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Abstract. We study in this paper two competing TCP connections that
share a common bottleneck link. When congestion occurs, one (or both)
connections will suffer a loss that will cause its throughput to decrease
by a multiplicative factor. The identity of the connection that will suffer
a loss is determined by a randomized “loss strategy” that may depend
on the throughputs of the connections at the congestion instant. We
analyze several such loss strategies. After deriving some results for the
general asymmetric case, we focus in particular on the symmetric case
and study the influence of the strategy on the average throughput and
average utilization of the link. As the intuition says, a strategy that
assigns a loss to a connection with a higher throughput is expected to give
worse performance since the total instantaneous throughput after a loss
is expected to be lower with such a strategy. We show that, surprisingly,
the average throughput and average link utilizations are invariant : they
are the same under any possible strategy; the link utilization is 6/7 of
the link capacity. We show, in contrast, that the second moment of the
throughput does depend on the strategy.

1 Introduction

The mathematical analysis of the performance of TCP has been a major research
area in networking. Different types of approaches have been suggested and vali-
dated. On the one hand, there have been models focusing on a single connection
that is subject to some exogenous loss process (which does not depend on that
connection), see e.g. [1]. This approach is appealing when there is a large amount
of traffic, so that we can neglect the effect of the single connection on events that
cause losses. An alternative approach is necessary when the window increase of a
connection is itself a central cause for losses. This occurs typically when a small
number of connections compete over bandwidth, say, at a bottleneck link. A

? This work was partially supported by INRIA’s “TCP” Cooperative Research Action.



main mathematical approach for studying this situation has been to study sev-
eral connections sharing a bottleneck, and then make the simplifying assumption
that all connections reduce their windows simultaneously upon congestion [2–
4]. With this approach, it has been shown [4] that the throughput achieved by
a TCP connection is inversely proportional to RTT α with 1 < α < 2, where
RTT is the two-way propagation delay of the connection. However, it turns out
that in practice this assumption does not hold, except for drop tail buffers and
connections with similar Round Trip Times (RTTs) [5]. Indeed, traces in [2]
(e.g. Fig. 5) show that the synchronization assumption is invalid for asymmetric
connections for a drop tail buffer.

Instead of considering synchronization, two modeling approaches have been
developed for determining which connection will suffer a packet loss. In the model
of Baccelli and Hong [6], the probability that a connection will lose a packet is a
constant: it does not depend on its current throughput. As argued in [7], such an
assumption is valid in describing AIMD protocols in which packet transmission
rates are constant, and the throughput is varied by changing the packet size.
An alternative model has been considered in [8] in which the probability that
a connection loses a packet is proportional to the throughput at the congestion
instant. This is called the “proportional strategy”. As validated by simulations
[9], this model is appropriate for standard TCP where packet size is constant.

Motivated by these two approaches, we raise the question of what is the
throughput of an AIMD protocol as a function of the strategy that determines
which connection loses a packet at a congestion instant. We focus on the simple
scenario of two competing connections.

Our findings are as follows. We first study the constant probability model in
[6]. In that paper, a linear set of stochastic recursive equations has been intro-
duced for obtaining the throughput, in which the state variables correspond to
the connections’ throughputs after a loss. In this paper we present an alterna-
tive set of stochastic recursive equations in which the states correspond to the
throughput just before the loss occurs. We show that our approach allows us to
reduce the dimensionality of the system by one, so in particular, the case of two
connections can be described by a one-dimensional state equation. This allows
us to obtain an explicit expression for the throughput in the general asymmetric
case for the constant probability model. As a corollary of this result, it is seen
in the symmetric case that the link utilization is 6/7 of its capacity.

We then study a new strategy in which the connection with the larger instan-
taneous throughput is the one to lose a packet at congestion instants. Surpris-
ingly, we obtain the same average throughput and link utilization in the sym-
metric case as for the constant probability model. Moreover, this is the same
utilization also obtained for the proportional strategy. This motivated us to ex-
amine the behavior of an arbitrary strategy. Our main finding is that although
the expectation of throughputs at loss instants depend on the strategy, the av-
erage throughput is an invariant quantity for the case of symmetric connections.

