
Scalable Packet Classification through Maximum
Entropy Hashing

Lynn Choi1, Jaesung Heo1, Hyogon Kim1, Jinoo Joung2, Sunil Kim3

1 The Department of Electronics and Computer Engineering, Korea University,
Anam-Dong, Sungbuk-Ku, Seoul, Korea

{lchoi, jsheo, hyogon}@korea.ac.kr
Tel: +82-2-3290-3249
Fax: +82-2-921-0544

2 i-Networking Laboratory, Samsung Advanced Institute of Technology
Giheung-Eup, Yongin-Shi, Gyeonggi-Do, Korea

jjoung@samsung.com
3 The School of Information and Computer Engineering, Hongik University

72-1 Sangsu-Dong, Mapo-Gu, Seoul, Korea
skim@cs.hongik.ac.kr

Abstract. In this paper we propose a new packet classification algorithm,
which can substantially improve the performance of a classifier by decreasing
the rulebase lookup latency. The algorithm hierarchically partitions the rulebase
into smaller independent sub-rulebases by employing hashing. By using the
same hash key used in the partitioning a classifier only needs to look up the
relevant sub-rulebase to which an incoming packet belongs. For an optimal
partitioning of rulebases, we apply the notion of maximum entropy to the hash
key selection. We performed the detailed simulations of our proposed algorithm
on synthetic rulebases of size 1K to 500K entries using real packet traces. The
results show that the algorithm can significantly outperform existing classifiers
by reducing the size of a rulebase by more than four orders of magnitude with
just two-levels of partitioning. Both the space and time complexity of the
algorithm exhibit linearity in terms of the size of a rulebase, suggesting a good
scalable solution for the packet classification with a large rulebase.

1 Introduction

Packet classification is one of the most fundamental building blocks in many
networking functions such as Diff-Serv traffic conditioning, firewall, VPN, traffic
accounting and billing, load-balancing, and policy-based routing. These functions
need to track flows and give the same treatment to the packets in a flow. A rulebase
stores classification rules, which define the flows and their corresponding treatments.
Since a flow is defined by the header values of a packet, a classifier’s duty is to
examine the header and identify the corresponding flow.

Internet traffic is not only fast growing, but it is also diversifying both in
applications and in protocols. New applications and protocols such as Internet
telephony, security protocols, and peer-to-peer applications are being rapidly

deployed in addition to the traditional Internet applications such as Web, ftp, and
email. As a result, the rulebase size is rapidly increasing. In a recent study [9], Woo
argues that a rulebase with over a million entries is possible in future packet
classification applications. From the classifier’s viewpoint, this implies that for each
packet the classifier must be able to find the matching rule with the highest priority
amongst all the rules in the rulebase at the wire speed. Thus, there has been a renewal
of interest [1, 2, 4, 5, 6, 7, 8, 10] in the scalability issue in terms of the size of a
rulebase. Most of existing works, however, mainly focus on relatively small
classifiers, e.g., with less than 20K rules [12]. To address this issue, we propose a new
scalable packet classification algorithm that can scale well up to this size.

The motivation of our algorithm is based on the observation that a given packet
matches only a few rules even in large classifiers [1]. This strongly implies that most
of rules in any given rulebase are independent. Thus, we can partition the rulebase
into many smaller independent sub-rulebases. As long as the matching sub-rulebase
can be identified quickly, the performance of the rulebase lookup can be substantially
improved since the lookup needs to be performed only in the final sub-rulebase. This
is achieved by hierarchically decomposing the original rulebase into many smaller
independent sub-rulebases based on the rules’ definitions.

The algorithm is carried out in two phases: preprocessing and classification. First,
during the preprocessing phase we hierarchically partition the original rulebase into
many smaller independent sub-rulebases by hashing on the bit fields selected from the
classification space. The degree of the partitioning depends on the density of a sub-
rulebase in the classification space. The denser the sub-rulebase, the more partitioning
is needed. This hierarchical partitioning stops until all the sub-rulebases are small
enough. Then, during the classification phase a classifier inspects each incoming
packet using the same hash key used in the preprocessing and identifies the sub-
rulebase relevant to the packet. The search to find a matching rule is performed only
in the final sub-rulebase where any existing lookup algorithm can be employed.

