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Abstract. We show that the “fractal” behavior of Internet traffic can
be efficiently and practically employed to significantly reduce packet-
loss. Thanks to recent advances in the theory of self-similar processes,
we define the probabilistic congestion of a link, based on an estimated
computation of the packet-loss probability over that link. This conges-
tion parameter allows valid predictions on the future behavior of the
network, on which one can base efficient routing strategies. We show
how to implement the computation of the probabilistic congestion, and
we illustrate several applications for improving unicast and multicast
protocols.
Keywords: Self-Similar Traffic, Routing, Multicast, IP Networks.

1 Introduction

Starting in the early 90’s, there has been a number of empirical studies that pro-
vide evidence of the prevalence of self-similar traffic patterns in packet networks
such as the Internet (see, e.g., [9, 17]). This “fractal” behavior is very different
both from conventional telephone traffic, and from standard models for packet
traffic (e.g., Poisson). In particular, significant traffic variance (burstiness) is
present on a wide range of time scales in self-similar traffic, and hence such traf-
fic exhibits long-range dependencies (i.e., values at any instant are correlated
with values at future instants). This paper aims to explore situations for which
routing can take advantage of the long-range dependence nature of the traffic,
and to provide effective solutions for such situations.

Self-similarity was observed in Local Area Networks [9] as well as in Wide
Area Networks [17]. In [19, 22] it is shown that the self-similarity at the LAN
level can result from the superposition of on/off sources with strictly alternating
on- and off-periods, and whose on-periods or off-periods have high variability.
User related traffic, as World-Wide-Web (WWW) traffic [5, 4], WWW work-
load [18], and Variable-Bit-Rate (VBR) video data [2, 7] present characteristics
that are consistent with self similarity. On the other hand, [16] shows that trans-
port mechanisms are important factors in translating self-similarity from the
application layer to the link layer. In particular, the flow control mechanisms of
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TCP seem to maintain the long-range dependency structure induced by heavy-
tailed file size distributions, a phenomenon which is not observed to the same
extent when using the non-flow-controlled UDP transport protocol (see [15]). In
fact, it is shown in [21] that TCP congestion control “propagates” self-similarity.
Roughly speaking, if a TCP stream meets another TCP stream which exhibits
large time-scale fluctuations, then TCP will react in a way that causes the for-
mer traffic to inherit the self-similarity nature from the latter. In addition to
that, [20] concludes that the congestion control of TCP itself, as a determinis-
tic process, creates chaos, which generates self-similarity. There are hence many
reasons why traffic in IP exhibits a self-similar behavior. This paper shows that
this traffic property can be effectively employed to reduce packet-loss.

Packet-loss is the cause of important performance degradations in packet
networks, for it is intrinsically related to all “standard” Quality of Services (QoS)
measures: latency, bandwidth, jitter, etc. Using TCP, it is necessary to resends
packets, with time-consuming effects. Using UDP, packet-loss has a significant
impact on the user-perception for certain applications. IPv4 allows the use of
a Type-of-Service (ToS) field in the IP-headers, for choosing the route with
minimum packet-loss. However, this facility has not been implemented, or rarely
used, because of the uncertainty of foreseeing the future behavior of a system
with short-range dependencies, as Internet was assumed to be. On the other
hand, recent advances in the theory of self-similar variation allow the anticipation
of the future behavior of systems with long-range dependencies, as the Internet
really is. Anticipating the traffic behavior allows efficient routing strategies to
be developed, while preserving the best effort nature of IP, and in particular no
resource reservation is required.

Various routing protocols include QoS in their definition, in the sense that
they are able to set up the best routes according to pre-defined parameters such
as number of hops, maximum delay, or available bandwidth. The route is chosen
among a set of alternative paths proposed by the protocol. This is typically the
case of the QoSMIC [6] and YAM [3] multicast routing protocols, as well as
of any Dijkstra-like unicast routing protocol. Basically, we propose to perform
these choices according to the probability of packet-loss.