We finally derive a general expression for the second moment of the through-
put and compare the performance of the three strategies mentioned above in



the symmetric case, in order to find out which one has the smallest throughput
variability.

The structure of the paper is as follows. In Sect. 2 we study the through-
put of the constant loss strategy, whereas the Larger Throughput Loss (LTL)
strategy is analyzed in Sect. 3. Section 4 then presents some numerical experi-
mentations and comparisons between the strategies. Section 5 studies the average
throughputs in the symmetric setting under an arbitrary strategy and obtains
the invariance property. Section 6 then provides an expression for the second
moment of the throughput under an arbitrary strategy and a comparison for the
three aforementioned strategies. We end with a concluding section.

2 Fixed Loss Probabilities: Model and Analysis

2.1 Basic Definitions and Assumptions

This model is based on [6] where an additive increase, multiplicative decrease
(AIMD) model is used to describe the joint throughput evolution of a set of TCP
sessions sharing a common router bottleneck.

In full generality, let N be the number of TCP sessions competing for band-
width, and C the capacity of the bottleneck router. Let Tn be the n-th congestion
epoch and τn+1 = Tn+1−Tn. Let also ηi be the additive increase rate for session
i and β(i) be its multiplicative decrease rate. Usually, β(i) = 1/2 ∀i and ηi is
taken as the square inverse of the round trip time of session i. We consider here

Y
(i)
n , the throughput of session i before the n-th congestion epoch, instead of

X
(i)
n , the throughput after the n-th congestion epoch like in [6].

Denote by Ȳ (i) session i’s mean throughput. As in [6], let a
(i)
n be a Bernoulli

random variable with value 1 if session i experiences a loss at the n-th congestion

epoch, and 0 otherwise, so that IE[a
(i)
n ] = p(i). Note that the a

(i)
n (1 ≤ i ≤ N)

are correlated to make sure that at least one packet is lost at each congestion
time. We have

Y
(i)
n+1 = γ(i)

n Y (i)
n + τn+1ηi (1)

where γ
(i)
n = (1 − a

(i)
n ) + β(i)a

(i)
n . As in [6], we assume here that there is a loss

as soon as the router capacity is reached, i.e., as soon as

N
∑

i=1

γ(i)
n Y (i)

n + τn+1

N
∑

i=1

ηi = C . (2)

This assumption will allow us to derive the throughput at the different congestion
epochs.

2.2 Computation of the Average Throughput

The goal of this subsection is to derive the average throughput of a session in
terms of the loss probabilities when the number of sessions is N = 2.



First, using (2), we get the time between the n-th and (n + 1)-th congestion
epochs

τn+1 =
C −

∑N

i=1 γ
(i)
n Y

(i)
n

∑N

i=1 ηi

. (3)

Using this relation we are able to derive a closed-form of the average throughput
Ȳ (1) of session 1. The average throughput Ȳ (2) of session 2 can be obtained in
the same way (or by switching the indexes 1 and 2 in the following formula).

Proposition 1. Assume that N = 2. If we denote p(12) = IE(a(1)a(2)), we obtain

Ȳ (1) =
C

2
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The proof of this proposition is provided in [10].

Corollary 1. Still assuming N = 2, the symmetric case yields

Ȳ (1) =
C

4
×

2 p(1)
− p(12) + p(12) β(1)

p(1)2
“

3 + β(1)
− p(12) + p(12) β(1)

”

×

“

p(12) β(1) p(1) + 2 p(1) + 2 p(1) β(1)
− p(1) p(12) + p(12)

− p(12) β(1)
”

.

(4)

Proof. Just replace η2 by η1, β(2) by β(1) and p(2) by p(1) in Proposition 1. ut



2.3 Sampling the Loss Probabilities

The previous expressions of the average throughput are general in the sense that
no special sampling structure has been used for the losses. In this section, we aim
at studying how the losses can be sampled and how it impacts on the average
throughput formula.

Independent Sampling. As in [6], we can assume that the a
(i)
n are at first

generated independently, such that IP[a
(i)
n = 1] = π(i), with π(i) given, but that

the samples are restricted to the domain where at least one loss is experienced.
This requires a derivation of π(i) in terms of the p(j).

