
On the Power of Cooperation in Multimedia

Caching

Itai Dabran and Danny Raz

Computer Science Department, Technion, Haifa 32000, Israel

Abstract. Real time multimedia applications such as Internet TV, Video
On Demand, Distance Learning, and Video Conferencing are becoming
more and more popular over the Internet. Streaming media caching is
a critical ingredient in the ability to provide scalable real-time service
over the best effort Internet. In many cases, bandwidth becomes the sys-
tem bottleneck and the cache cannot provide the required quality for all
streams simultaneously. In this paper we study new algorithms, based on
cooperation, which can improve the cache ability to provide service to
all of its clients. The main idea is based on the willingness of streams to
reduce their used bandwidth and allow other streams that may need it
more, to use it. Our extensive simulation study indicates that our algo-
rithms can reduce the pre-caching time by a factor of 3, or increase the
probability for adequate service level by 30% using the same pre-caching
time.

1 Introduction

A web proxy cache sits between web servers and clients, and stores frequently
accessed web objects. The proxy receives requests from the clients and when
possible, serves them using the stored objects. When considering streaming me-
dia, caching proxies become a critical component in providing scalable real-time
services to the end users. Due to the bursty nature of streaming media amplified
by compression, providing high quality service requires a considerable amount of
bandwidth that may not be always available in the best effort Internet. The main
problems that arise in this context are the large size of media items and their
variable bit-rate nature: bandwidth consumed by the user is measured by frame
per second (frame rate below 24 frames/second is distracting to the human eye)
but the size of the frame is variable according to the multimedia visualization
and compression method.

Figure 1 depicts an architecture of video delivery from video servers over the
Internet to clients connected to a cluster of multimedia cache proxies, over a
high speed LAN. The proxy may experience data losses, delays and jitter, while
it has to provide the multimedia streams to its customers at high bandwidth and
low delay. This is done, in many cases, by keeping a buffer containing several
seconds of the stream content per each stream served by the cache. In times
when the amount of data needed in the stream increases, or when the available
bandwidth reduces due to competitive streams or other traffic load, the cache

still delivers the stream to the client, reducing temporary the amount of buffered
data. In current streaming media cache proxies, each stream is handled indepen-

Fig. 1. Video Delivery Architecture

dently, as a separate object. That is, the server opens a TCP connection to the
streaming media server, checks the buffer status and possibly other local param-
eters and then when needed, asks for more streaming data from the server. The
downloading rate of the data depends, in addition to the cache requests, on the
networking conditions (i.e. available bandwidth and load) and TCP behavior.
When a cache proxies’ cluster deals with more than one stream, the flows of
the different streams may compete on the available bandwidth and they may
experience losses. In such a case the TCP mechanism will reduce the flow rate
and the amount of data in the flow’s buffer may decrease below the ability to
serve the client in the desired quality. Note that TCP is often used for media
uploading both because unlike UDP it has a congestion control mechanism, and
since it is much more resistant to Firewall related blockages.

The main novel idea of this work is to introduce cooperation between the
flow management of different streams, all served by the same cache proxy or
cache proxies’ cluster. When congestion is detected, or when the amount of the
buffer’s data is decreased, the cache proxy can check the status of other flows
and if their buffers are adequately full, reduce their flow by manipulating the
TCP flow control. In this way, in scenarios similar to the architecture mentioned
before, the load on the bottleneck link from the Internet to the cache proxy is
reduced, enabling the needed flow rate to increase by using the TCP normal
flow control mechanism. This approach is different from other schemes that are
in use today and use the term cooperation. A classic caching cluster may hold
multiple copies of the same movie, and cooperate in order to fetch the movie
from a neighbor cache instead of fetching it from the server (using ICP [14] for
example). On Video On Demand (VOD) systems when more than one client
wants to watch the same movie in another time interval, cooperation is used in
order to “patch” the needed multimedia stream for the client that joins later.

