
Efficient Sensor Data Gathering and Resilient
Communication for Rescue Scenarios

Daniele Munaretto1, Chunlei An2, Joerg Widmer1, and Andreas Timm-Giel2

1 DOCOMO Euro-Labs, Munich, Germany,lastname@docomolab-euro.com
2 University of Bremen, TZI ikom/ComNets, Germany,
{atg,chunlei}@comnets.uni-bremen.de

Abstract. Wireless Sensor Networks (WSNs) have been used mainly to collect
environmental data and send it to a base station. Routing protocols are needed
to efficiently direct the information flows to the base station. Since sensor nodes
have strict energy constraints, data gathering and communication schemes for
WSNs need to be designed for an efficient utilization of the available resources.
An emergency management scenario is investigated, where a sensor network is
deployed as virtual lifeline when entering a building. In addition to navigation
support, the virtual lifeline is also used for two purposes. Firstly, to exchange
short voice messages between fire fighter and command post. For the communi-
cation between command post and fire fighter a fast and reliable routing protocol
(EMRO) has been developed based on a broadcasting scheme. Secondly, for data
gathering a network coding based algorithm has been designed. The feasibility of
simultaneously using this virtual lifeline for data gathering and communications
is investigated in this paper by means of simulation and real experiments. The
resilience to packet loss and node failure, as well as the transmission delay are
investigated by means of short voice messages for the communication part and
temperature readings for data gathering.

1 Introduction

Sensor networks play an increasingly important role in emergency and rescue scenarios.
For example, fire fighters today take a physical lifeline (rope) with them into a burning
building, to be able to find the way back in poor visibility (smoke). However, it may
happen that fire fighters on their way back run into fire and risktheir life. Motivated by
casualties in France, it was investigated in the wearIT@work project if an electronic,
virtual lifeline consisting of sensor nodes can replace thephysical lifeline. The virtual
line has several advantages. First, it helps a fire fighter to orient himself without the
hassle of being attached to a physical rope. Second, it allows to monitor the environment
along the lifeline on the return path, and third it can be usedfor limited communication
between the fire fighter and the group leader at the command post outside the building.

For indoor navigation and in particular to guide the fire fighter back out of the
building, Pedestrian Dead Reckoning (PDR) is proposed as core technology. Based on
accelerometers, the track into the building and thus a relative position can be estimated.
However, the accuracy of the heading information is limitedand the distance estima-
tion suffers from irregular movement (e.g., crawling) of fire fighters in zero visibility

environments. Over the distance the error accumulates significantly. Therefore hybrid
technology is investigated including PDR and distance measurements to sensor nodes
(RSSI-based or ultra-sound) of the lifeline [1, 2]. For realdeployment of nodes a node
dispenser is being developed in the wearIT@work project that can be mounted, e.g., at
the back of a fire fighter oxygen bottle (see Fig. 1).

Fig. 1. Prototype of sensor dispenser for automated hands-free node deployment. Photo:
BIBA,Germany

From a communication technology point of view, fire fighting is a very challenging
application scenario. Fire fighters enter buildings with unknown communication infras-
tructure. The availability of cellular (e.g. UMTS, GSM) or wireless networks cannot be
relied upon. Radio communication inside buildings with fireand smoke is possible, but
degraded in vapor [3].

In this paper, the feasibility of using this virtual lifeline for communication is in-
vestigated through experiments and simulations. We focus on the performance of the
sensor lifeline for sensing the environment and for the communication between com-
mand post and fire fighter. We specifically investigate thejoint simultaneous use of the
lifeline for direct communication and for the distributionof sensor data. For the dis-
tribution of sensed data, a network coding approach is implemented, which provides
high loss resilience at a comparatively low overhead. For the data communication, a
broadcast based scheme is developed, which is robust and yetefficient in topologies
given by linear deployment of sensor nodes. Both approachesare described in detail
in Sections 2 and 3. Finally, we want to clarify that communication through a virtual
lifeline is designed just as a supplement to normal communication methods, e.g. GSM
or WLAN.