We define the probabilistic congestion c of a link as a logarithmic transforma-
tion of the packet-loss probability p along that link. (The probabilistic congestion
of a route is thus simply the sum of the probabilistic congestion of each of its
links.) The probability p is estimated using the theory developed in [11, 12, 13],
which proposes an explicit formula for the probability that a given buffer con-
tains more than x bytes, assuming a plausible model of self-similar traffic. The
computation requires the values of three parameters: the mean input rate m, the
“variance coefficient” a, and the Hurst parameter H. The latter two parameters
characterize the “quality” of the traffic, in contrast to the long run mean rate
m which characterizes its “quantity” alone [12]. We show that these three pa-
rameters can be computed on-line at every router, using locally accessible traffic
variables. They are estimated at time t based on the traffic observed during the
last time period [t−∆, t], for some ∆. Assuming a traffic with large time-scale
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fluctuations, we expect that the traffic will offer the same characteristics during
the time interval [t, t + δ] as it did during [t − ∆, t], at least for a sufficiently
small δ < ∆. In particular, the packet-loss probability computed based on pa-
rameters specific to the traffic observed during [t−∆, t] is expected to not vary
too much in the near future. We have grounds to believe in such a behavior of
the packet-loss probability since we observed, based on real traffic observations
on Abilene’s backbone, that long-range dependences imply smooth variations
of the probabilistic congestion c, as opposed to, e.g., the available bandwidth,
which experiences abrupt variations.

In this paper, we demonstrate the interest of the probabilistic congestion by
improving QoS-sensitive multicast routing protocols. More precisely, we compare
the performance (in terms of packet-loss) of QoSMIC using probabilistic conges-
tion vs. QoSMIC using standard dynamic criteria. Simulations were performed
on Abilene’s topology, as well as on UUNET’s topology, for several group con-
figurations. The simulated traffic was based on real traffic samples from Abilene,
and hence offers realistic characteristics. In all cases, we observed a significant
improvement for QoSMIC using probabilistic congestion compared to QoSMIC
using any other dynamic criteria. Note that the multicast protocol itself is not
modified, only the information collected by the nodes for the construction of
the multicast tree differ: they collect probabilistic congestion rather than cur-
rent delays or available bandwidth. The remaining of the protocol is exactly the
same.

We also demonstrate the interest of the probabilistic congestion for improving
performances of unicast routing. In particular, in a network supporting different
classes of services, the routing paths of the priority classes can be chosen as the
ones with minimum probabilistic congestion. Simulations on the Abilene’s back-
bone demonstrate that this approach yields significant improvements in term of
packet losses.

2 Probabilistic Congestion

We follow the model extensively explored by I. Norros in a series of papers
(see, e.g., [11, 12, 13]). The self-similar variation of a packet-network traffic is
modeled by a Gaussian self-similar process. A normalized fractional Brownian
motion with self-similar parameter H ∈ [ 12 , 1) is a stochastic process Zt, t ∈ IR,
characterized by the following properties: (1) Zt is Gaussian, (2) with prob-
ability 1, t 7→ Zt is continuous, (3) EZ2

t = |t|2H for all t, (4) Z0 = 0, and
EZt = 0 for all t, and (5) for all t, and s1 < s2 < . . . < sk, the distribution of
(Zt+s2−Zt+s1 , . . . , Zt+sk

−Zt+sk−1) is independent of t. Note that, for H = 1
2 , Zt

is the standard Brownian motion [10]. The parameter H is the Hurst parameter.
Let us denote by At the amount of traffic (in bytes, say) offered to a link of the
network during time interval [0, t). Norros models At as a so called fractional
Brownian traffic, that is

At = mt +
√

amZt , (1)
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where m > 0 is the mean input rate, and a > 0 is a variance coefficient. The self-
similarity is captured by the Brownian scaling relation stating that, for any t > 0,
{Zst, s ≥ 0} and {tHZs, s ≥ 0} have the same finite-dimensional distributions.
The traffic fluctuations buffering of a fractional Brownian traffic of parameters
m,a, and H offered to a link of capacity C > m with infinite queue length is
then defined as

Xt = sup
s≤t

(
At −As − C(t− s)

)
.