In this paper we use the general term Multimedia Caching Cooperative De-
vice (MCCD) for a streaming media cache proxy or cache proxies’ cluster. In our

scheme, when the MCCD shares the same Internet connection, it can optimize
the buffer usage in order to increase the scalability of the streaming media, by
controling the rate of the incoming streams. The devices in a cluster can ex-
change information about the storage capacity (or a lack of input bandwidth)
in order to enable one device to decrease its rate when it can, and by this to in-
crease the bandwidth towards another one in order to overcome a buffer shortage.
The same idea could be used in 3G/4G cellular networks where again, multiple
streams compete on limited bandwidth. However in cellular networks, the band-
width bottleneck is between the cache proxy and the clients that use the cellular
devices. In these scenarios, achieving flow control cooperation is more difficult,
yet the benefit of cooperation remains very high. We present two algorithms that
manipulate the TCP flow control in order to reduce the load on the bottleneck
link when needed. The first one, “Lower Threshold Algorithm” (LTA), reduces
the TCP receiver window size when the cache buffer’s size is decreased below
some predefined threshold. The second, “Upper Threshold Algorithm” (UTA)
reduces the TCP receiver window size of each connection when its cache buffer’s
size increases above a certain predefined threshold and by this smoothes the flow
control of one recipient. Our extensive simulation study indicates that using our
algorithms can reduce the pre-caching time by a factor of 3, or increase the
probability for adequate service level by 30% using the same pre-caching time.
We also address an implementation approach, an algorithm operated from the
application layer, since the TCP Layer generally does not have an application
interface for controlling the TCP flow or congestion control.

This paper is organized as follows. Section 2 describes related work used
in multimedia caching in order to efficiently cache and use web items. Section 3
introduces the algorithms used in order to cooperate between the MCCD proxies.
Section 4 shows the evaluation and the advantages of the proposed scheme, and
Section 5 describes a practical approach that can be easily adopted in order to
implement our idea. Finally, Section 6 presents our conclusions.

2 Related Work

In order to avoid the mass storage location needed in order to cache multimedia
streaming objects, proxies use the fact that it is not necessary to cache all the
streaming media. Streaming media nature allows them to retrieve new frames
during the time that the user retrieves the cached frames. In [11], a “Prefix
Caching” algorithm that caches an initial portion of the streaming media is
proposed. The proxy can deliver this “prefix” to the client upon a request and
meanwhile to cache the remaining portion of the media. The idea of “Prefix
Caching” mechanism consists of caching a group of consecutive frame at the
beginning of the stream in order to smooth and reduce the variable bit-rate
of the streaming media. Another algorithm, the “Video Staging” algorithm is
proposed in [15]. In this algorithm, the proxy caches a portion of bits from all the
frames whose size is above some predefined threshold, and uses them in order
to smooth bursts when such a frame is transmitted to the user. Efficient line

bandwidth consumption is handled by several caching strategies designed for
multimedia caching. Some partial caching strategies are described in [7] [8] and
[15] whereas only certain parts of the multimedia stream are cached.

In order to enable a proxy to control the portion of the cached media the
authors of [8] propose a “frame wise” selection algorithm in an architecture sim-
ilar to the one mentioned in Section 1 whereas a proxy cluster is connected
to a video server over the Internet, and to its clients over a high speed LAN.
This algorithm, “Selective caching for Best effort Networks” (SCB), iteratively
selects frames located between the closest buffer peak tmax and the risky time
tr afterwards and caches them according to the buffer-space constraints. This
algorithm prevents troughs in the proxy buffers and has a better robustness
than “Prefix Caching” methods under the same buffer space limitations. In [9,
10] it is proposed to cache more layers of popular videos and by this to over-
come congestions that may appear later on the network. The authors of [12]
propose few schemes aimed at minimizing the bandwidth needed from the origin
server. Each of these schemes is applicable in different scenarios depending on the
bandwidth, cache-space tradeoffs and service requirements. For example, partial
caching of “Patch” and regular channel is done by re-use of buffers allocated by
each “Patching-Window” interval for subsequent intervals.