2 Routing

Multi-hop routing protocols for ad hoc sensor networks [4] have been extensively stud-
ied in the past few years due to the difficulty to provide features such as self-organization
and robust multi-hop routing [5]. Using a multi-hop routingprotocol in WSNs, it is pos-
sible to gather data over a wide area with only one sink and to arbitrarily modify that

monitored area by moving/adding/removing stations whenever needed. Since the sta-
tions are always monitoring their network neighborhood, these changes are quickly and
automatically taken into account without the need to reconfigure the network. A station
may also fail, for instance due to lack of energy, without impacting the data gathering.
If that station was a part of a route to the sink, a new route will automatically be created
and used to replace the deprecated one. The multi-hop routing schemes proposed for
WSNs are to a great extend based on ad-hoc routing schemes as discussed in the IETF
working group MANET [6].

In the specific case of a lifeline, sensor nodes are dropped sequentially by the sen-
sor dispenser as the fire fighter moves. This sequence can be utilized for the routing
protocol and allows for a much simpler and more robust protocol design. Node IDs are
assigned when a node is being placed and as long as the fire fighter moves further into
the building, nodes with lower node ID are closer to the command post. We propose
a simple protocol EMRO (EMergency ROuting) based on broadcasting information in
two directions: if a packet is sent by the fire fighter, it has tobe forwarded to lower
node IDs (towards the command post); if a packet is sent by thecommand post, it has
to be forwarded to higher node IDs (towards the fire fighter). Each packet has a unique
sequence number. Every time an intermediate node receives apacket, it will first com-
pare this packet sequence number with the one previously stored in its memory. If the
incoming packet has a higher sequence number, it will be forwarded and the interme-
diate node will update its status with the new sequence number. If a packet with lower
sequence number is received, the packet is discarded. When the fire fighter sends data
to the command post, any node receiving a message will rebroadcast it, provided that
the message is received from a node with a higher node ID. In case the command post
sends a packet to the fire fighter, intermediate nodes receivethe message and wait for
an ACK message from the fire fighter for a specified amount of time. If an intermediate
node receives this ACK, it drops the current data message, since it has already reached
its destination. If an intermediate node does not get any ACKbefore the timer expires, it
retransmits the message. This helps to reduce redundant traffic inside the network. We
also define several emergency messages for special alerts with high priority. If one of
those messages is transmitted from the command post to a fire fighter, the intermediate
nodes will forward it immediately. Because of the nature of broadcasting, the network
is very robust to the addition/removal of nodes to/from the network. For a comparison,
a conventional RSSI-based routing protocol is used. The protocol is a modified version
of the routing algorithm used in the Sensor Scope project [7]. Each node sniffs the traf-
fic of the neighborhood and in case the RSSI of the incoming packet from a neighbor
exceeds a given threshold, that node is stored in a neighborhood list and a specific field
calledcost to destination is filled with 1 in case the fire fighter is reached in 1 hop, 2 in 2
hops and so on. This field is updated hop by hop by the visited nodes. The same applies
to the command post, using a second field. For routing, nodes choose the neighbor with
lowestcost to destination for routing packets to the fire fighter or command post.

3 Sensor Data Gathering

3.1 Network Coding

Network Coding (NC) [8] allows nodes to transmit packets that are combinations of
multiple original packets, instead of simply forwarding the packets they receive or that
originate at the node. For practical reasons, random linearnetwork coding is often used.
Coding operations involve addition and multiplication over a finite field. An outgoing
packetYout is a random linear combination of them coded or uncoded packetsY i

in avail-
able at a nodeYout = ∑m

i=1 kiY i
in. The packet can thus be written as a random linear

combination of the original data packetsX1, ...,Xn to obtainYout = ∑n
i=1 giX i. At the

destination, decoding requires knowledge of the coding coefficients gi, which can be
transported, for example, in the packet header [9]. A node that has received a sufficient
number of linear equations can decode by inverting the matrix of coding coefficientsG
to retrieve the originalX .