Assuming N = 2, we have as in [6]






p(1) = π(1)

1−(1−π(1))(1−π(2))

p(2) = π(2)

1−(1−π(1))(1−π(2))

where π(i) is for the loss probability for user i, sampled independently, but
reduced to the domain such that a loss is actually experienced. This gives

{

π(1) = p(1)(π(1) + π(2) − π(1)π(2))

π(2) = p(2)(π(1) + π(2) − π(1)π(2))

We obtain the relation

π(1) =
p(1)

p(2)
π(2)

which gives (assuming π(2) > 0)

π(2) =
p(1) + p(2) − 1

p(1)
and then π(1) =

p(1) + p(2) − 1

p(2)
.

Then an assumption p(1) + p(2) = 1 cannot be used. Also, it seems difficult
to make sure that π(1) ≤ 1 and π(2) ≤ 1 for every pair (p(1), p(2)). Thus, this
sampling procedure does not work in full generality.

A Single Loss at Congestion Epochs. The simplest way to sample is by
using the relation

a(2)
n = 1 − a(1)

n

with a
(1)
n Bernoulli random variable such that IP[a

(1)
n = 1] = p(1). This means

that at each congestion epoch, one and only one session will see a decrease of its
throughput. We then have

p(2) = 1 − p(1) and p(12) = 0 .

Substituting these values of p(2) and p(12) in the equation given in Proposi-
tion 1, we can obtain a closed, explicit expression for Ȳ (1) (not shown for space



reasons). The symmetric case (that is, taking p(1) = p(2) = 1/2 and β(2) = β(1))
yields

Ȳ (1) =

(

1 + β(1)
)

C

3 + β(1)
.

If β(1) = 1/2, we obtain Ȳ (1) = 3
7C, like in [8] for the proportional loss strategy.

3 The Largest Throughput Loss (LTL) Strategy

Let us look at the case where the session that is penalized is systematically the
one with the largest throughput. We call this the “Largest Throughput Loss”

(LTL) strategy. Consider the n-th congestion epoch, with throughputs Y
(1)
n and

Y
(2)
n such that Y

(1)
n + Y

(2)
n = C. Without loss of generality, assume Y

(1)
n > Y

(2)
n

and that the additive increase is 1.

3.1 The Symmetric Case: the Periodic Solution

We identify a periodic solution for the evolution of the system. In this regime,
we assume (without loss of generality) that at time n, connection 1 has a larger
throughput than connection 2. We seek for a regime in which at time n + 1 the
situation is reversed, and so on. This gives the following dynamics:











Y
(1)
n /2 + τn+1 = Y

(2)
n

Y
(2)
n + τn+1 = Y

(1)
n

Y
(1)
n + Y

(2)
n = C ,

leading to

τn+1 =
1

7
C, Y (1)

n =
4

7
C and Y (2)

n =
3

7
C .

As in the proof of Proposition 1, but due to the periodicity of the system, the
average throughput is given by S/IE[2τ ] where S is the cumulative throughput of
a session between congestion epochs n and n + 2 (in one period, the throughput
is going from 2C/7 to 3C/7 and in the other one from 3C/7 to 4C/7). This
gives S = 12

98C2, leading again to Ȳ (1) = Ȳ (2) = 3
7C and an average utilization

of 6
7 as we obtained in the previous section and as is the case in the model in

[8]. Obviously, IE[Y
(i)
n ] are also the same in all three cases (and equal to C/2).

One could wonder whether in fact the distribution of the rates is independent
of the way one chooses the connection to decrease the rate at Tn. Note however,

that IE[(Y
(i)
n )2] = 25C2/98 in our example, which is different than the value of

7C2/26 obtained in the regime considered in [8].

3.2 The Dynamic Equations for the Asymmetric Case

For each connection i = 1, 2 we have

Y
(i)
n+1 =

{

Y
(i)
n /2 + τn+1ηi if Y

(i)
n > C/2,

Y
(i)
n + τn+1ηi if Y

(i)
n < C/2.

