2 

 0001 0001 R2 
10 R2 

0000 0001……...… R3  : Null Entry 
**** ****………... D  1111 1111 Null Entry 

11 
Null 
Entry 

2.2.2 Classification Phase 
After we partition a rulebase and construct hash tables during the preprocessing stage, 
a classifier can narrow down the rulebase lookup by mapping an incoming packet into 
the corresponding sub-rulebase where the packet can be applied. The classifier looks 
up the hash table by using the hash key extracted from the packet header. 

Let us consider the rulebase example shown in Table 2. Assume that rules R0 to 
R3 are listed in the decreasing order of priority. We assume 5-dimensional 
classification, which uses 104-bit fields from protocol (8), source port (16), 
destination port (16), source (32) and destination (32) IP addresses from the header. 

In Table 2, we show only 8 most significant bits (MSBs) of a classification space, 
which may represent any header field such as the protocol. We partition the rulebase 
to 256 buckets by using the 8 MSBs and create the hash table as shown in Table 2. 
Rules in one sub-rulebase do not overlap with rules in other sub-rulebases. When a 
packet arrives, the classifier extracts the 8 MSBs from the header and uses it as an 
index to the hash table. If the hash table entry is not empty, then the classification is 
performed within the sub-rulebase. Otherwise, the default rule is the matching rule. 

2.3   Hash Key Selection 

2.3.1 The First-Level Partitioning  
For the first-level partitioning, we only consider the protocol and port numbers as a 
hash key since these fields can naturally classify rules based on the Internet services 
governed by the rules. For example, HTTP service corresponds to protocol 6 and 
server port 80. The classification space at this level is comprised of protocol (8), 
source (16), and destination port (16) numbers. To limit the size of the hash table, we 



select a subset from the classification space as a hash key. In our implementation, we 
use a 17-bit hash key, which suggests a hash table with 128K entries. There is a 
tradeoff between the memory space and the depth of the partitioning hierarchy 
depending on the size of the hash key. Assuming each entry contains either a 32b 
address or NULL-pointer, the size of the table is 512Kbytes. 

For the 17-bit hash key, we first select 6 bits from the protocol field using the 
entropy-maximizing key selection algorithm, which we will discuss in detail in 
Section 2.3.2. Since only two protocols, TCP and UDP, need to specify port numbers, 
we select up to 11 additional bits from the port numbers for these protocols. Since a 
port number is bi-directional, i.e. either source or destination, and specified by a range 
with upper and lower bounds, we select one of the port field by an additional bit to 
denote the direction and then select additional 10 LSBs or 6 MSBs from the port field 
by using the precision directed grouping, which we will describe in Section 2.4.2. 
Typically, a server port (dense area) designates a specific port number between 0 and 
1023 while a client port (sparse area) uses a random port numbered from 1024 to 
65536. Thus, lower 10 bits are used for a server port while upper 6 bits are used for a 
client port. Thus, a hash key is concatenated from [protocol field], [direction bit] and 
[10 LSBs | 6 MSBs in one of the port field]. Since a server port has a higher 
partitioning efficiency than a client port, we use the server port regardless of direction 
if a rule specifies a server port. If a rule specifies client ports in both source and 
destination ports, we use the 6 MSBs and spread the rules in both source and 
destination hash tables. This rule spreading is described in detail in Section 2.4.2. 

2.3.2 The Second-Level Partitioning 
The second level partitioning only applies to buckets larger than the threshold after 
the first level partitioning. Since the second-level hash key must be disjoint from the 
first-level hash key, we only consider source and destination IP addresses. To limit 
the size of the hash table, we only select a subset of the 64-bit fields as a second level 
hash key. In our implementation, we use a 16-bit hash key. We use the following four 
different hash key selection algorithms.  
1. MSB pattern (represented as MSB): With this criterion, a 16-bit hash key is made 

by concatenating 8 MSBs from source and destination IP address fields. The idea 
is that most of prefix mask selects the first few significant bits from an IP 
address field. The time complexity of this key selection algorithm is O(1). 

2. Exponential growing pattern (Exp): With this criterion, a 12-bit hash key can be 
made by selecting the bit position corresponding to the exponential function of 2, 
namely b1b2b4b8b16b32 from both source and destination IP addresses. The idea is 
that the lower the position of a bit in an IP address field, the more likely to be 
masked out. We add extra two bits b6b11 to create a 16-bit hash key. The time 
complexity of this key selection algorithm is also O(1). 