Video On Demand (VOD) Multimedia stream can be received over multiple
channels. A technique mentioned in [5] proposes to use two channels, the first
for the complete streaming media, and the second for “patching” the data when
a client joins later on to the streaming media. The client receives both channels,
caches the data from the first channel, and uses it after playing the data received
from the “patch” channel. In [5] it is shown that the “Patching” scheme supports
much higher requests rate for VOD.

Cache clustering is a natural way to scale as traffic increases. Different
schemes are used in order to arrange such a cluster, for example, in the loosely-

coupled scheme proposed in [3], each proxy in the cluster is able to serve every
request, independently of the other proxies. Popular protocols for this scheme are
ICP (Internet Cache Protocol) [14] and HTCP (Hyper Text Caching Protocol)
[13]. By using these protocols, proxies can share cacheable content, and increase
the end user performance and the availability of bandwidth towards the server.
In [1], “MiddleMan” - cooperating video proxy servers connected by a LAN, and
organized by “Coordinators” is presented. A “Coordinator” process keeps track
of the files hosted by each proxy and redirects requests accordingly. It was found
that when more proxies are used, smaller peak loads in each proxy are created
and better load-balancing between them is achieved. Since in a cluster, there is
no need to cache the same streaming multimedia object in different copies for
more than one user, the cluster should be able to maintain a management of a
single copy inside it. Such a solution “The Last-Copy approach” for maintaining
one copy of web items in a proxies’ cluster in mentioned in [2], where an inter-
cluster scheme is used in order to share the proxies’ resources, and by this to
provide scalable service to the cluster users.

3 Cooperative Protocols

Streaming Multimedia is used today for Internet-TV, Video On Demand, Dis-
tance Learning and many other applications. Suppose that MCCD (a cluster of
proxies managed by a director for example) who serves several clients via a fast
LAN, is connected to the Internet through a broadband connection. In order to
overcome the delay and jitter caused by the Internet nature it may use any of
the algorithms described before, such as the “Prefix Caching” algorithm [11], or
the “Video Staging” algorithm [15]. Each Multimedia session is based on a TCP
connection to a video server and has a predefined buffer space. Since the band-
width of the connection from the MCCD to the Internet is bounded, we focus on
balancing of the streaming media bandwidth between the different flows. Sup-
pose a Home-MCCD retrieves several movies for family members, each from a
different video server, via the Internet. If the buffer size of one of the proxies be-
comes empty, the movie transmission towards its specific user fails. Thus, when
the content of a buffer decreases below a given threshold, more bandwidth is
needed in order to keep the stream alive. Lowering the rate towards other video
servers enables more available bandwidth and the TCP mechanism increases the
rate, filling faster the buffer that is under risk. In order to implement such a
cooperation, the MCCD needs to maintain a database of its buffer status for
each multimedia stream. In this paper we focus in the case of a Home-MCCD
combined of two proxies’ processes, that retrieves two movies, mi and mj for
family members. In order to rescue a movie whose buffer content is too small,
we used two different algorithms that control the TCP receiver window. By re-
ducing the receiver window of the other movie, the server is requested to reduce
the input rate, enabling more bandwidth towards for the other connection. In
the first algorithm “Lower Threshold Algorithm” (LTA), we check each time
if the buffer size of each movie is below some predefined threshold. If it is, we
reduce the TCP receiver window size of the second link to half of its value, and
then adjust the threshold to half of its original value in order to keep decreasing
the TCP receiver window if the buffer size continues to drop down. The pseudo

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 160 170 180 190 200 210 220

B
u
ff
e
r

S
iz

e
 (

B
yt

e
s)

Seconds

a) The buffer size of both movies

mi
mj

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 160 170 180 190 200 210 220

C
W

N
D

 S
iz

e
 (

S
e
g
m

e
n
ts

)