3.2 Data Gathering in the Lifeline

Each node in a lifeline senses the surrounding environment and is responsible for dis-
seminating these measurements, but may also forward other data such as voice mes-
sages. In this section we consider the problem of designing acoding algorithm which
locally sets a suitable transmission schedule with respectto the sensing scope and com-
munication range of the sensor nodes. Sensor readings are taken at regular time intervals
and a node broadcasts them to its neighbors. When a node receives readings from its
neighbors, it stores and combines the data received before broadcasting a new coded
packet. Additional messages may be sent in case a dangerous situation is detected (e.g.,
high temperature,CO2, smoke, etc.). Hence, the goal of the algorithm is to find the mini-
mum number of transmissions required by the nodes to spread such readings throughout
the lifeline so that each node can recover the sensed information. In particular, the fire
fighter may pass by that node at a later time and may require these readings to deter-
mine if it is safe to proceed along the line. Furthermore, it may be useful for nodes to
record the sensing history in their flash memory for longer term data gathering (with a
low priority).

Two main issues need to be addressed: first, each node has a time varying transmit
and receive range, due to changes in the transmit power and changes in the radio propa-
gation environment; second, nodes may fail due to the limited battery life or to external
causes (e.g., melting). The data gathering algorithm has tobe designed to cope with
these dynamics. We first address the issue of achieving a low energy consumption in
the sensor network by maintaining a low number of transmissions (the largest source of
power consumption). In [10], the authors consider the problem of finding the minimum
number of transmissions needed in a ad-hoc network ofN nodes for all-to-all broad-
casting. For a range of different settings, they calculate the node’s optimum number
of transmissionsC. However, this study is limited to the case of homogeneous settings
where each node communicates only with its 1-hop neighbors.For a realistic network,
it is necessary to extend the analysis to the case of heterogeneous node densities and
radio ranges. We first consider a line topology where nodes are able to communicate

with the 1,2, .., i-hop neighbors,i = 1, ..,N, in homogeneous settings. Then, we further
extend the analysis to the heterogeneous case.

Homogeneous SettingsAccording to [10], we model the network as an undirected
graphG = (V,E) with |V | = N vertices, where the number of transmissions assigned to
each node has to fulfill the cut conditions of the underlying graph as given in [10]:

min∑
i∈V

Ci (1)

∑
j∈NS

C j ≥ |S|, with 0 < |S| < N,∀S ⊂V (2)

C j ≥ 0 (3)

i.e., the number of transmissions over any cut ofG, which partitionsV into two
setsS andS, has to be at least as large as the number of nodes (and thus thenumber
of information units) contained in the cut set3. NS is the set of nodes that have an edge
from S to S. In case nodes communicate only with their 1-hop neighbors,the optimal
number of transmissionsCi for nodei in a line ofN nodes is

Ci =







1, for i = 1,N
N − i+1, for i = 2, ...,(N −1)/2
i, for i = (N +1)/2, ...,N −1

(4)

We adapt this analysis to settings where each node communicates with itsr-hop
neighbors,r = 1, ...,N. Due to space constraints, we report only the case of an odd
number of nodes; the analysis for an even number of nodes is a simple modification.
We first consider the caser = 2, where each node may communicate with its 1- and 2-
hop neighbors. Due to the doubled transmit range, each node increases the redundancy
of information spread in its neighborhood by a factor of 2. Asa first step towards the
computation of the optimal transmission rates, we reduce the values in Eq. 4 by half,
rounding up to the next integer. At the edge nodes, we leave the number of transmissions
unchanged at 1, since they only have their own reading to spread in the line. Modeling
the network as for the 1-hop case, the new transmission numbers have to fulfill the
same cut conditions of the underlying graph as the original optimization problem given
in [10].

Using half the transmissions of Eq. 4 and rounding up gives a feasible but not opti-
mal solution. The optimum number of transmissions can be found through the following
simple algorithm:

1. The edge node asks its 1-hop neighbor to reduce its transmissions by one. To ful-
fill the conditions in Eq. 2, the 2-hop neighbor increases itstransmissions by one.
The ripple effect propagates through the line, with each even neighbor reducing its

3For simplicity, we assume that a coding is only performed over a specific set of packets
(calledgeneration), and that a generation of packets is composed of one reading from each sensor
at roughly the same time instant.