3. Mask distribution pattern (Mask): The basic idea of this heuristic method is that 
don’t care bits in a classification space do not provide any information. Thus, 
each bit bi in the classification space has the information in inverse proportion to 
the number of don’t care bits in the bit position of rule definitions. The procedure 
of finding this key is as follows. For each bit position bi we sum the number of 
non-don’t care bits in all the rules in a rulebase, and accumulate them from the 
MSB to the LSB. For a k-bit hash key, we select a bit if the accumulated value of 



the bit position is the multiple of the total accumulated value divided by k. The 
time complexity of this key selection algorithm is O(kn) assuming that the total 
number of rules in a rulebase is n. In our experimentation, k is 16. 

4. Entropy-maximizing pattern (Ent): To find a good hash key we use the notion of 
entropy, which is used in information theory [11]. As known widely, the entropy 
is maximized when all the entries have the same probability of occurrence. Thus, 
we can find a good hash key through the calculation of entropy. Using the notion 
of entropy, a hash key Kσ of length σ can be expressed recursively by Kσ = Kσ-1 
⊕ q, where ⊕ is the concatenation operator and q is the bit from the 
classification space that produces the maximum entropy. The algorithm starts by 
calculating the entropy for the hash key of length 1 and determines the bit 
position that produces the maximum entropy value. Then, the algorithm repeats 
this process for the hash key of length 2 and so on until the length of the hash 
key reaches σ or the entropy does not increase further. Based on this algorithm, 
we create a 16-bit hash key by selecting an 8-bit hash key from each IP address 

field. The time complexity this algorithm is )])12(
2

[( +−⋅ swsnO , where w is 

the length of classification space, s is the length of a hash key, and the n is the 
total number of rules in a rulebase. The detailed discussion of the entropy-
maximizing key selection algorithm can be found in [16]. 

2.4   Adaptation of the Algorithm for Prefix Mask and Range Specification 

So far our discussion implicitly assumed exact value matching for packet 
classification. However, a rule definition often includes field descriptions with prefix 
mask or range specification. In this section, we will discuss how our proposed 
algorithm can handle these different field specifications. 

Table 3. A rulebase and its hash tables with two different hash keys of length 2. 

Rule Field Description
(b0b1b2b3b4b5b6b7)

Index Hash Key b0b1 Hash Key b0b2 

R0 0000 0000 00 R0 R0 
R1 0110 0000 01 R1 R1 
R2 1000 0000 10 R2, R3 R2 
R3 1*10 0000 11 R3 R3 

2.4.1 Prefix Mask Field 
This is commonly used to specify the range of an IP address field. Table 3 shows a 
rulebase example with prefix masks and its two different hash tables. The issue here is 
that we may need to duplicate a rule into multiple entries in a hash table if the rule 
contains a field specification with masks.  

With b0b1 as a hash key, R3 needs to be spread over two entries indexed by 10 and 
11 since b1 is don’t care term in R3. We call this issue rule spreading, which may 
increase the size of the result hash table by duplicating rules. However, by selecting 
b0b2 as a hash key, the rule spreading can be avoided as. To avoid this rule spreading 
as much as possible, we need to modify the entropy-maximizing key selection 



algorithm such that when calculating the entropy of a bit, the algorithm must ignore a 
rule whose definition specifies don’t care condition for the selected bit. This is simply 
because don’t care bits do not add any information to the system in terms of entropy.  

2.4.2 Range Field 
This is commonly used to specify a TCP or a UDP port description. As described in 
Section 2.3.1, typically a server port designates a specific port number between 0 and 
1023 while a client port uses a random port number between 1024 and 65536. The 
basic idea here is to transform the range specification to exact or prefix mask 
specification. We can use range to prefix conversion [5], which splits a given 
arbitrary range to a group of prefix masks. For example, a 16-bit range [1024, 65535] 
can be split to six prefix masks such as 000001*, 00001*, 0001*, 001*, 01*, 1*. 
However, this method results in extensive rule spreading in our algorithm, which is 
not desirable. Alternatively, we propose precision-directed grouping in this paper. 