For an optimal partitioning of rulebases, we apply the notion of entropy in this
paper, which guides us to choose the bits that most evenly divide the given rulebase.
When the hash keys are selected to maximize the entropy, a rulebase is partitioned
evenly into sub-rulebases under the smallest variance. As a consequence, we can
achieve the smallest depth in the partitioning tree, which directly translates to the
smallest number of hash table lookups. If the depth is small and the final sub-rulebase
is small enough, we can achieve a low per-packet classification delay.

To evaluate the performance of our classification algorithm, we have applied our
algorithm to real-life packet traces under synthetic rulebases of size 1K to 500K rules.
The results show that the algorithm can reduce the size of the original rulebase by
several orders of magnitude with only two-levels of partitioning, which requires only
a couple of memory lookups. For example, a rulebase with 100K rules can be reduced
to a sub-rulebase with only 7.6 rules on average and 258 rules in the worst case. In
view of memory accesses, our algorithm requires 2 or 3 times less number of memory
lookups compared to best classification algorithms known so far. Furthermore, the
algorithm exhibits scalability in both its memory requirement and classification
performance as we increase the size of a rulebase.

This paper is organized as follows. Section 2 defines the packet classification
problem and presents the overall algorithm of our packet classification process. The

section also introduces several partitioning algorithms including the notion of entropy
and discusses the variations of the proposed algorithm to handle rule definitions with
range and prefix mask description. Section 3 describes our experimentation
methodology and summarizes the results. Section 4 concludes the paper.

2 The Proposed Classification Algorithm

2.1 Problem Definition

We can define the packet classification problem as follows. Given a rulebase,

∑
=

=
n

i
irR

1
, which is a set of rules, a packet classifier needs to identify the rule that

an incoming packet matches to by looking up one or more fields of the packet header.
Each rule is specified by the range of values in one or more fields of a packet header.
Specifically, in d-dimensional packet classification, each rule ri is defined over d
fields. Formally, ri is defined by a tuple (Ci, Ai) where Ci is called a classification
space and Ai is the associated action of rule ri. The classification space is defined by

the crossproduct, Ci = F1 ⊗ F2 ⊗ … Fd = ∏
=

d

k

i
kF

1

 where i
kF is a range of values

the field k must take. A rule ri match a packet p = {b1,b2, .. bd} if for i
kk Fbk ∈∀ ,

where bk is a singleton. Multiple rules can match a packet. Thus, a classifier must
identify the highest priority rule among all the matching rules. Intuitively, this
requires the classifier to lookup the header fields of an incoming packet and to
compare them against the rules in the rulebase one by one in order of decreasing
priority. When n, i.e. the number of rules, is large or the arrival rate λ of incoming
packets is high, this is a time-consuming serial process, which will limit the speed of
the classifier. Thus, the essence of the problem is to find a fast yet scalable
classification function both in time and in space.

2.2 Proposed Algorithm

Our classification algorithm is based on the conjecture that, in a rulebase, only a few
rules have the possibility of matching a given packet. Let’s look at the rulebase
example of a typical firewall [15] shown in Table 1 where inner network serves
several application services such as HTTP, telnet and FTP. Rules R1, R2, and R3
represent grant of these connection requests while R0 protects inner network against
spoofing attacks. D is the default deny rule for all other communications. The
protocol field in Table 1 suggests that a packet using UDP protocol can be matched
only to R0 or D. Thus, R1, R2 and R3 need not be matched against a UDP packet.

The algorithm consists of two phases: preprocessing and classification. The idea is
to use divide-and-conquer approach. First, during the preprocessing phase we divide

the original rulebase into many smaller independent sub-rulebases based on the values
of classification fields where each rule is defined. Then, during the classification
phase a classifier looks up the same header fields of an incoming packet and identifies
the sub-rulebase where the relevant rules are stored. Thus, when the ratio (s/n) of the
size of the sub-rulebase (s) over the size of the original rulebase (n) is small, then we
can overcome the scalability issue by a single memory lookup to the hash table, which
is constructed during the preprocessing phase. If a sub-rulebase is still large, then the
sub-rulebase can be re-partitioned until the final sub-rulebase is small enough.