1 16 65 54

1 13 33 32

1 12 24 41

Fig. 2. Optimum transmission rates for 7 nodes on a line, starting from the 1-hop optimal val-
ues (top), reducing such values by half (middle), then after performing the iterations to find the
optimum assignment (bottom).

number of transmissions by one and each odd neighbor increasing it by one. Since
the edge nodes do not modify their transmissions, the numberof modified even
nodes is larger by one than the number of odd nodes, and thus the total number of
transmissions is reduced by 1.

2. This process is repeated until the assignment of transmissions does not change any
further.

Fig. 2 gives the steps to compute the optimal transmissions for an example topology
with 7 nodes, where each node communicates with its 1- and 2-hop neighbors. The
extension of the algorithm (including the initial divisionof the number of transmissions
by the number of nodes covered by the transmit range in each direction) for settings
with transmit ranges ofr = 3, ...,N is straight-forward.

Heterogeneous SettingsWe now consider the case of time-varying transmit ranges.
Let Zi be the set of nodes that is covered by a nodei with transmit rangeri. Assume
node j has a large transmit range. Clearly, ifZi ⊆ Z j for any i ∈ Z j, node j does not
benefit from transmissions ofi. In order to reduce the total number of transmissions in
a lifeline, one should increase the number of transmissionsof nodes with large transmit
range and reduce it at nodes with smaller transmit range. Thechange of the number
of transmissions is computed locally by each node based on a piggy-backedfeedback
vector sent with the data packets. Once a nodej receives a packet from a neighbori,
it fills a vector at positioni with value 1 in case the packet is non-innovative, 2 if the
packet is innovative but cannot be decoded, and 3 if the packet is innovative and lets
the node decode a new symbol. By default, the value of each entry is set to 0, which
corresponds to the node not having received any packet from this neighbor. Once a
transmission opportunity occurs, nodej broadcasts a data packet, piggy-backing the
feedback vector. Conversely, whenever nodej receives a packet, it checks the value at
position j of the incoming feedback vector. This provides the node withinformation
about the previous packet it had sent. The information givenby the feedback is used to
assess the innovativeness of the node’s own transmissions.

We now discuss how the algorithm works in practice. When a new generation of data
(i.e., sensor readings from the environment) starts, each node broadcasts its own reading
as uncoded information packet. After this first round, each node broadcasts packets
coded over its own reading and the packets received from other nodes. Since feedback

information about packet transmissions is obtained only inthe following round, we
ensure that feedback for all packets is given by sending a further packet after completing
the assigned number of transmissions as dictated by the schedule. If the last packet sent
is acknowledged as innovative, the node increases the transmission rate by one packet
per generation, for the next generation of packets. The transmissions are reduced by
one whenever the number of non-innovative packets sent is larger than one. We keep a
safety margin of one additional packet to ensure that there is feedback for all required
packets and as a precaution in case the topology changes or nodes fail. Reducing or
increasing the transmissions only by one unit per generation caters to the time-varying
nature of the transmit range. A gradual adaptation of the number of transmissions avoids
that generations may frequently not be fully decodable whenthe radio environment is
very dynamic.

Each generation involves the sensor readings of all the nodes generated within a cer-
tain time window. Thus, a new generation is started at the nodes at approximately the
same time, which causes the nodes to broadcast their first uncoded packet. (This only
requires a very loose synchronization among nodes.) To avoid collisions, packet trans-
mit times are delayed by a small random offset. The followingtransmissions will occur
periodically everyGtime

Ci−1 , whereGtime is the expected recovery time of a generation. This
leads to an even spacing of theCi transmissions of a node.Gtime can either be fixed
before the deployment of the network or can be dynamically adapted by the nodes gen-
eration by generation. With this algorithm, some packets sent with a high transmission
rate are not acknowledged by neighbors with fewer transmissions. In this case, nodes
with lower transmission rate send feedback regarding the most recent packet received
by their neighbor.

The feedback vector is also important for checking the connectivity of the network.
When a node does not receive any packet from neighbors for a whole generation, it
increases the transmit range by a fixed amount (see [11]). Thesame applies when the
feedback vectors from neighbors have all entries set to 0, which means that the node
can receive but it cannot reach the neighbors.

