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Abstract. This paper describes a method for robust streaming of combined MPEG-
2 audio/video content over in-home wireless networks. We make use of currently
used content distribution formats and network protocols. The transmitted bit-rate
is constantly adapted to the available network bandwidth, such that audio and
video artifacts caused by packet loss are avoided. Bit-rate adaptation is achieved
by using a packet scheduling technique called I-Frame Delay (IFD), which per-
forms priority-based frame dropping upon insufficient bandwidth. We show an
implementation using RTP and an implementation using TCP. Measurements on
a real-life demonstrator set-up demonstrate the effectiveness of our approach.

1 Introduction

In-home networks are becoming more and more common in consumer households.
They connect together the different electronic devices in the home from the CE, mo-
bile and PC domains, with which different digital content is stored and viewed. Such
in-home networks typically consist of wired and wireless segments. Especially wire-
less networks are popular due to the ease of installation. However, wireless networks
cannot always deliver the bandwidth needed for transporting the desired content. This
is because wireless networks offer a lower bandwidth than wired networks, and very
often this bandwidth has to be shared between multiple streams. Furthermore, the wire-
less network bandwidth often exhibits an unpredictable and fluctuating behavior. This is
mainly caused by reflections and obstacles, roaming portable devices, and disturbances
from other devices (e.g. neighboring wireless networks, microwaves). Other network
technologies, e.g. power-line, also exhibit similar stochastic behavior under interfer-
ence. For streams with real-time requirements, such as audio/video (A/V), insufficient
network bandwidth causes data loss and the associated artifacts, such as blocky distor-
tions in the image and disturbances in the audio. This is clearly unacceptable for the
end user.

The problem of bandwidth sharing can be addressed by several QoS (Quality-of-
Service) techniques such as prioritization and bandwidth reservation and access control
mechanisms. In this paper, we address the second problem, namely that of fluctuat-
ing bandwidth for audio/video streaming. A technique is presented to stream the A/V
content over the network, whereby the amount of data transmitted by the sender is dy-
namically adapted to the available bandwidth by selectively dropping data. In this way
the perceived quality of the A/V stream is dynamically adjusted according to the quality



of the network link. Our solution can be implemented using RTP (Real-time Transport
Protocol) and TCP (Transmission Control Protocol).

This paper is organized as follows. Section 2 lists some related work. Section 3 de-
scribes our adaptive streaming technique and its implementations. Experimental results
are presented in Section 4. This paper ends with conclusions and final remarks.

2 Related work

Most work in literature concentrates around streaming of video only, whereas we also
consider audio, which is streamed together with the video stream. Most users are more
sensitive to audio than to video artifacts, therefore these should be avoided. Different
approaches have been proposed for adaptively streaming video over wireless networks.
These solutions can be categorized by:

– Scalable video. The original video is encoded in different layers, where a base layer
contains video of acceptable quality, and one or more enhancement layers enhance
the quality of the base layer. Adaptation is done by dropping enhancement layers in
case of insufficient bandwidth. As long as the base layer can be transmitted without
loss, no artifacts will occur. Examples of this approach can be found in [1][2][3].

– Transcoding/transrating. Here the original bit-rate of the video is adaptively changed
to a different bit-rate depending on the available bandwidth, e.g. by dynamically
changing the quantization parameters. Examples of such solutions are found in [4][5].

– Frame dropping. Complete frames are dropped in case of insufficient bandwidth,
examples are found in [6][7].