It is straightforward to split a rule with a range specification into multiple rules 
with exact values. For example, a rule with a range [71, 74] can be split into four rules 
with exact values from 71 to 74. However, a rule with a wide range such as [49152, 
65535] can create a huge number of rules (16,384). Fortunately, a TCP/UDP port 
description with a range is usually biased. For example, 80% of port numbers used in 
most rules are under 3,999 although the total number of port reserved is much higher 
(0 ~ 49,151) [13]. Thus, we can group a different number of rules depending on the 
density of the range. For the 16-bit port range, we use the 10 LSBs as a hash key for 
dense area [0, 1023], creating a single entry per port, while we use the 6 MSBs as a 
hash key for sparse area [1024, 65535], creating 63 entries, i.e. 1024 ports per entry. 

3   Experimentation and Results 

In this section, we demonstrate the performance of the proposed algorithms for 5-
dimensional classification. Since it is difficult to obtain large real-life classification 
rulebases, we synthesized large rulebases from real-life packet traces. The packet 
traces were collected from PUBNET for five to eight hours during three days, 
7/24/01, 12/14/01 and 12/17/01, respectively [14]. One-hour trace is nearly 70 million 
packets. The first trace is used to synthesize the rulebase and others are used as data 
for packet classification. To create a synthetic rulebase that resembles real-life 
rulebases, we carefully synthesized a rulebase by following the rulebase 
characteristics observed from real-life firewall applications [1, 2]. The detailed 
guidelines are described in [16]. All of our experimentation was performed in 1.7GHz 
Pentium IV system with 512MB of memory running Linux. 

3.1   Rulebase Partitioning 

3.1.1 First Level Partitioning 
Figure 1 shows the results of the first level partitioning by displaying the average and 
maximum size of a sub-rulebase after the partitioning. By the partitioning we can 



reduce the average size of a rulebase substantially. For rulebases with 10K, 100K, and 
500K rules, the reduction ratios are 0.0029, 0.0014, and 0.0014 respectively. This is 
very significant since we can reduce the size of a rulebase by more than two orders of 
magnitude by a single memory lookup to the corresponding hash table. However, as 
you can see from the maximum size of a sub-rulebase in the figure, rules are not 
evenly distributed in the partitioned rulebases. The largest sub-rulebase contains about 
24% of rules of the original rulebase in all the rulebases tested. As we can predict, 
these rules are related to HTTP service, which corresponds to protocol 6 and port 80. 
The numbers of sub-rulebases over the threshold (16 rules per sub-rulebase) are 141, 
192, and 1114 for 10K, 100K, and 500K cases. For these sub-rulebases we perform 
the second-level partitioning. All of the first level partitioning is completed in less 
than one second in our experimentation platform. As a side effect of the first level 
partitioning, we observe that the partitioning more than doubles the total number of 
rules due to rule spreading. The actual inflation ratio is 2.42.  
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Fig. 1. The result of the first level partitioning 

3.1.2 Second Level Partitioning 
Figures 2 and 3 show the results of the second level partitioning with various hash key 
selection algorithms. Figure 2 shows the average number of rules per sub-rulebase 
while the Figure 3 shows the size of the largest rulebase. Assuming the entropy-
maximizing key selection, the second-level partitioning further reduces the sub-
rulebase by reduction ratios of 0.054, 0.054, and 0.052 for 10K, 100K, and 500K 
rulebases. When the first-level and the second-level partitioning are combined, 10K, 
100K, and 500K rulebases are reduced to 1.6, 7.6, and 36.6 rules per sub-rulebase on 
average, which corresponds to reduction ratios of 0.00016, 0.000076, and 0.000073. 
This is very significant since we can reduce the size of a rulebase by more than four 
orders of magnitude by just two memory lookups to the hash tables.  