In summary, each node locally learns how to gradually adapt its transmission rate
and transmit range. The scheme is decentralized, takes intoaccount the time-varying
nature of the node’s transmit and receive range, ensures connectivity between remaining
nodes in case of failures, and increases the node’s life timeby avoiding the transmission
of non-innovative packets.

4 Simulations and Experimental Results

In this section we discuss our experimental and simulation results regarding the inte-
gration of the network coding based data gathering (Sec. 3) module with a broadcasting
based routing protocol (Sec. 2). Experiments are performedon a lifeline composed of
seven Tmote Sky sensor nodes [12]. They feature the Chipcon CC2420 radio chip [11]
for radio communication (2.4 GHz, 250 Kbps). The radio chip is controlled by the TI
MSP430 microcontroller (8 MHz, 10K RAM, 48K Flash). TinyOS [13] is used as sen-
sor operating system. Due to the limited number of nodes available, we run simulations
in TOSSIM, the TinyOS simulator [14], to evaluate the performance of our integrated

C P F F2 3 4 5 6

Fig. 3.Experiment Lifeline Setup

protocols for “X and Y” topologies (Fig. 5), where two lifelines cross each other (X) or
merge at a point (Y). Concerning the data gathering protocol, we show how the algo-
rithm dynamically adapts the nodes’ transmission rates andtransmit ranges according
to the actual network topology. For evaluating the broadcasting-based routing protocol,
we compare it against a RSSI-based routing protocol. We analyze the robustness of the
integrated protocols for this set of settings in terms of resilience to packet loss and node
failure.

4.1 Line Scenario

We present the experimental results for a lifeline of 7 nodes, where 5 out of them are the
sensing and forwarding nodes and the remaining two at the edges are the Fire Fighter
(FF) at one side and the Command Post (CP) at the opposite side(Fig. 3). Each of
the forwarding node runs the data gathering algorithm with adata transmission rate
according to Sec. 3. FF and CP exchange short voice messages.When using a code
rate of 20Kbps, a short voice message containing 7 words can be compressed to around
7 KB. The maximum size of a packet is 128 bytes and we use 110 bytes out of them
for the data payload. Thus, we need 68 packets in total per voice message. The packets
are transmitted at a rate of 5 packets per second. Setting a higher rate is detrimental
to performance due to the higher number of collisions. The FFand CP use wearable
computers (represented by laptops in the experiments) for displaying or playing out
messages which are sent or received over the lifeline through a java interface.

The experiment evolves in 5 different steps. In step 1, all nodes communicate with
their 1-hop neighbors and most of the time even with their 2-hop neighbors (we prop-
erly set the initial transmit ranges to ensure full connectivity between 1-hop neighbors
w.h.p.). After letting the protocols run and reach a steady state, node 3 fails (step 2).
At this stage we analyze the protocol’s resilience to node failure. At step 3, a further
node (number 5) fails. Up to now, the lifeline is still able tomaintain end-to-end con-
nectivity for most of the time. But when node 2 fails at step 4,the protocol reacts by
increasing the transmission power of the isolated nodes to reestablish connectivity. The
same applies at step 5 when a further node (number 6) fails. Atthis last stage, only one
forwarding node is alive and lets the FF and the CP communicate.

We define the transmission time as the time between the first packet being sent
from the source and the last packet being received at the destination. The transmis-
sion rates are the rates for generating network coding packets (Sec. 3), which is simply
background traffic from the point of view of the voice messagetransmissions. Fig. 4
shows how the algorithm adapts the number of transmissions that occur at each of the
aforementioned steps. Note that we only show the final steadystate of each step. As
we can see from the graph, the algorithm well adapts the transmission rates after each
failure. We compare the performance of EMRO against the RSSI-based multihop rout-
ing protocol, which is a modified version of the one used by theSensor Scope project

[7]. Results in Fig. 4 show that the performance of EMRO is improved as far as delay
is concerned. Regarding packet loss rate, the performancesof these two protocols are
comparable. We observe a slightly higher packet loss rate (overall packet loss rate inside
the network) for EMRO, which is due to the redundancy inherent in the broadcasting.
It is also related to the low buffer size in TinyOS 1. With the RSSI-based multi-hop
routing, the performance in terms of transmission time and packet loss rate improves
when more nodes fail, since the contention on the medium due to the multi-hop routing
is reduced. Furthermore, the background traffic from network coding is lower as fewer
nodes contribute to the sensor measurements.