(5)



For the case that Y
(i)
n = C/2 any tie-breaking rule can be considered. Combining

this with the relation Y
(2)
n = C − Y

(1)
n as well as Y

(2)
n+1 = C − Y

(1)
n+1 gives

τn+1 =







Y (i)
n

2(η1+η2)
if Y

(i)
n > C/2,

C−Y (i)
n

2(η1+η2)
if Y

(i)
n < C/2.

Substituting in (5) gives

Y
(i)
n+1 =











1
2

(

1 + ηi

η1+η2

)

Y
(i)
n if Y

(i)
n > C/2,

(

1 − ηi

2(η1+η2)

)

Y
(i)
n + Cηi

2(η1+η2)
if Y

(i)
n < C/2.

These equations can be used to obtain the exact transient behavior of the
system. The average throughput can then be computed by

Ȳ (i) = lim
n→∞

∑n

k=1 τk+1(Y
(i)
k+1 + γ

(i)
k Y

(i)
k )/2

∑n

k=1 τk+1
.

3.3 The Case η2/η1 → 0

We consider here the case of x → 0 where x := η2/η1 and assume for simplicity
that β(i) = 1/2. We present a heuristic argument to compute the bandwidth
sharing.

Connection 2 will increase its rate until it reaches C/2, so its trajectory
at steady state will be periodic (with a period of duration of C/(4η2)), linearly
increasing between C/4 to C/2. Its average throughput is 3C/8.

Connection 1 Fix ∆ =
√

x/η2. We can view the problem as one with
two time scales: connection 1 is much faster than connection 2, so during the
interval [n∆, (n + 1)∆), the throughput of connection 2 can be approximated
by a constant which we denote by Y (2)(n); assume that this constant is smaller
than C/2. During that interval, the throughput of connection 1 will oscillate
very quickly (between half of the remaining and all the remaining bandwidth)
so that it will use in average over that interval 3/4 of the remaining bandwidth.
Thus its average bandwidth during the interval is (3/4)(C−Y (2)(n)), and during
the whole period of C/(4η2) it will be (3/4)(C − 3C/8) = 15C/32.

Thus as x → 0 we see that the fast connection will get 5/4 of the throughput
of the slow connection under the LTL strategy.

4 Numerical Results for the Fairness in Bandwidth
Sharing

We study in this section the fairness in throughput as a function of the round trip
times. We recall that the square root formula of TCP as well as its refinements
(see [1, 11]) predict that the throughput of a connection should be inversely
proportional to its RTT. We will compare this with the fairness obtained under
our model of interacting connections.
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Fig. 1. The ratio Ȳ1/Ȳ2 as a function of the ratio R(2)/R(1)

4.1 Constant Loss Strategy

We now look at the ratio Ȳ1/Ȳ2 of average throughputs. To simplify the expres-
sions, let us assume that β(1) = β(2) = 1/2 and that p(1) = p(2) = p ≥ 1/2. We
also assume that the linear growth rates are inversely proportional to the square
of the round trip times, i.e., ηi = 1/(R(i))2 for i = 1, 2. (Indeed, the window
increases by one each RTT, and since the throughput is given by the window
size divided by the RTT, the increase rate of the throughput is 1/RTT 2.)

We then obtain from (4) that

Ȳ1

Ȳ2
=

(

R(2)

R(1)

)2
3pR(2)

R(1) + 5p − 2p(12)

5p
(

R(2)

R(1)

)2

+ 3p − 2p(12)
(

R(2)

R(1)

)2 .

If we further assume that exactly one flow will experience a loss, then we
have p(12) = 0 and p = 1/2 giving

Ȳ1

Ȳ2
=

(

R(2)

R(1)

)2 3
(

R(2)

R(1)

)2

+ 5

5
(

R(2)

R(1)

)2

+ 3
.

We show the fairness in throughputs for the fixed loss strategy in Fig. 1(a). Note
that the ratio of average throughputs is very close to be linear in the square of
the ratio of round trip times (the dotted line depicts the function y = 3x2/5).