Our adaptation technique falls into the last category and is called I-Frame Delay (IFD),
previously reported in [8]. This paper extends this by including audio. IFD is a schedul-
ing technique which drops MPEG video frames when detecting insufficient bandwidth,
thereby favoring I- and P-frames over B-frames. Artifacts are avoided as long as only
B-frames are dropped. The result is a decreased video frame rate. The perceived qual-
ity here is lower than e.g. scalable video [9] or transrating, however IFD has the lowest
cost in the implementation, and is able to react quickly to the changing conditions. Most
MPEG decoder implementations are able to decode the resulting stream. Furthermore,
the decision to perform adaptation is based on send buffer fullness, instead of relying
on feedback from the receiver for bandwidth estimation. Therefore no receiver modifi-
cations are necessary. The work of [10] resembles ours the most, dealing with adaptive
streaming of MPEG-2 Transport Streams by means of frame dropping. However, this
approach relies on specific receiver feedback about the network status. Furthermore,
since the feedback arrives periodically, the beginning of an abrupt bandwidth drop can
often not be handled in time, leading to a short burst of lost packets (and hence frames).
Lastly, only RTP streaming is considered, whereas we also consider TCP.

3 Adaptive streaming of MPEG-2 Transport Streams

In this paper, we focus on the home scenario where content is entering the home from
a content provider via ADSL, cable or satellite, and possibly stored on a home storage



server. Here the most common content format is MPEG-2 Transport Streams (TS) [11].
Therefore we will further discuss adaptive streaming of MPEG-2 TS. Section 3.1 de-
scribes our IFD adaptive video scheduling technique. Sections 3.2 and 3.3 explain how
this technique can be applied on Transport Streams using RTP and TCP.

3.1 I-Frame Delay

I-Frame Delay (IFD) is a scheduling technique for adaptive streaming of MPEG video.
The basic idea is that scheduler will drop video frames when the transmission buffer is
full and overflow is imminent due to insufficient bandwidth, to reduce the transmitted
bit-rate. The algorithm is characterized by the following: 1) buffer fullness is indicated
by the number of frames currently in the buffer (not the number of bytes), 2) less impor-
tant frames (B-frames) are dropped in favor of more important frames (I- and P-frames),
3) the transmission of I-frames is delayed when conditions are bad but as little as pos-
sible omitted even if they are out-of-date w.r.t. the display time, because they can still
be used to decode subsequent inter-predicted frames 1.

The IFD mechanism is based on two parts: 1) during parsing and packetization of
the stream into network packets, the stream is analyzed and the packets are tagged with
a priority number reflecting the frame type (I/P/B) 2, and 2) during transmission, packets
are dropped by the IFD scheduler when the bandwidth is insufficient. Non-video pack-
ets are given a priority number not recognizable by the IFD scheduler, which therefore
will never drop them. The size of the IFD buffer should be big enough to hold a number
of frames. The minimum required size is two frames, one to hold the frame currently
being sent (denoted as �), and one currently waiting to be sent (denoted as � ). In-
creasing the IFD buffer size permits more intelligent decisions on which frames to be
dropped, at the cost of increased latency and memory usage. Figure 1 depicts an ex-
ample of the buffer filling. The numbers represent the priority numbers of the packets.
In this example the IFD-related priority numbers are 10 and higher. The packets with
priority number 12 belong to the � frame, and the packets with number 11 belong to the
� frame. Currently a packet from an incoming frame � is about to enter the buffer. As
can be seen, it is possible to interleave video packets with non-video packets (priority
numbers 0 and 2). When a packet belonging to � tries to enter the IFD buffer and both
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Fig. 1. Network packets in the IFD buffer.
1 We assume that out-of-date frames are still decoded and only thrown away by the renderer,

rather than thrown away already before decoding.
2 Since there may be multiple consecutive B-frames between two P-frames, we use different

tags to distinguish between them.



� and � are full, the IFD scheduler will decide to drop a frame (in � or � ), based
on the priority numbers. No artifacts will occur if only B-frames are dropped, because
no subsequent frames depend on them. When the network conditions are such that also
P-frames are dropped, then the GOP (Group of Pictures) is said to be disturbed and
the remainder of the GOP is also dropped. This causes the effect of the image being
temporarily frozen, the duration of which depends on the GOP size. For an IFD buffer
capable of holding two frames, the frame dropping algorithm is shown below.
1: procedure BUFFER ENQUEUE(�)
2: if Disturbed GOP == True then
3: if � is of type I then � New GOP is encountered
4: Disturbed GOP = False � Reset disturbed GOP flag
5: end if
6: end if
7: if Disturbed GOP == True then
8: Discard � � Discard rest of disturbed GOP
9: return
10: end if
11: if � is empty then
12: Store � in �
13: else
14: if � is of type I then
15: Overwrite � with �
16: else if � is of type B then
17: Discard �
18: else if � is of type I or P then
19: Discard �
20: if � was of type P then � Discarded frame is P-frame
21: Disturbed GOP = True � Set disturbed GOP flag
22: end if
23: else
24: Overwrite � with �
25: end if
26: end if
27: end procedure