Seconds

b) The cwnd of both movies

mi
mj

Fig. 2. The behavior of the LTA scheme

code of the “Lower Threshold” algorithm is presented in Algorithm 1. We keep
on decreasing the receiver window of the other connection and the temporary

threshold, until the problematic buffer recovers. When we recognize such a re-
covery (lines 24 or 31 of the algorithm) we reset all the parameters and go back
to normal mode. Figure 2 shows how this algorithm behaves. Figure 2(a) depicts
the amount of data in the buffers and Figure 2(b) depicts the behavior of the
TCP cwnd, on the same time interval. Typically, before it drops, the cwnd of
both movies is in the congestion control section of 15 to 28 segments. As can
be seen when the buffer size of mi drops below some threshold (and we can see
that the buffer of mj remains high) then the cwnd of mj starts to be bounded
by its receiver window, and drops down to the value of 7 segments. By this, the
bandwidth towards the first connection increases, and its cwnd changes up to
45 segment, filling quick its buffer until it increases above the threshold. The
threshold taken should be optimized according to the input bandwidth and to
the caching algorithm in use. If enough bandwidth is available then the threshold
should be high, since the buffer of one movie can be filled quick when we increase
back its receiver window, and we can reduce the risk of a failure of the other
one when its buffer will drop below zero. The caching algorithm also influence
the decision about the threshold size. If the “Prefix-Caching” algorithm is used
for example, then frame-bursts may appear later and the threshold should be
high enough in order to prevent it. If a caching algorithm that smoothes the
frame-bursts is used, then the threshold can be lower. However, when there is a
limited amount of bandwidth, if the threshold is too low when both buffers are
mostly empty and at least one of them is still below the threshold, then the other
one may slow the connection too early without enough data to overcome this
action. In contrary if the threshold is too high, then the algorithm may slow the
connection of one movie too many times, increasing its failure risk. In the second
algorithm “Upper Threshold Algorithm (UTA) we limit the buffers capacity by
using a pre-defined upper threshold for the buffers. This prevents each of the
connections to consume more bandwidth than needed. This solution has some
disadvantage, since some of the available bandwidth may not be consumed. A
pseudo code of this algorithm is presented in Algorithm 2.

4 Performance Evaluation

We evaluate the performance of our proposed scheme, by simulating it using
NS (Network Simulator) [6] over a configuration consists of a home broadband
network with an MCCD that uses two proxies’ processes. In our first experiment
we used the “Prefix Caching” algorithm proposed in [11] and in the second one
a variant of the “Video Staging” algorithm proposed in [15]. In both cases we
checked how each of our protocols, the UTA and the LTA, affects the MCCD
success rate (i.e. full delivery of both movies). The trace we used was taken from
[4]. It consists of 174,136 integers representing the number of bits per video frame
over about two hours of the Star-Wars movie MPEG1 decoding. The inter-frame
time of the StarWars trace is 1/24 sec. That means that the inter-arrival time
for the arriving bits is 1/24 seconds. We split the frames of the first two hours
(172,800 frames) into 8 short movies of 15 minutes each. Our experiments were

Algorithm 1 “Lower-Threshold Algorithm”
1: pthold← predefined threshold parameter

2: ReceiverWindowi ← the size of the the TCP receiver window of mi

3: ReceiverWindowj ← the size of the the TCP receiver window of mj

4: For each incoming frame do the following:

5: si(t) ← the current size of the buffer of mi at time t

6: sj(t) ← the current size of the buffer of mj at time t

7: Normal-State:

8: if si(t) < sj(t) and si(t) < pthold then

9: OldReceiverWindowj ← ReceiverWindowj

10: ReceiverWindowj ← ReceiverWindowj/2

11: tholdi ← pthold/2

12: Change into Recovery-State

13: end if

14: if sj(t) < si(t) and sj(t) < pthold then

15: OldReceiverWindowi ← ReceiverWindowi

16: ReceiverWindowi ← ReceiverWindowi/2

17: tholdj ← pthold/2

18: Change into Recovery-State

19: end if

20: Recovery-State:

21: if si(t) < sj(t) and si(t) < tholdi then

22: ReceiverWindowj ← ReceiverWindowj/2

23: tholdi ← tholdi/2

24: else if si(t) > pthold then

25: ReceiverWindowj ← OldReceiverWindowj

26: Change into Normal-State

27: end if

28: if sj(t) < si(t) and sj(t) < tholdj then

29: ReceiverWindowi ← ReceiverWindowi/2

30: tholdj ← tholdj/2

31: else if sj(t) > pthold then

32: ReceiverWindowi ← OldReceiverWindowi

33: Change into Normal-State

34: end if

done with all the possible 28 pairs that can be created from these 8 movies.
These movies have a very bursty nature. The maximum frame size in this trace
is 185267 bits, and the average one is 15611 bits. Hence, in order to to be able to
pass the maximum frame (each 1/24seconds), the needed bandwidth is 4.4Mbps,
but the average bandwidth needed for all the movies is only 374Kbps, more than
12 times less than the maximum. In our most bursty movie derived from this
trace the ratio between the peak bandwidth to the average one is 10.7, while in
our moderate one, this ratio is 6.7.

We used a bandwidth interval between 600Kbps to 1.2Mbps for both MCCDs.
The lower threshold used in our LTA protocol was 1.2M bytes when the “Prefix-
Caching” algorithm was used, and α∗Input−Bandwidth when the “Video-Staging”
algorithm was used. We used α = 6.4 (a threshold of 6.4Mbit for 1Mbps for ex-
ample). We decreased the lower threshold in this case since the “Video-Staging”
algorithm smooths and reduces the variable bit-rate of the future frame-bursts,
thus less overhead should be taken. In our UTA experiments we used 2M bytes
as our upper threshold. The “Prefix Caching” algorithm was implemented over
the first 15 seconds, whereas the prefixes of both movies were cached before start
consuming them from their buffers. The “Video Staging” algorithm was imple-
mented for frames larger than 60K bits. The total average size of the portion of

Algorithm 2 “Upper-Threshold Algorithm”
1: ReceiverWindowi ← the size of the the TCP receiver window of mi

2: ReceiverWindowj ← the size of the the TCP receiver window of mj

3: OldReceiverWindowi ← ReceiverWindowi

4: OldReceiverWindowj ← ReceiverWindowj

5: pthold← predefinedthresholdparameter
6: For each incoming frame do the following:

7: si(t) ← the current size of the buffer of mi at time t

8: sj(t) ← the current size of the buffer of mj at time t

9: if si(t) > pthold then

10: ReceiverWindowi ← ReceiverWindowi/2

11: else

12: ReceiverWindowi ← OldReceiverWindowi

13: end if

14: if sj(t) > pthold then

15: ReceiverWindowj ← ReceiverWindowj/2

16: else

17: ReceiverWindowj ← OldReceiverWindowj

18: end if

bits of frames larger than 60K bits, in our movies is 16Mbit. Thus, in order to
pre-fetch it we need to consumes an average of 16 seconds for the staging phase
in 1Mbps input rate. One condition was added to this algorithm: we assume that
the cached “frame peaks” are accumulated in a different buffer. We check the
influence of our schemes over the run-time buffer of the input stream.

We will use the terms ma and mb for the movies that are under consideration.
On each case there is a “weak” movie ma that may crash as a result of bursty
frames interval, and a “strong” movie mb that decreases its connection rate
towards the server, in order to enable ma to continue, using one of our schemes.
We start with checking the overall validity of the scheme. Figure 3 shows the
behavior of ma and mb when no algorithm is in use and when the LTA and
the UTA algorithms are used. When no algorithm is used, after only 90 seconds
the buffer of ma gets empty, and the streaming media fails. However, when we
use the LTA algorithm, the TCP receiver-window of mb connection is decreased
when the amount of data in ma buffer drops below the predefined threshold.
Then, the buffer of ma does not get empty, and the streaming media continues
with no interruptions. When the UTA algorithm is used, both ma buffer and
mb buffer cannot increase beyond the upper threshold, and when one of them
does, its TCP receiver-window is decreased in order to balance the transfer rate
of the shared connection between the two connections. Again, we see that ma

does not crash, simply because mb is not using all the available bandwidth,
and by this enable ma to compensate the buffer temporary shortage. Figure 4
depicts the improvement of the success to view both ma and mb, when the
LTA algorithm is operated. These results are obtained when using the “Prefix
Caching” scheme and the “Video Staging” scheme. We can see for example,
that when the bandwidth varies between the ranges of 750Kbps to 850Kbps
the LTA algorithm enables between 25% to 57% of the movie pairs to succeed,
while without it there is only 10% to 35% pairs success. When the bandwidth
is above 1050Kbps using the LTA algorithm causes all movies to be successful,
while without it only 75% of the pairs are successful.