Norros [12] derived a lower bound of the probability that the local storage exceeds
a certain limit:

Pr(Xt > x) ≥ Φ̄
( (C −m)Hx1−H

HH(1−H)1−H
√

am

)
, (2)

where Φ̄(y) = Pr(Z1 > y), that is the residual distribution function of the
standard Gaussian distribution. Since Φ̄(y) ∼ e−y2/2, Pr(Xt > x) can hence be
lower bounded by a Weibull distribution, in particular with regards to the tail
behavior. Norros performed simulation to check the accuracy of the bound in
Eq. (2). The queue length process was generated by the usual formula

Xkτ =
(
X(k−1)τ − Cτ + Akτ −A(k−1)τ

)+

, (3)

where τ is the resolution of the experimental sample, and x+ = x if x > 0, and
0 otherwise. Interestingly, one observation coming out from the simulations is
that the Weibull approximation Pr(Xt > x) ∼ Y where Y is the right side of
Eq. 2 is a satisfactory accurate approximation. This motivates us to define the
following parameter:

Definition. The probabilistic congestion c of a link with buffer size b supporting
self-similar traffic of parameters m, a and H, is defined by c =

− ln

(
1− exp

(
− (C −m)2H

2H2H(1−H)2−2Ham
b2−2H

))
. (4)

According to the Weibull approximation, we have c ∼ − ln(1−Pr(Xt > b)),
and hence, up to the logarithmic rescaling, the probabilistic congestion follows
the same behavior as the packet-loss probability. In particular, given a path
P = {e1, . . . , ek}, with probabilistic congestion of ei equal to ci, the probabilistic
congestion of P is naturally defined as

∑
i ci.

The probabilistic congestion c of any link can be approximated by its tail
router. For each of its outgoing link e, every router counts the number of bytes
that were sent through e during specific time-intervals of length tu. At time t,
let Ai, 1 ≤ i ≤ N , be the number of bytes offered to link e during time-interval
Ii = (t − itu, t − (i − 1)tu]. Then let Bi = Ai/tu be the average throughput of
link e during Ii. The mean rate m is simply estimated by B = 1

N

∑N
i=1 Bi, and

the variance coefficient a is estimated by σ2(B)/m. The auto-covariance of the
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Bi’s is Ḃk =
∑N

i=1(Bi − B)(Bi−k − B), for k = −N + 1, . . . , N − 1. The Ḃk’s,
k ≥ 0, plot is a second order self-similar process x 7→ αe−βx, and the Hurst
parameter characterizing the traffic observed through e between times t −Ntu
and t is H = 1 − β/2. (Here ∆ = N tu.) Ḃ can be computed rapidly thanks

to a constant number of Fast Fourier Transforms (FFT): Ḃ = FFT−1(B̂ · B̂)
where B̂ = FFT (B), and x is the conjugate of x. Then H can be easily ob-
tained by a linear regression applied on log Ḃ. Once m,a, and H have been
estimated, the probabilistic congestion c of link e is computed according to its
definition in Eq. (4). This probabilistic congestion will be used during the next
time-interval (t, t + δ]. It is worth mentioning that although the N -point FFT
requires O(N log N) arithmetic operations, it can be performed in logarithmic
time in parallel, and the sequential computation of the FFT is certainly doable
for reasonably large N without overloading current routers. Moreover, the es-
timation of m, a, and H is performed every δ time units. In practice, one can
set δ equal to a couple of minutes (say 10mn), for ∆ ' 1h and tu ' 3.5s. This
yields the computation of FFT’s on ∆/tu = 1024 points, which is reasonably
small. Still the estimation of the long-scale behavior of the traffic will remain
good enough, as shown in the next sections.