3.2 RTP implementation

This section describes our adaptive streaming approach using RTP. We first present a
method for encapsulating TS packets into RTP packets, such that they can be used by
IFD. This does not come without consequences, as will be explained. We then describe
our streamer implementation.

IFD-friendly RTP encapsulation. For RTP encapsulation of TS packets we adhere to
RFC2250 [12]. It states that a RTP packet contains an integral number of TS packets
(188 bytes each). Each RTP packet does not need to contain an equal number of TS
packets, however the common approach is to encapsulate 7 TS packets into one RTP
packet. Together with some protocol headers, the packet size stays just below the MTU
(Maximum Transmission Unit) of 1500 bytes (Ethernet), which avoids fragmentation.
The problem of such RTP packets is that they are dropped by IFD as a whole, and they
may contain audio, video and data TS packets, or packets belonging to multiple frames.
Therefore we need to make sure that video and non-video packets are split up in dif-
ferent RTP packets, and the same goes for video packets belonging to different frames.
Re-ordering of TS packets is unwanted due to timing dependencies and efficiency (e.g.
buffer memory usage) considerations, therefore we can achieve the splitting by simply



finalizing packets earlier. During parsing, TS packets are gathered into RTP packets. A
RTP packet is finalized if one of the following conditions is met:

1. The RTP packet contains 7 TS packets.
2. The next TS packet has a different TS PID (Packet Identifier) than its predecessor,

and one of them has the video PID.
3. The next TS packet and its predecessor both have the video PID, but the next packet

starts a new video frame.

Figure 2(a) shows the result of the common encapsulation scheme for an example TS
packet sequence. The TS packets are denoted with their type (Audio, Video, Data).
For video packets also their frame numbers are mentioned. All packet boundaries are
exactly 7 TS packets apart. Figure 2(b) shows the packet boundaries obtained with our
encapsulation scheme. Boundary number 2 is the result of the first rule (maximum of 7
packets reached). Boundaries 1, 3, 4, 6 and 7 are the result of rule 2 (switching between
video and non-video). Boundary 5 is the result of crossing a frame boundary (rule 3).

A V1 V1 V1 V1 V1 V1 V1 V1 V1 A V2 V2 V2 V3 V3D D V3 V3 V3

A V1 V1 V1 V1 V1 V1 V1 V1 V1 A V2 V2 V2 V3 V3D D V3 V3 V3

1 42 3 5 6 7

(b)

7

(a)

Fig. 2. Example of RTP packet encapsulation: (a) common scheme, (b) IFD-friendly scheme.

Compared to the common encapsulation scheme, parsing of the TS packets down
to the video elementary stream level is required for finding the picture start codes in
video packets to identify the start of each frame and the frame type. In many cases the
start of a new frame is aligned with the start of a TS packet. This is the ideal situation
and a clean separator can be placed between two TS packets to separate two frames.
However, there are cases where the frame start and TS packet start are not aligned:

1. In some cases, the picture start code is located halfway a TS packet, which means
that this packet belongs to two different frames. In this case there are a number
of options for setting the RTP packet boundary: 1) split up this packet into two
TS packets and add stuffing, 2) keep this packet with the previous frame, 3) keep
this packet with the new frame. For efficiency reasons (no increased bit-rate and no
copying/modification of TS headers) we did not go for option 1. Options 2 and 3
differ in which part of a frame will be dropped. With option 2 the start of the new
frame will be lost if the previous frame is dropped, while with option 3 the last part
of the previous frame will be lost if the new frame is dropped. In our experience,
most decoders handle the latter situation better, therefore we choose option 3.