Table 1. A rulebase example of a firewall. †Inner side: protected local network by the firewall.
‡Outer side: network separated from inner side network by the firewall

Rules Protocol Src. Port Dst. Port Src. IP Dst. IP Action Description

R0 * * *
Inner
side†

Inner
side†

Deny
Protection against
Spoofing Attacks

R1 TCP 1024~65535 80
Outer
side‡

Inner
side†

Accept HTTP Service

R2 TCP 1024~65535 23
Outer
side‡

Inner
side†

Accept Telnet Service

R3 TCP 1024~65535 21
Outer
side‡

Inner
side†

Accept FTP Service

D * * * * * Deny Default Rule

According to [12], a rule r1 = (∏
=

d

k
kF

1

1 , A1) overlaps with a rule r2 = (∏
=

d

k
kF

1

2 , A2)

if ∀k F1
k ∩ F2

k ≠ ∅. Intuitively, two rules overlap if there exists any instance of a
packet that matches both rules. Since sub-rulebases differ at least in those bits that are
selected as the hash key, a packet cannot match both sub-rulebases at the same time.
Thus, the independence among sub-rulebases is guaranteed. Therefore, we need to
look up only the relevant sub-rulebase after inspecting a packet on the same bit fields.

2.2.1 Preprocessing Phase: Rulebase Partitioning and Hash Table Construction

In preprocessing phase, we partition the original rulebase into many independent sub-
rulebases. For example, the rules governing HTTP, FTP, and SMTP traffic can be
partitioned into separate sub-rulebases. Then, by looking up the protocol field of an
incoming packet, we only need to look up the sub-rulebase with the same protocol.

We can choose any of the bits in the classification fields as a hash key. If we select
8 bits, then we create a hash table with 28=256 entries, each of which points to a sub-
rulebase. Intuitively, two rules may overlap if they map to the same sub-rulebase
while rules mapped to different sub-rulebases would never overlap, which implies
that they are independent. Sub-rulebases larger than a threshold value, such as 16
rules, can be repartitioned with another hash key, which must be different from the
first hash key. This hierarchical partitioning stops until all the sub-rulebases are small
enough. However, our experimentation results show that two levels of partitioning are
enough for a rulebase under 500K rules.

Both the space and time complexity of our classification algorithm depend on the
number of nodes and the depth of the partitioning hierarchy. To reduce the number of
partitioning we need to partition a rulebase into sub-rulebases as evenly as possible so
that the number of empty sub-rulebases is minimized and the number of rules in sub-
rulebases must follow uniform distribution. This partitioning efficiency depends on
the hash key selection algorithm, which we will discuss in detail in Section 2.3.

Table 2. A rulebase example and its hash tables. * denotes a don’t care bit.

Classification space
(b0b1b2b3…………b103)

Rule
 Hash Key 8MSBs

(b0b1b2b3b4b5b6b7)
Sub-

rulebase
Hash Key

b3b5
Sub-

rulebase
 0000 0000 Null Entry

0000 0110……....... R0
 0000 0001 R3

00 R3

 : Null Entry
0000 0110…….….. R1

 0000 0110 R0, R1
01 R0, R1

 : Null Entry
0001 0001…….….. R2

 0001 0001 R2
10 R2

0000 0001……...… R3 : Null Entry
**** ****………... D 1111 1111 Null Entry

11
Null
Entry

2.2.2 Classification Phase
After we partition a rulebase and construct hash tables during the preprocessing stage,
a classifier can narrow down the rulebase lookup by mapping an incoming packet into
the corresponding sub-rulebase where the packet can be applied. The classifier looks
up the hash table by using the hash key extracted from the packet header.

Let us consider the rulebase example shown in Table 2. Assume that rules R0 to
R3 are listed in the decreasing order of priority. We assume 5-dimensional
classification, which uses 104-bit fields from protocol (8), source port (16),
destination port (16), source (32) and destination (32) IP addresses from the header.

In Table 2, we show only 8 most significant bits (MSBs) of a classification space,
which may represent any header field such as the protocol. We partition the rulebase
to 256 buckets by using the 8 MSBs and create the hash table as shown in Table 2.
Rules in one sub-rulebase do not overlap with rules in other sub-rulebases. When a
packet arrives, the classifier extracts the 8 MSBs from the header and uses it as an
index to the hash table. If the hash table entry is not empty, then the classification is
performed within the sub-rulebase. Otherwise, the default rule is the matching rule.