0

2e+06

4e+06

6e+06

8e+06

1e+07

0 100 200 300 400 500 600 700 800 900

B
u
ff
e
r

S
iz

e
 (

B
y
te

s
)

Seconds

a) No algorithm is used

Movie a
Movie b

0

2e+06

4e+06

6e+06

8e+06

1e+07

0 100 200 300 400 500 600 700 800 900

B
u
ff
e
r

S
iz

e
 (

B
y
te

s
)

Seconds

b) Using the Lower Threshold Algorithm

Movie a
Movie b

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 100 200 300 400 500 600 700 800 900

B
u
ff
e
r

S
iz

e
 (

B
y
te

s
)

Seconds

c) Using the Upper Threshold Algorithm

Movie a
Movie b

Fig. 3. Two movies behavior

Figure 4(b) shows that the “Video Staging” scheme improves the success of
both movies more than the “Prefix Caching” one, but still, our LTA algorithm
gets 20% to 30% better results than when no algorithm is used.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

600 700 800 900 1000 1100 1200

%
 S

u
c
c
e
s
s

Bandwidth (in Kbps)

a) Using the Prefix-Caching scheme

No Cooperation
Using the LTA scheme

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

600 650 700 750 800 850 900 950 1000 1050 1100

%
 S

u
c
c
e
s
s

Bandwidth (in Kbps)

b) Using the Video Staging scheme

No Cooperation
Using the LTA scheme

Fig. 4. The success of two movies when using the LTA Algorithm

5 A Practical Approach

Since the TCP Layer generally does not have an application interface for con-
trolling the TCP flow or Congestion-control, implementing our algorithm in
practice may be problematic. A possible solution is to temporary stop the TCP
connection of one movie. However, this is not a smooth process, due to the TCP
slow-start algorithm used in order to restart. Since bursts in a movie data do not
last long, we can assume that time periods in which the buffer content decreases
rapidly are short. We also assume that we should deal only with the case that
during this time interval, only one movie is problematic, since if both of them
are, we cannot do much. This discussion leads to the conclusion that stopping
another TCP connection for a short time interval may solve the problem. When
using a short time inteval we can use a “risky” lower threshold for ma, lower
than the one we used in the “Lower Threshold” algorithm. This reduces the
possibility that mb will crash also, since we fill its buffer more time. The “Dis-
connect by Lower Threshold Algorithm” (DLTA) is presented in Algorithm 3.

Algorithm 3 “Disconnect by Lower Threshold Algorithm”
1: pthold← predefinedthresholdparameter
2: For each incoming frame do the following:

3: si(t) ← the current size of the buffer of mi at time t

4: sj(t) ← the current size of the buffer of mj at time t

5: if si(t) < pthold then

6: if mi connection is active then

7: stop the connection of mj

8: end if

9: else

10: if mj connection is stopped then

11: start the connection of mj

12: end if

13: end if

14: if sj(t) < pthold then

15: if mj connection is active then

16: stop the connection of mi

17: end if

18: else

19: if mi connection is stopped then

20: start the connection of mi

21: end if

22: end if

Note that we never stop both connections, and the buffer size of the stopped
connection can drop temporary below the predefined threshold.