2. Sometimes the picture start code is split over two TS video packets. Detecting this
situation entails a higher complexity, because two video packets have to be scanned
at a time, with the additional possibility that they are interleaved with audio and data



packets. Failing to detect this situation may result in two frames being tagged as if
they are one. If a B-frame is followed by a P-frame, then also the latter is tagged as
a B-frame, and may be dropped as well.

The occurrence of the above situations depends on how the video stream is packetized
into Packetized Elementary Stream (PES) packets, before it is multiplexed in the Trans-
port Stream together with audio data. From our experience with broadcast streams two
methods are most often used: 1) each PES packet contains a single frame, 2) each PES
packet contains a GOP. The above miss-alignment situations do not occur when a PES
packet contains a frame, because the start of a PES packet is always at the start of a TS
packet. They might occur often, though, when each PES packet contains a GOP.

IFD overhead. As can be seen from Figure 2, our IFD-friendly encapsulation scheme
results in more and smaller RTP packets. Smaller packets have more overhead, which
means that the wireless network is used less efficiently. Considering an average size
of a RTP packet consisting of ��� ��� ��	 TS packets, we define the encapsulation
efficiency ��
��� as a measure to express how well a stream can be encapsulated, that
is, how close��� ��� ��	 is to the optimal number of 7:

��
��� �
��� ��� ��	

�
� ���� (1)

Our experience with typical Transport Streams yields values for � �
��� ranging from
37.4% to 85.8%. Figure 3 shows the distribution of RTP packet sizes for example se-
quences with a high and a low encapsulation efficiency.
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Fig. 3. Example RTP packet size distribution for high (a) and low (b) encapsulation efficiency.

One source of overhead of having smaller packets is the protocol headers (e.g. RTP,
IP), as the packet payload is relatively smaller. An analysis of the header overhead
resulted in numbers ranging from 0.92% to 8.42% for our example streams. Another
source of overhead comes from the fact that the maximum theoretical throughput at the
802.11 MAC layer degrades with decreasing packet size (a theoretical analysis can be



found in [13]). Figure 4 depicts the relation between ��� ��� ��	 and the maximum
throughput. We define the throughput penalty as the relative drop in throughput with an
average RTP packet size ��� ��� ��	 compared to the throughput with the maximum
packet size of 7 (��
��� � ����). For the example sequences we used, a throughput
penalty was found ranging from 6.1% to 47%. It is therefore imperative to obtain a high
encapsulation efficiency. This depends on how the packets have been multiplexed. The
best is to have as few transitions between video and non-video packets as possible. Since
video packets make up most of the stream, we can then achieve the highest possible
number of RTP packets of the maximum size (such as in Figure 3(a)).
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Implementation. We implemented IFD as part of a RTP/RTSP server application run-
ning on a Linux PC, the streaming part of which is shown in Figure 5. The TS file reader
reads TS packets from a MPEG-2 Transport Stream file and sends it to the RTP pack-
etizer, which encapsulates the TS packets into RTP packets according to the method
described earlier. The target transmission times (TTT) of the packets are determined by
the file reader from the PCR (Program Clock Reference) values (following the DLNA
guidelines [14]). The RTP packetizer then translates the TTT to RTP timestamps and
inserts the proper RTP headers. The resulting RTP packets are given to the RTP sender.
This component is responsible for buffering the RTP packets for transmission. For the
right pacing of the transmission, the RTP scheduler examines the RTP timestamps of
the RTP packets and tells the RTP sender to send the packets at the right time. IFD
packet tagging is done by the RTP packetizer, and the dropping is implemented in the
RTP sender. Audio and data packets are tagged with a priority number which is not
recognized as video frames by IFD; they thus will never be dropped. In this way the
audio is almost never interrupted at the receiver output.