2.3 Hash Key Selection

2.3.1 The First-Level Partitioning
For the first-level partitioning, we only consider the protocol and port numbers as a
hash key since these fields can naturally classify rules based on the Internet services
governed by the rules. For example, HTTP service corresponds to protocol 6 and
server port 80. The classification space at this level is comprised of protocol (8),
source (16), and destination port (16) numbers. To limit the size of the hash table, we

select a subset from the classification space as a hash key. In our implementation, we
use a 17-bit hash key, which suggests a hash table with 128K entries. There is a
tradeoff between the memory space and the depth of the partitioning hierarchy
depending on the size of the hash key. Assuming each entry contains either a 32b
address or NULL-pointer, the size of the table is 512Kbytes.

For the 17-bit hash key, we first select 6 bits from the protocol field using the
entropy-maximizing key selection algorithm, which we will discuss in detail in
Section 2.3.2. Since only two protocols, TCP and UDP, need to specify port numbers,
we select up to 11 additional bits from the port numbers for these protocols. Since a
port number is bi-directional, i.e. either source or destination, and specified by a range
with upper and lower bounds, we select one of the port field by an additional bit to
denote the direction and then select additional 10 LSBs or 6 MSBs from the port field
by using the precision directed grouping, which we will describe in Section 2.4.2.
Typically, a server port (dense area) designates a specific port number between 0 and
1023 while a client port (sparse area) uses a random port numbered from 1024 to
65536. Thus, lower 10 bits are used for a server port while upper 6 bits are used for a
client port. Thus, a hash key is concatenated from [protocol field], [direction bit] and
[10 LSBs | 6 MSBs in one of the port field]. Since a server port has a higher
partitioning efficiency than a client port, we use the server port regardless of direction
if a rule specifies a server port. If a rule specifies client ports in both source and
destination ports, we use the 6 MSBs and spread the rules in both source and
destination hash tables. This rule spreading is described in detail in Section 2.4.2.

2.3.2 The Second-Level Partitioning
The second level partitioning only applies to buckets larger than the threshold after
the first level partitioning. Since the second-level hash key must be disjoint from the
first-level hash key, we only consider source and destination IP addresses. To limit
the size of the hash table, we only select a subset of the 64-bit fields as a second level
hash key. In our implementation, we use a 16-bit hash key. We use the following four
different hash key selection algorithms.
1. MSB pattern (represented as MSB): With this criterion, a 16-bit hash key is made

by concatenating 8 MSBs from source and destination IP address fields. The idea
is that most of prefix mask selects the first few significant bits from an IP
address field. The time complexity of this key selection algorithm is O(1).

2. Exponential growing pattern (Exp): With this criterion, a 12-bit hash key can be
made by selecting the bit position corresponding to the exponential function of 2,
namely b1b2b4b8b16b32 from both source and destination IP addresses. The idea is
that the lower the position of a bit in an IP address field, the more likely to be
masked out. We add extra two bits b6b11 to create a 16-bit hash key. The time
complexity of this key selection algorithm is also O(1).

3. Mask distribution pattern (Mask): The basic idea of this heuristic method is that
don’t care bits in a classification space do not provide any information. Thus,
each bit bi in the classification space has the information in inverse proportion to
the number of don’t care bits in the bit position of rule definitions. The procedure
of finding this key is as follows. For each bit position bi we sum the number of
non-don’t care bits in all the rules in a rulebase, and accumulate them from the
MSB to the LSB. For a k-bit hash key, we select a bit if the accumulated value of

the bit position is the multiple of the total accumulated value divided by k. The
time complexity of this key selection algorithm is O(kn) assuming that the total
number of rules in a rulebase is n. In our experimentation, k is 16.

