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Abstract. The quality of audio in IP telephony is significantly influ-
enced by the impact of packet loss rate, burstiness and distribution
on a specific audio compression technique. In this paper, we propose a
novel statistical-based on-line audio quality assessment framework, Au-
dio Genome, that can deduce the audio quality of an on-going Inter-
net audio for many different codecs under any network loss condition
at real-time. Our approach is superior to proposed learning-based tech-
niques in terms of computational speed and ease of deployment. Our
extensive evaluation experiments, that include large simulation scenar-
ios, show that our approach is accurate and viable for adaptive real-time
audio mechanisms. Finally, we show a deployment of Audio Genome as
an integral part of an adaptive rate control mechanism.

1 Introduction

Audio codecs have a diverse range of compression degrees and underlying tech-
nologies. The main factors that significantly influence the evaluation of audio
quality in IP telephony thus include codec type, loss rate, loss burst, inter-loss
gap, delay, and recency [1] [2] [4]. ITU specifies E-Model [5] to deduce relative
impairments to voice quality. However, it is a real challenge to establish a frame-
work that derives audio quality on-line considering all of these factors. Such a
framework can be highly beneficial for quality monitoring of an ongoing VoIP
communication, and can be part of adaptive multi-codec audio control mecha-
nisms that switch and mix codecs according to changing bandwidth and delay
conditions to maintain optimal quality.

Audio quality of any speech processing system is generally described in terms
of MOS (Mean Opinion Score) [10], the formal subjective measure of received
speech quality, which is a real number between 1 and 5, where 1 is bad and
5 is excellent. In contrast to subjective testing, objective testing schemes, such
as PESQ (Perceptual Evaluation of Speech Quality [12]) are automated and
repeatable speech testing schemes that take into account the subjective nature of
human perception. ITU-specified E-model [5][6][7][11] provides a computational
model to derive relative impairments to voice quality and to estimate subjective
MOS. But ITU provides no analytic methods that can directly measure the
impairment due to random loss conditions of bursts and inter-loss gaps.



The objective of Audio Genome is to provide a statistical framework that first
quantifies the effects of packet loss on various codecs by considering loss bursts,
inter-loss gaps and various loss rates. We establish the audio quality as a set of
functions that are derived from sufficient data generated from a large set of simu-
lation experiments considering various codecs and a wide range of loss scenarios.
Interpolation is used as the modelling technique to accurately characterize the
curves representing the audio quality for codecs under any loss scenario. The
resulting repository of quality information is used real-time that can assess the
expected audio quality for an ongoing communication. Audio Genome, being a
statistical approach, guarantees speed, accuracy and less overhead in terms of
computation and data storage.

Many researchers have attempted to establish audio quality prediction mod-
els based on packet loss [2][3][13], but their work is not as comprehensive and
complete as ours. Other researchers have used of neural networks [14][19] in order
to provide an ongoing quality based on a set of codecs under various loss rates
and distribution. Compared to these methods, our work is of lower complexity
and computational delay, that can be directly applied to adaptive multimedia
control mechanisms, and is also designed simple enough for easy deployment
in hand-held devices. We provide a model of such an application, where Audio
Genome is used to deduce the quality score for the current loss conditions in
order for an adaptive multi-codec audio mechanism to take proper rate control
actions.

Subsequent sections are organized as follows. Section 2 contains the related
work. In section 3 we present the Audio Genome Approach. We describe the
evaluation and experiment results in section 4, an application of Audio Genome
in section 5, and conclusion and future work in section 6.

2 Related Work

ITU-specified E-model describes a computational model to derive relative im-
pairments to voice quality and to estimate subjective MOS. ITU provides the
measure of equipment impairment Ie for many codecs under no loss condition [11]
and a limited number of codecs under very limited loss condition scenarios [7].
In addition, ITU framework does not directly consider random loss conditions of
bursts and inter-loss gaps in measuring the impairment Ie. Ideally, we would like
to be able to express Ie values for various codecs in fully analytic form as a func-
tion of packet loss and burstiness. However, at this point not enough subjective
measurements and their specifics are available by ITU or in the literature.

Many authors have presented extensions to E-model. Cole and Rosenblath [3]
described a method for monitoring VoIP applications based upon E-model, where
they used curve fitting of ITU-published Ie values for selected codecs for various
loss percentages. However, since they pointed out that ITU does not show a
complete description of algorithms to generate loss data, they were unable to
provide a complete framework of codec quality assessment, as in the case of our
Audio Genome approach. In [13], the authors addressed the problem of predicting



the quality of telephone speech and classified quality prediction models based
on E-Model. But they did not provide a comprehensive study of impairments
due to packet loss. VQMon [2] is a non-intrusive passive monitoring system for
VoIP using an extended E-model incorporating packet loss and recency effect. It
derives Ie values dynamically by solving the Markov model using probabilities of
loss from the observed loss. However, VQMon uses a limited ”burstiness” model
that, for example, does not distinguish between ”burst” situation when 3 packets
are lost consecutively vs. 3 packets are lost with a gap of 1 or more packets
in between each loss pair, these two scenarios producing completely different
quality results. A different approach has been taken by training a neural network
with MOS for a set of codecs under various loss rates and distribution [14][19].
This approach is less attractive to us because of complexity in training and
computational delay, which can be a problem in practical deployment of an
online quality assessment mechanism.