The second level partitioning is also very effective in reducing the largest sub-
rulebase, which contained 24% of the entire original rulebase after the first level 
partitioning. Assuming the entropy-maximizing key selection, with the second level 
partitioning we can reduce the size of the largest rulebase to contain 31, 258, and 
1281 rules in 10K, 100K, and 500K rulebases respectively. This suggests that for a 
100K rulebase we only need to compare a packet to those 258 rules in the worst case 



during classification phase. Note that the second-level partitioning is more effective 
than the first-level partitioning in reducing the largest rulebase. This is expected since 
the first-level partitioning partitions the original rulebase according to the Internet 
services. Thus, the largest sub-rulebase governing the HTTP service is grouped into a 
single sub-rulebase. On the contrary, the second-level partitioning can reduce this 
largest sub-rulebase substantially by considering the distribution of rules in the 
classification space with the entropy-maximizing key selection algorithm. 
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Fig. 2. The average size of a sub-rulebase with different key selection algorithms 
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Fig. 3. The maximum size of a sub-rulebase with different key selection algorithms 

Figures 2 and 3 also compare the effectiveness of different key selection 
algorithms. As expected, the entropy-maximizing key selection gives the best result. 
In particular, it can reduce the size of the largest sub-rulebase substantially compared 
to other heuristics. For 10K, 100K, and 500K rulebases, the entropy-maximizing key 
selection is more effective compared to MSB pattern key selection by factors of 2.38, 
3.42, and 3.49. All the key selection algorithms show comparable results on the 
average size of a sub-rulebase. However, the entropy-maximizing key selection is the 
most effective in all the cases, especially for rulebases larger than 100K rules. 

It is hard to judge the scalability of our rulebase partitioning from Figures 2 and 3 
since the size of a rulebase does not increase linearly in the horizontal axis. But, we 
carefully scrutinized the numbers and could verify that both the maximum and the 
average size of a sub-rulebase grow linearly as we increase the size of rulebase. Note 
that these results assumed only two-levels of partitioning. If necessary, more levels of 



partitioning can be employed to significantly reduce the size of sub-rulebases. 
Likewise, we studied the memory requirement of our algorithm in terms of the 
growing rates of the total number of rules, the total number of buckets, and the total 
number of buckets over threshold [16]. We omit them here due to space limitation, 
but we find that all the numbers show a good scalability.  
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Fig. 4. The packet classification results 

3.2   Classification Performance 

To demonstrate the classification performance of our algorithm, we use real-life 
packet traces collected from PUBNET. The size of packet trace is 202 million 
packets, which is big enough to obtain the confidence of our experiment. After the 
first and second-level partitioning, we assume the worst-case search algorithm, i.e. a 
simple linear search, to find the matching rule in the final sub-rulebase so that we can 
show the pure effectiveness of the proposed partitioning algorithm.  

Figure 4 shows the classification performance in terms of the average number of 
rules accessed to find a matching rule. Figure 4 reveals that our algorithm accesses 
only 5.6, 42.64, and 207.02 rules for 10K, 100K and 500K rulebases respectively. 
This is very promising since the best-known algorithm [1] requires at least 13 
memory accesses for 5K rules. On the other hand, our partitioning algorithm needs to 
access only 5.6 rules in addition to 2 memory accesses required for hash table lookups 
although the worst-case linear search is used in the final sub-rulebase. By employing 
a more efficient algorithm [2, 5, 12] to find a matching rule in the final sub-rulebase, 
we can further improve the classification performance. 

4   Conclusion 

The growth of Internet in applications and protocols makes the size of a rulebase 
rapidly increasing. However, most of existing works mainly focus on relatively small 
classifiers, e.g., with less than 20K rules. Beyond this size, most of existing schemes 
may not scale either due to the memory explosion or due to the slowdown of 



classification. To address this issue, we propose a new classification algorithm that 
achieves the scalability by hierarchically partitioning a rulebase into many smaller 
independent sub-rulebases. By using the same hash key used in the partitioning a 
classifier can inspect an incoming packet and find its relevant sub-rulebase with a few 
memory lookups to the hash tables. Thus, the classification performance mainly 
depends on how much the final sub-rulebase can be reduced compared to the original 
rulebase. To make the reduction effective, we use the notion of entropy that finds a 
good hash key considering the distribution of rules in the classification space.  

With synthesized rulebases of sizes ranging from 1K to 500K rules, we evaluate 
the effectiveness of the algorithm in both partitioning and classification. The 
experimental results show that two-levels of partitioning can substantially reduce the 
size of a rulebase. As a result, during classification a classifier needs to access only 
4.2, 20.4, and 207 rules on average for rulebases with 5K, 50K, and 500K rules. This 
is very promising since one of the best-known algorithms [1] requires at least 13 
memory accesses for 5K rules. Furthermore, we show that the proposed algorithm has 
the unique scalability both in space and in time as we increase the size of rulebase.  
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