4. Entropy-maximizing pattern (Ent): To find a good hash key we use the notion of
entropy, which is used in information theory [11]. As known widely, the entropy
is maximized when all the entries have the same probability of occurrence. Thus,
we can find a good hash key through the calculation of entropy. Using the notion
of entropy, a hash key Kσ of length σ can be expressed recursively by Kσ = Kσ-1
⊕ q, where ⊕ is the concatenation operator and q is the bit from the
classification space that produces the maximum entropy. The algorithm starts by
calculating the entropy for the hash key of length 1 and determines the bit
position that produces the maximum entropy value. Then, the algorithm repeats
this process for the hash key of length 2 and so on until the length of the hash
key reaches σ or the entropy does not increase further. Based on this algorithm,
we create a 16-bit hash key by selecting an 8-bit hash key from each IP address

field. The time complexity this algorithm is)])12(
2

[(+−⋅ swsnO , where w is

the length of classification space, s is the length of a hash key, and the n is the
total number of rules in a rulebase. The detailed discussion of the entropy-
maximizing key selection algorithm can be found in [16].

2.4 Adaptation of the Algorithm for Prefix Mask and Range Specification

So far our discussion implicitly assumed exact value matching for packet
classification. However, a rule definition often includes field descriptions with prefix
mask or range specification. In this section, we will discuss how our proposed
algorithm can handle these different field specifications.

Table 3. A rulebase and its hash tables with two different hash keys of length 2.

Rule Field Description
(b0b1b2b3b4b5b6b7)

Index Hash Key b0b1 Hash Key b0b2

R0 0000 0000 00 R0 R0
R1 0110 0000 01 R1 R1
R2 1000 0000 10 R2, R3 R2
R3 1*10 0000 11 R3 R3

2.4.1 Prefix Mask Field
This is commonly used to specify the range of an IP address field. Table 3 shows a
rulebase example with prefix masks and its two different hash tables. The issue here is
that we may need to duplicate a rule into multiple entries in a hash table if the rule
contains a field specification with masks.

With b0b1 as a hash key, R3 needs to be spread over two entries indexed by 10 and
11 since b1 is don’t care term in R3. We call this issue rule spreading, which may
increase the size of the result hash table by duplicating rules. However, by selecting
b0b2 as a hash key, the rule spreading can be avoided as. To avoid this rule spreading
as much as possible, we need to modify the entropy-maximizing key selection

algorithm such that when calculating the entropy of a bit, the algorithm must ignore a
rule whose definition specifies don’t care condition for the selected bit. This is simply
because don’t care bits do not add any information to the system in terms of entropy.

2.4.2 Range Field
This is commonly used to specify a TCP or a UDP port description. As described in
Section 2.3.1, typically a server port designates a specific port number between 0 and
1023 while a client port uses a random port number between 1024 and 65536. The
basic idea here is to transform the range specification to exact or prefix mask
specification. We can use range to prefix conversion [5], which splits a given
arbitrary range to a group of prefix masks. For example, a 16-bit range [1024, 65535]
can be split to six prefix masks such as 000001*, 00001*, 0001*, 001*, 01*, 1*.
However, this method results in extensive rule spreading in our algorithm, which is
not desirable. Alternatively, we propose precision-directed grouping in this paper.

It is straightforward to split a rule with a range specification into multiple rules
with exact values. For example, a rule with a range [71, 74] can be split into four rules
with exact values from 71 to 74. However, a rule with a wide range such as [49152,
65535] can create a huge number of rules (16,384). Fortunately, a TCP/UDP port
description with a range is usually biased. For example, 80% of port numbers used in
most rules are under 3,999 although the total number of port reserved is much higher
(0 ~ 49,151) [13]. Thus, we can group a different number of rules depending on the
density of the range. For the 16-bit port range, we use the 10 LSBs as a hash key for
dense area [0, 1023], creating a single entry per port, while we use the 6 MSBs as a
hash key for sparse area [1024, 65535], creating 63 entries, i.e. 1024 ports per entry.

3 Experimentation and Results

In this section, we demonstrate the performance of the proposed algorithms for 5-
dimensional classification. Since it is difficult to obtain large real-life classification
rulebases, we synthesized large rulebases from real-life packet traces. The packet
traces were collected from PUBNET for five to eight hours during three days,
7/24/01, 12/14/01 and 12/17/01, respectively [14]. One-hour trace is nearly 70 million
packets. The first trace is used to synthesize the rulebase and others are used as data
for packet classification. To create a synthetic rulebase that resembles real-life
rulebases, we carefully synthesized a rulebase by following the rulebase
characteristics observed from real-life firewall applications [1, 2]. The detailed
guidelines are described in [16]. All of our experimentation was performed in 1.7GHz
Pentium IV system with 512MB of memory running Linux.