3.3 TCP implementation

The main drawback of using RTP streaming is that IFD must be supported by each wire-
less node (e.g. an access point) in the network, not only at the sender. This is because
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Fig. 5. RTP sender architecture.

with RTP, only the bandwidth of the wireless link on which transmission takes place
(e.g. between the sender and the access point) can be monitored (there is no feedback
from the receiving peer). If the path to the receiver passes another wireless link (e.g.
from access point to the receiver), then the quality of the second link is visible for the
access point, but not for the sender. Therefore the sender can only adapt to the band-
width conditions on the first link but cannot prevent artifacts caused by packet losses
on the second link, and therefore also the access point should implement IFD. This
is commercially highly unattractive. TCP provides reliable data transmission using its
acknowledge and retransmission mechanism. Since the acknowledgments are sent be-
tween the receiver and sender, it is possible to observe the end-to-end bandwidth on the
network path, independent of the (number of) wired/wireless links on that path. Thus it
suffices that only the sender supports IFD.

The main issue of TCP is that the retransmission mechanism may delay the stream-
ing such that the real-time requirements are not met. We can solve this by applying IFD.
Our TCP sender architecture is shown in Figure 6. The file reader component is similar
to the RTP implementation. The TS collector component packs TS packets together in a
similar way as the RTP packetizer described in Section 3.2, with a slight difference that
the TS collector never applies encapsulation rule 1. This is because packets offered to
TCP may be bigger than 7 TS packets; TCP will automatically split up such big packets
into smaller chunks. The IFD algorithm is implemented by the IFD dropper compo-
nent. It writes packets into the IFD buffer according to the pacing of the stream. The
TCP sender task tries to send the packets in this buffer as fast as possible. When the
network conditions deteriorate, TCP stalls and the TCP sender cannot empty the IFD
buffer fast enough. This will trigger the IFD dropper to apply the dropping algorithm.

MPEG−2
Transport Stream

IFD
dropper

TS file
reader

TS
collector

TCP
sender

Network

IFD buffer

Fig. 6. TCP sender architecture.

The overhead introduced by our packetization scheme for TCP is smaller than for
RTP. This is because TCP will automatically split up big packets into smaller chunks,
and merge smaller packets into bigger chunks for transmission. The average packet size
at the IP level is therefore bigger than for RTP. This comes at a cost of a bigger receiver
buffer to deal with the higher jitter.



4 Experimental results

This section presents some experimental results in two scenarios. The first one involves
a stationary receiver attached to a TV. In this scenario (Section 4.1), the wireless net-
work is disturbed by turning on a microwave. The second scenario (Section 4.2) in-
volves a mobile receiver, which is moved away from the access point, causing the band-
width to drop. We used a 802.11g wireless access point and PCMCIA wireless adapters.
IFD is implemented in the sender. The experiments were conducted in an office envi-
ronment with a WLAN infrastructure, which causes some additional interference with
our own network.

4.1 Stationary receiver with microwave disturbance

The set-up for this scenario is shown in Figure 7. The sender PC has a wireless con-
nection to the access point, which is connected via wired Ethernet to a set-top-box. The
nearby (at appr. 2 m) microwave introduces the disturbance. For this experiment we
used a 10 Mb/s sequence. The GOP size is 15, the GOP structure is IBBP. During the

Microwave

Receiver (STB)

Sender (PC) TV+ router
Access point

MPEG−2 TS

Fig. 7. Experimental set-up with stationary receiver.

experiment, the microwave was turned on 45 seconds after the stream started, for a pe-
riod of 1 minute, and the output video and audio quality was observed on the TV. With
the microwave off, the audio and video were streamed without problems. During the pe-
riod when the microwave was on, the experiment without IFD exhibited artifacts in the
video and frequent interruptions in the audio. With IFD turned on, the audio was never
interrupted, and the video frame rate was observably reduced, however no artifacts were
seen. Similar observations were made both for the RTP and the TCP implementation.
Since the wireless network conditions may vary over time, the experiments were re-
peated a number of times.