4.2 X and Y Scenarios

The packet transmission rates used in the experiments must be changed in the simulator
according to the new bit rates of 10 Kbps for the start symbolsand of 40 Kbps for the
payload featured by TOSSIM. Hence, sending a packet of, say,128 bytes takes about
25.6 ms, which is substantially longer than the 4.1 ms required by real motes (without
taking into account the channel busy time). As TOSSIM simulates a processor with a
frequency of up to 4 MHz [15], which is much lower than that of areal TelosB mote,
a node, in TOSSIM, is not capable to send packets as fast as in the real experimental
environment.

Starting with the X setting, there are 2 FFs (node at the top-left as FF1 and node
at the top-right as FF2) and accordingly 2 CPs (node at the bottom-right as CP1 and
node at the bottom-left as CP2). In absence of intersectionsbetween these 2 lifelines,
FF1 sends packets to CP1, and FF2 communicates with CP2 respectively. Each single

1 2 3 4 5
0

200

400

600

Step

T
x

tim
e

(s
ec

.)

EMRO
RSSI Multihop Routing

1 2 3 4 5
0

5

10

15

Step

Lo
ss

 r
at

e
(%

)

EMRO
RSSI Multihop Routing

1 2 3 4 5
0

1

2

3

4

Step

T
x

ra
te

node 2

node 3

node 4

node 5

node 6

Fig. 4.Transmission rate adaptation, as well as loss rates and total transmission time for each step
of the experiment. (a) and (b) for voice communication, (c) for data gathering.

Fig. 5. Simulation results: transmission rate adaptation in X and Y topologies (1-hop communi-
cations): respectively, 2 crossing lifelines and 2 merging lifelines. At each node corresponds a
color reporting the number of packets to be transmitted.

lifeline needs 34 seconds (Table 1) for transmitting a shortvoice message, which con-
sists of 68 TinyOS packages, as aforementioned. In the setupshown in Fig. 5, the node
in the middle is shared by both lifelines, therefore it should have double the amount of
traffic. However, we decided to decrease the distance between the middle node and its 4
neighbors in the X topology and its 3 neighbors in the Y topology, so that the data load
of the two lines can be shared by all these “core” nodes, avoiding loss of connectivity
in case the middle node fails (which can be the result of the huge amount of data to be
processed by only one node). Without such accommodation at the “core”, the reaction
time required to adapt the transmit range in order to recoverfrom connectivity losses
could be too long4.

As a remark, the 2 FFs are scheduled to send packets in an interleaving manner
to avoid collisions at the intersection node. With the aforementioned accommodations,
each lifeline has an increased transmit duration of 68 seconds (Table 1), which is almost
twice the time needed for single lifeline transmission.

Given the X setting in Fig. 5, both CPs are able to receive packets from both FFs.
This kind of information redundancy can be utilized to increase the reliability of con-
nections between FFs and CPs. Furthermore, due to the NC based data gathering spread-
ing data along both the lines, the robustness of the X networkis increased as well as
data persistence. Even if one of the two crossing lines (X topology) fails, the other line
can still combine (through coding) in its packets the information which came from the
other line before it failed and decode it at the other CP.

Without loss of generality, the Y type scenario shown in Fig.5 can be considered
as an extension of the X type scenario. If one FF loses connection to a CP, it still has
a chance to get contact to the same CP (or to another CP) by merging its lifeline into
another one.

Simulation results are shown in Fig. 5 and Table 1. For each scenario the simulation
is repeated several times, and the average values are reported. Absolute values of the
transmission delay are not of interest, but they indicate the increment of time needed
for transmitting a short voice message, when 2 FFs are tryingto send messages at the

4In reality, sensor nodes should also be deployed in this manner, to ensure sufficient resilience
against node failure.