3.1 Rulebase Partitioning

3.1.1 First Level Partitioning
Figure 1 shows the results of the first level partitioning by displaying the average and
maximum size of a sub-rulebase after the partitioning. By the partitioning we can

reduce the average size of a rulebase substantially. For rulebases with 10K, 100K, and
500K rules, the reduction ratios are 0.0029, 0.0014, and 0.0014 respectively. This is
very significant since we can reduce the size of a rulebase by more than two orders of
magnitude by a single memory lookup to the corresponding hash table. However, as
you can see from the maximum size of a sub-rulebase in the figure, rules are not
evenly distributed in the partitioned rulebases. The largest sub-rulebase contains about
24% of rules of the original rulebase in all the rulebases tested. As we can predict,
these rules are related to HTTP service, which corresponds to protocol 6 and port 80.
The numbers of sub-rulebases over the threshold (16 rules per sub-rulebase) are 141,
192, and 1114 for 10K, 100K, and 500K cases. For these sub-rulebases we perform
the second-level partitioning. All of the first level partitioning is completed in less
than one second in our experimentation platform. As a side effect of the first level
partitioning, we observe that the partitioning more than doubles the total number of
rules due to rule spreading. The actual inflation ratio is 2.42.

233
483

1174
2401

4785
11978

23993
47967

119961

10.6 15.3 22.3 29.5 37.6
70.3

140.0
279.5

697.5
49 73 111 141 155 168 192

389
1114

1

10

100

1000

10000

100000

1000000

1k 2k 5k 10k 20k 50k 100k 200k 500k

Size of a Rulebase

#
 O

f
R
u
le

s

Max # Of Rules/Sub-rulebase

Avg # Of Rules/Sub-rulebase

Of Over Threshold Sub-rulebase

Fig. 1. The result of the first level partitioning

3.1.2 Second Level Partitioning
Figures 2 and 3 show the results of the second level partitioning with various hash key
selection algorithms. Figure 2 shows the average number of rules per sub-rulebase
while the Figure 3 shows the size of the largest rulebase. Assuming the entropy-
maximizing key selection, the second-level partitioning further reduces the sub-
rulebase by reduction ratios of 0.054, 0.054, and 0.052 for 10K, 100K, and 500K
rulebases. When the first-level and the second-level partitioning are combined, 10K,
100K, and 500K rulebases are reduced to 1.6, 7.6, and 36.6 rules per sub-rulebase on
average, which corresponds to reduction ratios of 0.00016, 0.000076, and 0.000073.
This is very significant since we can reduce the size of a rulebase by more than four
orders of magnitude by just two memory lookups to the hash tables.

The second level partitioning is also very effective in reducing the largest sub-
rulebase, which contained 24% of the entire original rulebase after the first level
partitioning. Assuming the entropy-maximizing key selection, with the second level
partitioning we can reduce the size of the largest rulebase to contain 31, 258, and
1281 rules in 10K, 100K, and 500K rulebases respectively. This suggests that for a
100K rulebase we only need to compare a packet to those 258 rules in the worst case

during classification phase. Note that the second-level partitioning is more effective
than the first-level partitioning in reducing the largest rulebase. This is expected since
the first-level partitioning partitions the original rulebase according to the Internet
services. Thus, the largest sub-rulebase governing the HTTP service is grouped into a
single sub-rulebase. On the contrary, the second-level partitioning can reduce this
largest sub-rulebase substantially by considering the distribution of rules in the
classification space with the entropy-maximizing key selection algorithm.