Measurements were performed to determine the dropped frames and their types.
We first ran an experiment with the TCP sender (Figure 6) without IFD, where the IFD
dropper was configured to drop all incoming packets when the IFD buffer is full (tail-
drop). The dropped frames at the sender side are shown in Figure 8(a). As can be seen,
almost no frames were dropped when the microwave was off. When the microwave was
on, frames from all types were dropped (including I- and P-frames, consistent with the
observed artifacts). Note that actually only some packets belonging to these frames were



dropped, and not the complete frames. We consider a frame with one or more packets
missing as dropped because typical decoders will throw away incomplete frames any-
way (including I- and P-frames, leading to artifacts). With IFD turned on, it can be
seen that no I-frames were dropped (Figure 8(b)). Most of the dropped frames were B-
frames. It can be seen that also some P-frames had to be dropped, causing the dropping
of the rest of the disturbed GOPs. Considering our GOP size, dropping a disturbed GOP
may cause the image to be frozen up to roughly half a second. This effect is reduced if
the GOP size is smaller. The results for the RTP implementation are shown in Figure 9.
As can be seen, in this experiment only B-frames were dropped.
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Fig. 8. Dropped frames under microwave disturbance (TCP): (a): without IFD, (b) with IFD.
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Fig. 9. Dropped frames with IFD under microwave disturbance (RTP).

4.2 Mobile receiver

In this experiment we used a 8 Mb/s sequence. The sequence was streamed along two
wireless links from the sender PC to the laptop (see Figure 10). After the stream started,
we walked away with the laptop from the access point until halfway the sequence, then
turned around and walked back to the starting position. This experiment was only done
with the TCP implementation, because for RTP we lacked IFD on the access point for
adapting the stream on the second link.
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Fig. 10. Experimental set-up with mobile receiver.

With IFD off, it was observed that while walking away, the audio and video were
first streamed with no problems, followed by a short period with artifacts, then followed
again by a period without problems. This is caused by the automatic reduction of the
transmission rate by the access point when the signal strength decreased. Hence the
artifacts were caused during the transitions. This effect can also be seen in Figure 11(a)
from the short bursts of dropped frames. When we reached a certain distance where
the required bandwidth could not be sustained anymore, the receiver output exhibited
continuous artifacts. With IFD on, we observed that during transitions the image showed
a short freeze (caused by dropping a P-frame and the subsequent frames in the disturbed
GOP). There were no blocking artifacts and no audio interruptions. As can be seen from
Figure 11(b), the dropped frames were limited to B-frames and P-frames.

I

P

B

 0  500  1000  1500  2000  2500  3000

F
ra

m
e 

ty
pe

Frame number

Dropped frames

I

P

B

 0  500  1000  1500  2000  2500  3000

F
ra

m
e 

ty
pe

Frame number

Dropped frames

(a) (b)

Fig. 11. Dropped frames with roaming receiver: (a) without IFD, (b) with IFD.

5 Conclusions

In this paper, we have shown a method for adaptive streaming of audio/video content
over wireless networks while using standard content distribution formats and network
protocols. With I-Frame Delay as the underlying bit-rate adaptation mechanism, we are
able to stream artifact-free video even under degrading network conditions. Our solution
is implemented at the sender only, no modifications are needed at the receiver side. It is
possible to apply IFD in combination with RTP as well as TCP. We proposed a packet
encapsulation scheme which makes it possible to separate video TS packets from non-
video packets and packets belonging to different frames, such that the resulting packets
can be fed to the IFD scheduler. The effectiveness of IFD in case of network bandwidth
fluctuations was shown by means of measurements on a real-life demonstrator set-up.



Our RTP packet encapsulation scheme results in on average smaller network pack-
ets, which entails some overhead in network efficiency. This overhead is dependent
on the encapsulation efficiency of the streams. For TCP this overhead is considerably
smaller.

IFD is effective against bandwidth fluctuations, which may be severe but only last
a short period of time. In case of long-term bandwidth drops (e.g. due to multiple con-
tending streams), the perceived quality of the IFD solution seriously degrades because
frames are constantly dropped. Such bandwidth problems are better handled by solu-
tions such as transrating.
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