3 Application to Multicast

Several protocols have been proposed to support group communications. Among
them, YAM [3], QoSMIC [6] and MORF [24] take into account QoS for the con-
struction of the multicast tree. A common feature of these three protocols is to
offer multiple routes between a new member and the current tree. This allows
them to select the “best” route with regards to some QoS requirements. MORF
and YAM use static parameters (e.g., link capacity, link delay, or reliability),
but QoSMIC uses dynamic parameters (e.g., available bandwidth, current de-
lay). Hence, we focussed our attention to this latter protocol, and show that
using probabilistic congestion offers better performances than using the avail-
able bandwidth or the current delay, as far as packet-loss is concerned. QoSMIC
can create shared trees or source-based trees. In this paper, we assume a behav-
ior in the shared tree mode. A new router, aiming to join the group, searches
for a router in the tree where to connect. There are two search procedures in
QoSMIC: local search and multicast tree search. The local search is similar to the
one proposed in YAM: the new router performs exploration of its neighborhood
at successive distance 1, 2, . . ., until the Time To Live field of the IP header is
exhausted. The multicast tree search is performed via a call to a Manager router,
which starts exploration of the tree to find appropriate candidates in the tree
for the new router to connect with. How much the simultaneous use of these two
types of search allows to reduce the complexity of joining is discussed in [6]. In
our experiments, we consider all possible paths constructed by the unicast rout-
ing from the new router to all routers in the current tree. Therefore, the search
performed from a router x aiming to join the group results in a set y1, . . . , yk

of candidate routers in the tree. Then x selects the appropriate candidate by
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comparing the characteristics of the routes between itself and every yi. It is un-
derlined in [6] that, although the routes are restricted by static information in
the routing information base, the new router selects among these routes using
dynamic routing information. The use of the probabilistic congestion ideally fits
with this setting.

In order to compare the QoSMIC selection using available bandwidth vs. the
selection using probabilistic congestion, we also use the Minimal λ-Tree multicast
protocol (MλT) briefly described as follows [1]. MλT is built upon a multiple-
path routing protocol which maintains a table Dv at each router v, such that
Dv[i, x] is the length of the shortest path connecting node v to node x when
leaving v through the i-th interface. MλT explores, for every node x of the
group, all paths from the source s to x that are of length at most % · d(s, x) + r
where % and r are constants fixed a priori, and d(s, x) is the distance from s to
x (measured in #hops). Then MλT selects, for every router x, the path from s
to x whose QoS is the best. Finally, it constructs a multicast tree by merging
all selected paths. Therefore, MλT constructs a tree T rooted at the source s
such that, for every node x of the group, the route from s to x in T has the best
QoS among all routes from s to x of length at most % · d(s, x) + r . Obviously,
there is tradeoff between the control overhead, and the efficiency of MλT. The
construction of the tree by MλT is indeed costly if % or r is large. On the other
hand, the efficiency (in terms of packet-loss) of the tree is expected to be good if
many routes are considered for the selection, i.e., if % or r is large. In some sense,
the performances of MλT are those of an ideal multicast protocol that would be
allowed to explore a large portion of the network to select the routes.

In total, we have considered four tree-construction protocols: Reverse Short-
est Path (RSP), Greedy, QoSMIC, and MλT. Recall that RSP sets up the tree
simply as the union of the (unicast driven) paths from the source to every des-
tination. This technique is used in CBT and PIM-SM. In Greedy, a new node
aiming to join the group connects to the closest node in the current tree. This
technique is used in YAM. We compare the efficiency of using available band-
width vs. probabilistic congestion for the selection of the routes in QoSMIC.
MλT was implemented using probabilistic congestion only. On one hand RSP
and Greedy allows to compare the two versions of QoSMIC with (sort of) basic
approaches for tree-construction. On the other hand, MλT allows to compare the
same two versions of QoSMIC with a (sort of) ideal tree-construction protocol.