We evaluated the advantages of the proposed scheme using the same simula-
tion and input as before. The buffer size threshold we used was a function of the
input bandwidth, the caching time (in the “Prefix Caching” scheme), and the
caching scheme in use (since we need a lower threshold with the “Video Stag-
ing” scheme). For example, we used a threshold of 600K bytes when the input
bandwidth was 1Mbps, and the “Prefix Caching” time was 15 seconds. Figure 5
depicts the success rate when the DLTA algorithm is used. Figure 5(a) results
are obtained when the “Prefix Caching” scheme was used, and Figure 5(b) re-
sults are obtained using the “Video Staging” scheme. In figure 5(a) we can see
for example, that when the marginal bandwidth for both movies is 800 Kbps,
only in 21% of the cases we succeed to see both ma and mb when there is no
cooperation, while when the DLTA algorithm is used, we more than double it
to 53% of the time. The same can be seen in Figure 5(b), whereas the “Video
Staging” scheme improve the success rate over the “Prefix Caching” algorithm,
but our scheme still gets about 30% better. Figure 6 depicts the improvement
with respect to the no-cooperation case of all our proposed algorithms. We more
than double the success rate when the link has a limited bandwidth, whereas in
the lower bandwidth interval (below 800Kbps) the DLTA algorithm even triple
this success. Another interesting result is the overall percentage of success to see
movies with and without our scheme. As depicted in Figure 7, the DLTA schemes
improves meaningfully the number of movies that can be seen via the MCCD
for both caching algorithm while the other schemes do not. The main reason
for this is that in a bandwidth shortage when in all other schemes both movies
crash, the DLTA algorithm disables one of the connections, causes this movie to
crash, but increases the bandwidth of the other, and let it to be finished.

0

0.2

0.4

0.6

0.8

1

600 700 800 900 1000 1100 1200

%
 S

u
cc

e
ss

Bandwidth (in Kbps)

a) Using the Prefix-Caching scheme

No Cooperation
Using the DLTA scheme

0

0.2

0.4

0.6

0.8

1

600 650 700 750 800 850 900 950 1000 1050 1100

%
 S

u
cc

e
ss

Bandwidth (in Kbps)

b) Using the Video Staging scheme

No Cooperation
Using the DLTA scheme

Fig. 5. The success of two movies when using the DLTA Algorithm

 1

 1.5

 2

 2.5

 3

 700 750 800 850 900 950 1000 1050 1100 1150 1200

Bandwidth (in Kbps)

a) Using the Prefix-Caching scheme

LTA scheme
UTA scheme

DLTA scheme

 1

 1.5

 2

 2.5

 3

 700 750 800 850 900 950 1000 1050 1100

Bandwidth (in Kbps)

b) Using the Video Staging scheme

LTA scheme
UTA scheme

DLTA scheme

Fig. 6. The Improvement of the success of two movies

A different way to evaluate our schemes is to compare the pre-caching time
needed in order to be able to deliver both movies to the clients in all 28 cases.
Figure 8 compares the needed pre-caching time in our schemes against the case
where no cooperation is used. It can be seen that the caching time needed in order
to achieve 100% success is 90 seconds when using input bandwidth of 1Mbps,
and it is decreased to 5 second when the input bandwidth is 1200Kbps. However,
when using our LTA scheme, it takes only 35 seconds, less than 34%, when the
input bandwidth is 1Mbps. The DLTA scheme also shows a great improvement
whereas the pre-caching time that guaranties success when the input bandwidth
is 1Mbps is only 40 seconds and it drops to 15 seconds instead of 60 seconds
when the input bandwidth is 1050Kbps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 600 700 800 900 1000 1100 1200

Bandwidth (in Kbps)

a) Using the Prefix-Caching scheme

No Cooperation
LTA scheme
UTA scheme

DLTA scheme
 0

 0.2

 0.4

 0.6

 0.8

 1

 600 650 700 750 800 850 900 950 1000 1050 1100

Bandwidth (in Kbps)

b) Using the Video Staging scheme

No Cooperation
LTA scheme
UTA scheme

DLTA scheme

Fig. 7. The Improvement of movies success

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1000 1050 1100 1150 1200 1250

N
e
e
d
e
d
 C

a
ch

e
 t
im

e

Bandwidth (in Kbps)