1
.1

4

1
.2

1

1
.5

1
.8 2
.4 4
.5

8
.8

1
7

.4

5
6

.5

1
.1

1

1
.2

1
.4 1
.8 2
.4 4

.7

9
.3

1
8

.3

4
4

.9

1
.1

4

1
.2

2

1
.4

1
.7 2
.3 4

.5

9

2
0

.1

4
5

.6

1
.0

8

1
.1

5

1
.4

1
.6 2
.1 3
.8 7

.6

1
4

.9

3
6

.6

0

10

20

30

40

50

60

1k 2k 5k 10k 20k 50k 100k 200k 500k

Size of a Rulebase

#
 O

f
R

u
le

s

MSB Exp Mask Ent

Fig. 2. The average size of a sub-rulebase with different key selection algorithms

1
6 2
3

4
8 8

4

1
7
5 4

4
3 8
8
3 1
7
8
0 4
4
7
0

1
6

1
6 1
9

3
9 7

2

1
8
8 3
9
8 8
2
5 2

0
8
5

1
6

1
6 2
0 3

6 6
4

1
5
8 3

4
3 7
0
7 1

7
7
6

1
6

1
6 1
7 3

1 5
1

1
1
7 2

5
8 4
9
9 1

2
8
1

1

10

100

1000

10000

1k 2k 5k 10k 20k 50k 100k 200k 500k
Size of a Rulebase

#
 O

f
R

u
le

s

MSB Exp Mask Ent

Fig. 3. The maximum size of a sub-rulebase with different key selection algorithms

Figures 2 and 3 also compare the effectiveness of different key selection
algorithms. As expected, the entropy-maximizing key selection gives the best result.
In particular, it can reduce the size of the largest sub-rulebase substantially compared
to other heuristics. For 10K, 100K, and 500K rulebases, the entropy-maximizing key
selection is more effective compared to MSB pattern key selection by factors of 2.38,
3.42, and 3.49. All the key selection algorithms show comparable results on the
average size of a sub-rulebase. However, the entropy-maximizing key selection is the
most effective in all the cases, especially for rulebases larger than 100K rules.

It is hard to judge the scalability of our rulebase partitioning from Figures 2 and 3
since the size of a rulebase does not increase linearly in the horizontal axis. But, we
carefully scrutinized the numbers and could verify that both the maximum and the
average size of a sub-rulebase grow linearly as we increase the size of rulebase. Note
that these results assumed only two-levels of partitioning. If necessary, more levels of

partitioning can be employed to significantly reduce the size of sub-rulebases.
Likewise, we studied the memory requirement of our algorithm in terms of the
growing rates of the total number of rules, the total number of buckets, and the total
number of buckets over threshold [16]. We omit them here due to space limitation,
but we find that all the numbers show a good scalability.

1
3
8
7
.8

5
5
1
.8

2
7
3
.0

1
3
5
.0

5
0
.9

2
2
.5

1
4
.3

6
.2

5
.1

4
6
1
.4

1
8
4
.3

9
1
.5

4
5
.6

1
7
.6

9
.2

6
.1

3
.4

3
.2

5
0
4
.0

2
0
1
.3

9
9
.8

4
9
.3

1
9
.5

9
.9

6
.2

3
.3

3
.2

2
0
7
.0

8
3
.2

4
2
.6

2
0
.4

8
.4

5
.6

4
.2

2
.52
.9

1

10

100

1000

10000

1k 2k 5k 10k 20k 50k 100k 200k 500k

Size of a Rulebase

#
 O

f
R

u
le

s
 A

c
c
e
s
s
e
d

MSB Exp Mask Ent

Fig. 4. The packet classification results

3.2 Classification Performance

To demonstrate the classification performance of our algorithm, we use real-life
packet traces collected from PUBNET. The size of packet trace is 202 million
packets, which is big enough to obtain the confidence of our experiment. After the
first and second-level partitioning, we assume the worst-case search algorithm, i.e. a
simple linear search, to find the matching rule in the final sub-rulebase so that we can
show the pure effectiveness of the proposed partitioning algorithm.

Figure 4 shows the classification performance in terms of the average number of
rules accessed to find a matching rule. Figure 4 reveals that our algorithm accesses
only 5.6, 42.64, and 207.02 rules for 10K, 100K and 500K rulebases respectively.
This is very promising since the best-known algorithm [1] requires at least 13
memory accesses for 5K rules. On the other hand, our partitioning algorithm needs to
access only 5.6 rules in addition to 2 memory accesses required for hash table lookups
although the worst-case linear search is used in the final sub-rulebase. By employing
a more efficient algorithm [2, 5, 12] to find a matching rule in the final sub-rulebase,
we can further improve the classification performance.