Audio Genome attempts to bridge this gap by providing a comprehensive
framework for on-line audio assessment that is easy to deploy and can be ex-
tended to many codecs. Watson and Sasse [20] have conducted extensive sub-
jective evaluation of audio quality under packet loss compensation in multime-
dia conference systems. We use PESQ instead, since subjective testing is time-
consuming, cumbersome, error-prone and non-repeatable.

3 The Audio Genome Approach

The Audio Genome approach can be described as follows.
o Generation of audio clips with packet loss scenarios: We choose a periodic

drop framework: we use a wide set of fixed inter-loss gaps (from 300 down to 2
packets) causing increasing degrees of packet loss, with a set of fixed loss burst
lengths (1-4 packets) for a large number of short audio clips (9-12 sec) made by
female and male voices. For a set of chosen codecs, we drop packets from audio
clips using the periodic drop framework.

o MOS evaluation and observations: Using PESQ, we compare ’pure’ and
’poisoned’ audio clips to deduce MOS scores under loss. We also observe the
characteristics and behavior of each codec under various packet loss conditions.

o Validation of collected data: We compare the results of representative clips
with subjective testing and show that what we get analytically is close to sub-
jective test MOS.

o Codec Quality Function Derivation: We deduce codec quality functions for
the collected data under loss using Interpolation.

o Online prediction of audio quality: We use interpolation functions deter-
mined in the previous step to deduce the MOS for the ongoing transmission.
We use weighted aggregation schemes that calculate MOS values for observed
inter-loss gaps and burst sizes, and produce a combined MOS for the session so
far.
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Fig. 1. Packet Loss Simulation Framework

Table 1. Audio Codecs used in Experiments

codec Underlying technology Bitrate kb/s Measured MOS

G.711 waveform PCM 16 kHz 128 4.5

G.721 waveform ADPCM 32 3.04

G.729 ABS CS-ACELP 8 3.646

G.723.1 ABS MP-MLQ 5.3 3.485

GSM FR 06.10 ABS RPE-LTP 13 2.721

G.722.2

mode (8) ACELP 23.85 3.469
mode (6) ACELP 19.85 3.392
mode (5) ACELP 18.25 3.326
mode (3) ACELP 14.25 3.1165
mode (1) ACELP 8.85 2.718
mode (0) ACELP 6.6 2.421

3.1 Audio Clip Generation with Loss Scenarios

Experiment Codec Set We choose G.711, as the standard audio compression
technique or ’codec’, a waveform PCM-16 (16 bit Pulse Code Modulation) coder
of bitrate 128kbs [8] with the best quality. In addition, we choose multiple codecs
of varied bitrates and underlying technology (Table 1) representing complex cod-
ing methods, such as Analysis By Synthesis (ABS) and Codebook Excited Linear
Prediction (CELP). Apart from these codecs, G.722.2 (AMR-WB) is a fairly new
Adaptive Multi-Rate Wideband codec with multiple bitrates [9] with not much
testing results available. We choose 6 out of 9 bitrates of G.722.2 to evaluate
how the different bitrates of the codec behave under degrees of packet loss in
relation to each other. We measure the audio quality of each codec under no loss
(Table 1 column 4) or the ’Pure’ MOS, to create a referee for our measurements.

Experiment Methodology Fig. 1 depicts the packet loss simulation frame-
work. Each original PCM-16 audio clip is encoded and decoded with every codec
to create a ’pure’ image with no loss, and is compared with the original clip to
deduce the ’Pure’ MOS. To create the ’Poisoned’ clips, we drop packets during
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Table 2. Test Codec Set: Genome Accuracy

Codec Overall Scheme MeanMOSdev Error % Std Dev

G.729 calc 1 0.11 2.4% 0.07
G.721 calc 1 0.17 3.8% 0.09
GSM avg 0.20 4.4% 0.11

G.722.2 0 avg 0.14 3.1% 0.12
G.722.2 1 avg 0.13 2.9% 0.12
G.722.2 3 calc 1 0.13 2.9% 0.12
G.722.2 5 calc 1 0.12 2.7% 0.10
G.722.2 6 calc 1 0.11 2.4% 0.12
G.722.2 8 calc 1 0.11 2.4% 0.09

of 6480 clips), we performed the following: (i) Extract the sequence of (gap,
burst) pair data from each ”poisoned” clip, (ii) Evaluate MOS PESQ using
PESQ, (iii) Deduce MOS pred from Audio Genome, (iv) Evaluate the accuracy
by computing the MOS deviation MOSdev (eqn. 2) in Evaluation Module.