No Cooperation
LTA scheme
UTA scheme

DLTA scheme

Fig. 8. Pre-Caching time in order to achieve 100% success for both movies

6 Conclusions

In this paper we proposed an efficient scheme for decreasing the pre-caching time,
or increasing the probability for adequate service level of multiple streams using
the same cache proxy. The heart of the proposed scheme, is an algorithm that
utilizes cooperation between the flow management of different streams, which
can improve the ability of the cache to provide service to all its clients. The idea
is based on the willingness of streams to reduce their used bandwidth and allow
other streams that may need it more to use it. In such a case, when congestion is
detected, or when the amount of the buffer’s data is decreased, the cache proxy
can reduce other flows by manipulating the TCP flow control. Then, the load on
the bottleneck link is reduced and the needed flow rate increases (or at least is not
reduced), by using the TCP normal flow and congestion control mechanism. We
also investigated a more practical approach that blocks the TCP connection for
a short time interval, and showed that it may solve the problem. Our simulation
results indicate that the proposed schemes achieve much better success rates (i.e.
full delivery of both movies) than schemes in which no cooperation is used. Using
our algorithms can reduce the pre-caching time by a factor of 3, or increase the
probability for adequate service level by 30% using the same pre-caching time.
A similar idea can be used in 3G/4G cellular networks where multiple streams
compete on a limited bandwidth. In such networks, the bandwidth bottleneck
is between the cache proxy and the clients that use the cellular devices, thus
achieving flow control cooperation is a bit more complex, yet the benefit of
cooperation remains very high.

References

1. S. Acharya and B. Smith. Middleman : A video caching proxy server. In Proceedings
of 10th International Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV), June 2000.

2. R. Cohen and I. Dabran. The “Last-Copy” Approach for Distributed Cache Prun-
ing in a Cluster of HTTP Proxies. In 7’th International Workshop for High-Speed
Networks (PfHSN 2002), Apr. 2002.

3. I. Cooper, I. Melve, and G. Tomlinson. Internet Web Replication and Caching
Taxonomy. RFC-3040, Jan. 2001.

4. M. W. Garrett and A. Fernandez. Variable bit rate
video bandwidth trace using mpeg code. Available at:
thumper.bellcore.com/pub/vbr.video.trace/MPEG.description, Nov. 1994.

5. K. Hua, Y. Cai, and S. Sheu. Patching: A multicast technique for true video-on-
demand services. In ACM Multimedia, pages 191–200, Sept. 1998.

6. S. McCanne and S. Floyd. ns-LBL Network Simulator. Available at: http://www-
nrg.ee.lbnl.gov/ns/.

7. Z. Miao and A. Ortega. Proxy caching for efficient video services over the Internet.
In 9th International Packet Video Workshop, Apr. 1999.

8. Z. Miao and A. Ortega. Scalable proxy caching of video under storage constraints.
IEEE J. Selected Areas in Communications, 20(7):1315– 1327, Special issue on
Internet Proxy Services., Sept. 2002.

9. R. Rejaie, M. Handley, and D. Estrin. Quality adaptation for congestion controlled
video playback over the internet. In SIGCOMM, pages 189–200, 1999.

10. R. Rejaie, H. Yu, M. Handley, and D. Estrin. Multimedia proxy caching mechanism
for quality adaptive streaming applications in the internet. In IEEE INFOCOM,
pages 980–989, Mar. 2000.

11. S. Sen, J. Rexford, and D. F. Towsley. Proxy prefix caching for multimedia streams.
In IEEE INFOCOM, pages 1310–1319, Mar. 1999.

12. O. Verscheure, P. Frossard, and J.-Y. L. Boudec. Joint smoothing and source rate
selection for guaranteed service networks. In IEEE INFOCOM, pages 613–620,
Apr. 2001.

13. P. Vixie and D. Wessels. Hyper Text Caching Protocol (HTCP/0.0). RFC-2756,
Jan. 2000.

14. D. Wessels and K. Claffy. Internet Cache Protocol (ICP). RFC-2186, Sept. 1997.
15. Z.-L. Zhang, Y. Wang, D. H. C. Du, and D. Shu. Video staging: a proxy-server-

based approach to end-to-end video delivery over wide-area networks. IEEE/ACM
Transactions on Networking, 8(4):429–442, 2000.