4.2 The LTL Strategy

In Fig. 1(b) we depict the throughput ratios as a function of the ratio of the
inverse of the square of RTTs for the LTL strategy. The values are obtained by
computing the throughput as in Sect. 3.2.



We observe that although in general the throughput has a tendency to in-
crease as the corresponding RTT decreases, we see that the throughput curve is
quite irregular and fractal, and locally there are many points where the opposite
behavior is observed: increasing the RTT of a connection results in increasing its
throughput. This can perhaps be explained in part by changes in the periodicity
of the steady-state behavior and in other discrete nature behavior. The analysis
of this phenomenon is beyond the scope of this paper. We note that other fractal
aspects of AIMD connections in networks with several nodes have already been
reported in [12]. We finally observe that as the RTT of a connection becomes
negligible with respect to the other, its share of the throughput converges to 5/4
of the throughput of the other connection, as predicted in Sect. 3.3.

4.3 Comparisons

We first observe that the throughput sharing in the LTL strategy is much more
fair than in the probabilistic sharing: it is much less sensible to the differences in
RTT. Indeed, a connection with 3 times smaller RTT gets only 1.21 times more
throughput in the LTL strategy, whereas it gets 6 times more throughput in the
case of the constant probabilities strategy.

The fairness behavior of the proportional drop strategy has already appeared
in [9], where the connection with 3 times smaller RTT gets 2.75 times more
throughput. Comparing to these results we see that, in terms of fairness, the
LTL strategy gives the best results whereas the worse performance is provided
by the fixed loss probabilities strategy.

The behavior of the throughput as the ratio of RTTs goes to zero is in
particular interesting. The throughput of the long connection and its share of
the throughput tend to zero in the constant loss strategy, as well as with the
proportional strategy [8, Sect. 7-8], whereas it tends to a positive constant under
the LTL strategy.

Note that the fact that we obtain different average throughput sharing un-
der different policies reflects the fact that, in contrast to the symmetric case, the
throughput is not invariant with respect to the strategy in the general asymmet-
ric case.

5 The Symmetric Case: Invariance of the Throughput for
a General Strategy

Consider now a general strategy for deciding which connection will decrease its
rate when capacity is reached. The decrease is by a constant β and the increase
rate is η. We still restrict ourselves to the symmetric case of two connections, and
assume that one and only one connection decreases its rate when the capacity
is reached. At such a moment, connection 1 that transmits at a rate of y will
decrease its rate with probability f(y) and connection 2 will decrease its rate
with probability 1− f(y). We assume that the rate process of both connections



is in a stationary ergodic regime. In particular we shall focus again on Y
(1)
n , the

rate of connection 1 just before a rate decrease occurs.
Let us state one of the main results of the paper in the following proposition.

Proposition 2. The average throughput Ȳ of a connection in a symmetric net-
work with two connections is given by

Ȳ =
1 + β

3 + β
C , (6)

independent of the sampling function f .

Proof. The proof is quite involved, so for space reasons we will roughly sketch
its different steps; the full proof can be found in [10].

First, we focus in the throughput process Yn := Y
(1)
n . In particular, we com-

pute the cumulative throughput S between congestion epochs for two cases (y
denotes the state of Yn at time Tn):

– Connection 1 is the one to decrease its rate (this happens with probability

f(y)), in which case we have: S = 1
2 (βYn + Yn+1)τn+1 = y2 (1+3β)(1−β)

8η
.

– Connection 2 is the one to decrease its rate (this occurs with probability
1 − f(y)). In this case, S = 1

2 (Yn + Yn+1)τn+1 = 1−β
8η

(−(3 + β)y2 + 2C(1 +

β)y + C2(1 − β)).

Next, we compute the expected time interval between congestion epochs:

IE[τ ] = IE
[

Y 1−β
2η

f(Y ) + (C−Y )(1−β)
2η

(1 − f(Y ))
]

= (1−β)IE[Y f(Y )]/η, where Y

denotes a random variable distributed like Yn at steady-state. Remark that IE[τ ]
depends on the expectation IE[Y f(Y )].