3.1 Experimental Results

We have performed simulations based on realistic traffic patterns obtained from
the traffic samples observed on Abilene’s backbone. Actually, since Abilene is
underutilized, we assumed links with 15% capacities of those of the real Abilene
network. This rescaling yields a load of up to 98% for the most occupied links.
We have divided the time in 389 non-overlapping windows of 4h10 each. Since the
network is observed at the period of 5mn, every window contains 50 samples. For
each window, we computed the three corresponding characteristic parameters
m, a, and H. Therefore, we based our simulations on 389 sets {(me, ae,He), e ∈
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E}, where E is the set of the 28 links of Abilene’s backbone, and each triple
is computed from a real IP traffic. Therefore, we obtained more than 10,000
experimental triples in total. Each of them is rescaled for a link of unit capacity
(i.e., m and a are rescaled to m/C and a/C where C is the link capacity).
We have performed experiments on the UUNET backbone topology. UUNET
is a world-wide private network with 129 nodes. We did not had access to the
buffer size b of the links of the network, therefore we set b = 4800 bytes for all
links, which is a bit more than the maximum size of an FDDI packet. We used
UUNET’s backbone with all its original link capacities, which vary from few tens
Mb/s for some links, to roughly 10 Gb/s for others.

Each experiment is performed according to the following protocol. For each
link e of the network, we choose one triple (m,a,H) among the 10,000 experi-
mental triples, and re-scale m and a to fit with the capacity C of link e (i.e., m
and a are rescaled to m C and a C). Then the probabilistic congestion of each
link is computed according to Eq. 4. The probabilistic congestion of a path is
the sum of the probabilistic congestion of its links. Similarly, the available band-
width C − w of each link is computed, where C is the physical capacity of the
link, and w is the used capacity. The used capacity is computed as the average
number of bytes crossing the link during some predefined interval of time. The
available bandwidth of a path is the minimum of the available bandwidth of its
links.

For a considered multicast group {x1, . . . , xk}, and a source s, we simulate the
execution of RSP, Greedy, and the two versions of QoSMIC, assuming members
arrive successively in the order x1, . . . , xk. Hence, we get four trees TRSP, TGreedy,
T prob cong

QoSMIC , and T avail bdw
QoSMIC . For the ideal protocol MλT, a tree TMλT spanning all

group members, with minimum probabilistic congestion, is computed globally
(although MλT can also be implemented in a distributed greedy manner). Ac-
tually, to make MλT more realistic, we didn’t explore all paths, but only those
of bounded length. More precisely, we have run MλT with % = 1 and r = 2.

Then, for each link, we have performed simulations by injection of a self-
similar traffic At through the link during 512s (roughly 8mn30), where At is
described in Eq. (1), and where m, a, and H are the parameters chosen for that
link. That is, for every link with buffer size b, we run the iterative process

Ykτ = (m− C)τ +
√

am (Zkτ − Z(k−1)τ )

and

Xkτ =

0 if X(k−1)τ + Ykτ ≤ 0;
b if X(k−1)τ + Ykτ ≥ b;
X(k−1)τ + Ykτ otherwise.

The resolution of the simulation is τ = 1/512s. The Zt’s were generated using
the simulator of Norros [14]. For each link e, we computed the ratio between the
total number of bytes lost by link e during the 8mn30 of the simulation, and
the total number of bytes sent over link e during the same period of time. This
ratio is therefore the probability pe for an application using link e to lose pack-
ets. For each tree-construction protocol, we then computed the probability for a
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Fig. 1. Cumulative distributions of the packet-loss probability

multicast application using the resulting tree T = (V,E) to not lose packets, esti-
mated by Pr(T ) = Πe∈E(1−pe). For the same multicast group, we repeated the
experiment 100 times (i.e., with 100 different triples (m,a,H) for each link). We
performed experiments for different multicast groups, of different sizes. Results
are displayed using the cumulative distributions F of the packet-loss probability.
That is, the vertical axis is a percentage, and the horizontal axis is a probability.
Given a probability p, F (p) is the percentage of experiments which returned a
tree for which the packet-loss probability was ≤ p.