4 Conclusion

The growth of Internet in applications and protocols makes the size of a rulebase
rapidly increasing. However, most of existing works mainly focus on relatively small
classifiers, e.g., with less than 20K rules. Beyond this size, most of existing schemes
may not scale either due to the memory explosion or due to the slowdown of

classification. To address this issue, we propose a new classification algorithm that
achieves the scalability by hierarchically partitioning a rulebase into many smaller
independent sub-rulebases. By using the same hash key used in the partitioning a
classifier can inspect an incoming packet and find its relevant sub-rulebase with a few
memory lookups to the hash tables. Thus, the classification performance mainly
depends on how much the final sub-rulebase can be reduced compared to the original
rulebase. To make the reduction effective, we use the notion of entropy that finds a
good hash key considering the distribution of rules in the classification space.

With synthesized rulebases of sizes ranging from 1K to 500K rules, we evaluate
the effectiveness of the algorithm in both partitioning and classification. The
experimental results show that two-levels of partitioning can substantially reduce the
size of a rulebase. As a result, during classification a classifier needs to access only
4.2, 20.4, and 207 rules on average for rulebases with 5K, 50K, and 500K rules. This
is very promising since one of the best-known algorithms [1] requires at least 13
memory accesses for 5K rules. Furthermore, we show that the proposed algorithm has
the unique scalability both in space and in time as we increase the size of rulebase.

References

1. P. Gupta and N. McKeown, “Packet Classification on Multiple Fields”, In Proceedings of
the ACM SIGCOM '99, Vol. 29, issue 4, August 1999.

2. F. Baboescu and G. Varghese, “Scalable Packet Classification”, In Proceedings of the
ACM SIGCOM '01, Vol. 31, August 2001.

3. Flow Analysis of Passive Measurement Data, http://pma.nlanr.net/PMA/Datacube.html.
4. T. V. Lakshman and D. Stiladis, “High-speed Policy-based Packet Forwarding using

Efficient Multi-dimensional Range Matching”, In Proceedings of the ACM SIGCOMM
'98, Vol. 28, pp. 191-202, 1998.

5. V. Srinivasan, S. Suri, G. Varghese, and M. Valdvogel, “Fast and Scalable Layer Four
Switching”, In Proceedings of the ACM SIGCOMM '98, Vol. 28, pp. 203-214, 1998.

6. V. Srinivasan, G. Varghese, and S. Suri, “Packet Classification Using Tuple Space
Search”, In Proceedings of the ACM SIGCOM '99, Vol. 29, pp. 135-146, August 1999.

7. M. M. Buddhikot, S. Suri, and M. Waldvogel, “Space Decomposition Techniques for Fast
Layer-4 Switching”, In Proceedings of the IFIP Sixth International Workshop on Protocols
for High Speed Networks. Vol. 66, No. 6, pp. 277-283, August 1999.

8. A. Feldmann and S. Muthukrishnan, “Tradeoffs for Packet Classification”. In Gigabit
Networking Workshop of the Proceedings of the IEEE INFOCOM '00. March 2000.

9. T. Woo, “A Modular Approach to Packet Classification: Algorithms and Results”, In
Proceedings of the IEEE INFOCOM '00. March 2000.

10. P. Gupta and N. McKeown, “Packet Classification using Hierarchical Intelligent
Cuttings”, In Proceedings of the Hot Interconnects VII, 1999.

11. Robert B. Ash, “Information Theory”, Dover Publications, 1st edition, November 1990.
12. H. Kim, J. Heo, L. Choi, and S. Kim, “Taming Large Classifiers with Rule Reference

Locality”, In Proceedings of the ICOIN. Vol. 1 pp. 35-50, February 2003.
13. IANA Port Number Assignment, http://www.iana.org/assignments/port-numbers, 2002.
14. Korea Network Information Center, http://www.nic.or.kr/.
15. Elizabeth D. Zwicky et al. “Building Internet Firewall”, 2nd edition. O’Reilly, 2000.
16. Jaesung Heo, “Scalable Packet Classification through Maximum Entropy Hashing”, M.S.

thesis, Department of Electronics and Computer Engineering, Korea University, 2003.