The average throughput Ȳ is given by: Ȳ = IE[S]/IE[τ ]. Hence, we need to

compute IE[S], which can be expressed as: IE[S] = 1−β
8η

(

− (3 + β)IE[Y 2] + 4(1+

β)IE[Y 2f(Y )] − 2C(1 + β)IE[Y f(Y )] + C2 3+β
2

)

.

We then obtain three expressions relating both the three unknowns that
appear in the formula of IE[S], that is: IE[Y f(Y )], IE[Y 2], IE[Y 2f(Y )], and the
quantity IE[Y 3] (hence, we have four unknowns and three equations). It happens
that IE[S] can be expressed as a function only of IE[Y f(Y )], that is: IE[S] =
(1−β)(1+β)IE[Y (f(Y )]C

η(3+β) . Therefore, the term IE[Y f(Y )] cancels out when dividing

IE[S] by IE[τ ], which gives (6).
ut

6 The Symmetric Case: Second Moment of the
Throughput

Even if all possible loss strategies provide the same average throughput in steady-
state in the symmetric case we can wonder about the variability of the through-
put. In real-time applications that may use AIMD protocols in order to be TCP-
friendly, it is clearly advantageous to have the lowest possible throughput vari-
ability.



The following Proposition gives a general expression for the second moment
of the throughput. As will be seen, this expression is not invariant any more, in
contrast to the first moment.

Proposition 3. Let IE[S2] denote the mean cumulative of the square throughput
between two loss epochs. The (average) second moment of throughput is

IE[S2]

IE[τ ]
=

1

8
(3 + 2β + 3β2)

IE[Y 3f(Y )]

IE[Y f(Y )]
.

The proof of this proposition, which follows along the same lines as that of
Proposition 2, is given in [10].

Since we still have two unknowns, one could argue that their ratio is constant.
Actually, it is not the case from the following proposition where we compare the
second order moment for the three loss strategies (constant, proportional or
largest flow).

Proposition 4. Let β = 1/2. Using the constant loss probability scheme, we get

Qcst =
IE[S2]

IE[τ ]
=

95

448
C2 ≈ 0.21C2

whereas when the loss is applied to the largest flow (LTL strategy), we have

Qltl =
IE[S2]

IE[τ ]
=

4

21
C2 ≈ 0.19C2

and the scheme with proportional losses gives

Qpro =
IE[S2]

IE[τ ]
=

469373

1467072
C2 ≈ 0.32C2 .

We see from the proposition that in the symmetric case, the LTL strategy
is to be preferred (in terms of lower second moment), whereas the strategy of
losses proportional to the throughput has the worse performance. The proof of
this proposition, omitted for space reasons, is given in [10].

7 Discussion and Future Research

We have introduced in this paper various loss strategies that determine which
connection will lose a packet when a congestion occurs. We have shown that
such loss strategies may have a considerable impact on the throughput variabil-
ity (which may be an important performance measure in real-time applications
that use AIMD protocols to be TCP-friendly) but that they all lead to the same
average throughput in the special case of a symmetric network with two connec-
tions. Among three specific strategies that we introduced, we have shown in the
above setting that the LTL strategy (i.e., the strategy that drops a packet from
the connection with highest throughput) has the best performance in terms



of throughput variability, and moreover, it guarantees a positive share of the
throughput even when the RTT of one of the connections becomes arbitrarily
large.

The mathematical study of the sharing of bandwidth under various loss
strategies turns out to be quite involved. So far we have not been able to get
explicit expressions for the asymmetric network with two connections when the
LTL or the proportional loss strategies are used. We have provided however an
(involved) explicit expression for the throughput for the case of constant loss
strategy. For the symmetric case, however, we have obtained an explicit expres-
sion for the throughput under an arbitrary loss strategy.

Many open problems remain: 1. Is there any probabilistic argument that can
explain the invariance of the average throughput in the loss strategy phenomenon
in the case of two connections? 2. Does the invariance of the throughput holds
for the case of more than two competing symmetric connections? 3. What is
the reason for the fractal behavior of the throughput sharing under LTL? 4.
How to implement LTL? Note that a desirable way of implementation should
be stateless, and it should make use only of local information available at the
bottleneck element.
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