Fig. 1 (left) displays the performances of three versions of QoSMIC, all using
predictions based on the available bandwidth, for a group of size 40. All versions
average the used capacity w of each link. The first version uses exponential
averaging [8]. The last two versions differ on the interval of time during which
the used capacity w of each link was averaged. We considered either average
over the last 4h10, i.e., w = m where m is the mean input rate of the link, or
average over 5mn, i.e., w = B where B is the average throughput of the link
during the last 5mn. Fig. 1 (left) shows that, compared to the two others type of
averaging, predictions based on an average over a long period of time (here 4h10)
offer slightly better results. For instance, using an average over 4h10, 35% of our
experiments return a tree for which the packet-loss probability is ≤ 5 · 10−7.
Using an average over 5mn, only 30% of our experiments return a tree for which
the packet-loss probability is ≤ 5 · 10−7. This latter packet-loss probability is
roughly the same for exponential averaging. Indeed, exponential averaging is
similar to short time averaging because the exponential decays very quickly. All
our experiments have confirmed this behavior. Therefore, for comparisons with
tree-constructions based on other methods, we considered only the version of
QoSMIC averaging the available bandwidth over 4h10.

Fig. 1 (right) shows the performances of RSP and Greedy for a group of
size 40. As far as packet-loss is concerned, the two strategies perform roughly
the same, with perhaps a little advantage to RSP. All our other experiments show
the same relative behavior of the two protocols. In the following, we will hence
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Fig. 2. Cumulative distributions of the packet-loss probability (continued)

consider RSP only, as a representative of popular protocols such as PIM-SM or
CBT.

Fig. 2 (left) presents a first set of significant results. It displays the perfor-
mances of RSP, QoSMIC with available bandwidth , and QoSMIC with pro-
babilistic congestion, for a group of size 40. QoSMIC with available bandwidth
performs better than RSP in general, and hence better than the Greedy proto-
col. That is, although the traffic is subject to bursts at all time scales, which
makes average bandwidth a poor predictor for the future behavior of the system,
QoSMIC takes in fact some benefits from the selection of the routes according
to the available bandwidth. More interestingly, QoSMIC with probabilistic con-
gestion performs significantly better than QoSMIC with available bandwidth,
bringing supports to the main claim of this paper. For instance, almost 70%
of our experiments on QoSMIC with probabilistic congestion return a tree for
which the packet-loss probability is ≤ 5 ·10−7 for the 40-node group. In compari-
son, only 35% of our experiments on QoSMIC with available bandwidth return a
tree with the same QoS. In 90% of our experiments, QoSMIC with probabilistic
congestion has packet-loss probability ≤ 8.6 · 10−5, and QoSMIC with available
bandwidth has packet-loss probability ≤ 16 ·10−5. Actually, the improvement of
using QoSMIC with probabilistic congestion compared to QoSMIC with avail-
able bandwidth is by far bigger than the improvement of using QoSMIC with
available bandwidth compared to RSP.

Finally, Fig. 2 (right) displays comparisons between QoSMIC using proba-
bilistic congestion with, on one hand, the standard protocol RSP, and on the
other hand, the ideal protocol MλT. Of course, MλT outperforms the two other
protocols. The gain obtained from using MλT compared to QoSMIC with proba-
bilistic congestion is roughly the same as the gain of using the latter compared to
RSP. In particular, in terms of average packet-loss, QoSMIC with probabilistic
congestion performs almost 2 times better than RSP.
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4 Application to Unicast