X SettingY SettingSingle Lifeline
Packet Sending Frequency (Hz) 1 1 2

Tx Delay (s) 68.137 68.465 34.765
Packet Loss Rate (%) 0 0 0

Table 1. Simulation results: short voice message transmission in X and Y settings andsingle
lifeline.

same time. Furthermore, since the frequencies at which packets are sent out are chosen
purposely to avoid channel and nodes’ overloading, no packet erasures are experienced.

In Fig. 5 simulation results show that nodes’ transmission rates fit well with the
theory (even when increasing the transmit range to consideralso 2- and 3-hop commu-
nication models, but results are not shown due to the space constraints). The nodes at
the edges as well as the node in the middle, for both X and Y settings, just need to send
the minimum amount of packets per data generation. The nodesaround the middle node
for both topologies share the load of the coded data coming from the lines so that, in
case of node failure in the middle of the network (“core”, i.e. middle node and its 1-hop
neighbors), the connectivity is maintained.

5 Conclusions

In contrast to conventional WSN routing protocols, the proposed broadcasting based
protocol has the advantage of adapting to changes in the network topology very quickly.
This feature is beneficial in scenarios with mobile fire fighters and frequent node fail-
ures. In the X and Y topologies, 2 lifelines can coexist with each other well, and a
fire fighter can immediately recover from the lack of connectivity with the command
post by merging his lifeline with another one. The data gathering protocol running in
the background has no negative impact on the transmission ofshort voice messages or
alerts. Like the routing protocol, it is very well suited forthe dynamics of our settings,
and nevertheless operates at a comparatively low overhead.

References

1. Klann M, Riedel T, Gellersen H, Fischer C, Oppenheim M, Lukowicz P,Pirkl G, Kunze K,
Beuster M, Beigl M, Visser O, Gerling M (Sep 2007) LifeNet: an Ad-hoc Sensor Network
and Wearable System to Provide Firefighters with Navigation Support,Ubicomp.

2. Fischer C, Muthukrishnan K, Hazas M, Gellersen H (Sep 2008) Ultrasound-aided pedestrian
dead reckoning for indoor navigation,First ACM International Workshop on Mobile Entity
Localization and Tracking in Gps-Less Environments. San Francisco, California, USA.

3. Hofmann P, Kuladinithi K, Timm-Giel A, Goerg C, Bettstetter C, Capman F, Toulsaly C
(Apr 2006) Are IEEE 802 Wireless Technologies Suited for Fire Fighters?, 12th European
Wireless 2006, Athens, Greece.

4. Al-Karaki J N, Kamal A E (2004) Routing Techniques in Wireless Sensor Networks: A
Survey,Wireless Communications, IEEE.

5. Becker M, Schaust S, Wittmann E (July 2007) Performance of Routing Protocols for Real
Wireless Sensor Networks,International Symposium on Performance Evaluation of Com-
puter and Telecommunication Systems (SPECTS 2007), San Diego, USA.

6. Mobile Ad-hoc Networks http://www.ietf.org/html.charters/manet-charter.html
7. SensorScope website http://sensorscope.epfl.ch/

8. Ahlswede R, Cai N, Li S Y R, Yeung RW (2000) Network information flow, IEEE Transac-
tions on Information Theory, vol 46, pag. 1204–1216, num 4.

9. Chou P A, Wu T, Jain K (Oct 2003) Practical network coding,41st Allerton Conf. Commu-
nication, Control and Computing, Monticello, IL, US.

10. Loyola L, De Souza T, Widmer J, Fragouli C (Jan 2008) Network-Coded Broadcast: from
Canonical Networks to Random Topologies,NetCod 2008: Fourth Workshop on Network
Coding, Theory, and Applications, Hong Kong, China.

11. CC2420 data sheet http://www.ti.com/
12. Tmote Sky data sheet http://www.sentilla.com/moteiv-endoflife.html
13. TinyOS home page www.tinyos.net
14. Levis P, Lee N (June 2003) TOSSIM: A Simulator for TinyOS Networks, Version 1.0.
15. TinyOS lesson - using TOSSIM http://www.tinyos.net/nest/doc/tutorial/tossim-lesson.html