We calculated MOSdev for all experiment sets and computed the accuracy
of Genome under various loss degree and burstiness scenario. We observed that
Audio Genome shows good accuracy for the appended clips in particular, which
shows that it accommodates PESQ recency factor very well. We present the
aggregate and an overall accuracy result of Genome for each codec in Table 2.
Though the loss rate and degree is varied considerably over the experiments, the
mean MOS deviation of Audio Genome for every codec is observed to be in a low
range with low error percentage and standard deviation. Hence Audio Genome
shows high accuracy under a wide range of loss scenarios.

5 An Application of Audio Genome: A Rate-Quality
Optimization Mechanism

We present an example application, where Audio Genome is used to deduce the
quality score for the current loss conditions in order for an adaptive multi-codec
audio mechanism to take proper rate control actions. The objective of the Rate-
Quality Optimization problem is to derive a codec combination set that will
maximize the audio quality of the ongoing connection under the current con-
straints of available bandwidth, end-to-end delay and packet loss. The solution
of the optimization problem is a combination ratio of codecs and/or bitrates that
ensures the highest possible audio quality under current network conditions.

Problem Formulation. Maximize the audio quality under the constraint of
available bandwidth and link delay.
Maximize z = c1x1 + c2x2 + . . . + cnxn

subject to
b1x1 + b2x2 + . . . + bnxn ≤ B d1x1 + d2x2 + . . . + dnxn ≤ D
c1x1 + c2x2 + . . . + cnxn ≤ 4.3 c1x1 + c2x2 + . . . + cnxn ≥ 3.5
x1 + x2 + . . . + xn = 1 xi ≥ 0, i = 1 . . . n



where
x1, x2, . . . xn = percentage of each codec (type+bitrate) in the transmission mix
c1, c2, . . . cn = MOS score for each codec under current loss
b1, b2, . . . bn = bit rate of each codec
d1, d2, . . . dn = (packet size in bytes)*(encode/decode delay for 1 byte)
B = available bandwidth, D = 400 - link OWD

The rationale behind the constraints is as follows. Constraint of Available
Bandwidth:The total bandwidth consumption by the codecs, expressed as the
sum of the products of bitrate and percentage of each codec, should not exceed
the available bandwidth. Constraint of Delay:The total codec delay, expressed
as the sum of products of encode/decode delay and percentage of each codec,
should not exceed the difference of the maximum allowable M2E delay (400ms)
and the link OWD. Constraint of Quality:The quality sum cannot exceed the
maximum quality value 4.3 (the MOS of G.711 under no loss), and should be
greater than or equal to 3.5 (lower bound of acceptable speech quality). The
objective function is the audio quality to be maximized, and is expressed in
terms of the sum of the product of codec percentage and the codec quality score
under current loss condition, as determined by Audio Genome.

6 Conclusion and Future Work

This paper presents a novel statistics-based real-time audio quality assessment
framework, Audio Genome, that can deduce the audio quality of an on-going
Internet audio for many different codecs under any network loss condition. We
first provide an extensive experimental framework with 5 codecs G.721, G.729,
G.723.1, GSM and 6 bitrate modes of G.722.2, where we quantify the effect
of packet loss on the audio quality objectively by considering a wide range of
loss bursts, inter-loss gaps and loss rates using interpolation as the modelling
technique. For an ongoing communication, we evaluate 2 aggregation schemes to
compare the predicted MOS with observed PESQ MOS. We derive a unified set
of aggregation schemes for the codecs under test as the Audio Genome Model.
We evaluate Audio Genome by conducting a set of extensive random loss exper-
iments with loss degrees ranging from 2% to 40% and a wide range of packet
burst distribution. For all codecs, under all loss scenarios, Audio Genome shows
good accuracy: 96%-98% in average and never less than 91%. Audio Genome,
being a statistical approach, guarantees speed, accuracy and less overhead in
terms of computation and data storage. The framework being well-defined and
repeatable, can be easily extended with any other codec. As an application, we
provide a model of an adaptive multi-codec audio control mechanism that uses
Audio Genome to perform rate control and maintain optimal quality.

As a future work, we plan to use multiple regression analysis for modelling
the audio quality-packet loss relationships. We also plan to implement an adap-
tive multi-codec audio control mechanism with Audio Genome as an integral
component. We intend to use Audio Genome to provide real-time feedback to



end-to-end Internet audio transport protocols in order to increase the reliability
and quality of the audio session.
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