Probabilistic congestion could also be used for unicast routing. Consider for in-
stance a network supporting two classes of services: a priority class (i.e., voice
transmission), and a non-priority class. Assume moreover that the amount of pri-
ority class traffic is small in front of the non-priority class traffic. In this context,
one could use probabilistic congestion to construct and maintain the unicast ta-
bles of the priority class. A straightforward approach consists of setting up the
weight of each link as its probabilistic congestion, and using a standard Dijkstra-
like unicast routing protocols. Then the priority class traffic would benefit from
a significant decrease in packet-loss. We illustrate this approach by using the fol-
lowing scenario1. We used again the backbone of the Abilene network (c.f. Fig. 3
left), in which we injected exponential on-off TCP traffic between (almost) every
pair of nodes. More precisely, we took the pairs {3,4}, {3,5}, {3,6}, {4,5}, {4,6},
{5,6}, {9,2}, {9,3}, {9,4}, {10,2}, {10,3}, {10,4}, {10,9}, {6,9}, {5,7}, {3,8},
{0,2}, and {0,10}, and connect a source and a receptor at each node or router
of each pair. We used the NS2 [23] simulator to inject and route the traffic. In
this simulation we observed a self-similar traffic traversing every link, because of
TCP. Figure 3 (left) shows a screen capture of NAM [23], the network animator of
NS2. In this figure, it is possible to observe the traffic on all links, and the buffers
occupation. We selected two nodes, x = 2 and y = 10 arbitrarily. The path set up
by the routing tables of Abilene between x and y is denoted by P1 = {2, 9, 10},
through one intermediate node. There is an alternative longer path, through two
intermediate nodes, denoted by P2 = {2, 1, 0, 10}. We have simulated 60 seconds
of traffic, and we have computed the probabilistic congestion (using the natural
logarithm) of P1 and P2 (c1 = 48.8 · 10−2 and c2 = 26.5 · 10−2) as well as the
available bandwidth of these two paths (b1 = 4.07Mb/s and b2 = 0.579Mb/s).
Clearly, the choice between P1 and P2 depends on whether one uses probabilistic
congestion or available bandwidth. We show that probabilistic congestion is the
best criterion. For that purpose, we again performed simulations during 60 sec-
onds of TCP traffic, with several CBR voice flows from node x to node y, at
23Kb/s. The table in Figure 3 (right) displays the number of voice flows from x
to y, the percentage of voice-packet lost on path P1, the total number of packets
lost on P1 (during the 60 s), the percentage of voice-packet lost on path P2, and
the total number of packets lost on P2 (during the 60 s). Using path P2, the to-
tal number of packets losses is approximately 1/3 of the number of packet losses
when using path P1, independently of the number of flows. Moreover, looking
at the voice flows packets only, we observed that the percentage of packet losses
in these flows is significantly smaller using path P2 than using path P1. For
instance, if there are 60 aggregated voice flows, then the percentage of packet
losses in these flows is 9.37% for path P1, whereas it is only 0.64% for path
P2. Since voice is very sensitive to packet losses, the benefit in term of QoS of
using a prediction criteria such as probabilistic congestion would be significant
in comparison with other criteria such as available bandwidth.

1 The complete description of the our scenario is available on request to the authors.
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# flows % l. P1 # t.l.P1 % l. P2 # t.l.P2

1 2.87 12930 0 4014
2 2.94 14207 0 3462
3 2.93 13819 0 3590
5 3.06 13371 0 3284
10 2.92 11925 0 2625
20 4.83 14218 0.01 3866
30 6.27 15068 0.05 4668
40 6.96 14968 0.14 3927
50 7.98 14968 0.27 3920
60 9.37 15829 0.64 5145

Fig. 3.

5 Conclusion and Future Works

A challenging problem consists of checking whether the probabilistic congestion
could be efficiently used for the whole unicast traffic. We have shown that pro-
babilistic congestion captures simultaneously qualitative and quantitative traffic
characteristics, and, from that perspective, it offers better properties than stan-
dard QoS parameters such as delays or bandwidth. However, it is unclear how
much the global traffic would improve in terms of packet-loss. Indeed, the be-
havior of the network traffic depends heavily on TCP which dynamically adapts
to the congestion of the routes. We leave this question open for future investi-
gations.
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